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Abstract

Recognizing biomedical concepts in the text
is vital for ontology refinement, knowledge
graph construction, and concept relationship
discovery. However, traditional concept recog-
nition methods, relying on explicit mention
identification, often fail to capture complex
concepts not explicitly stated in the text. To
overcome this limitation, we introduce MA-
COIR, a framework that reformulates concept
recognition as an indexing-recognition task.
By assigning semantic search indexes (ssIDs)
to concepts, MA-COIR resolves ambiguities
in ontology entries and enhances recognition
efficiency. Using a pretrained BART-based
model fine-tuned on small datasets, our ap-
proach reduces computational requirements to
facilitate adoption by domain experts. Further-
more, we incorporate large language models
(LLMs)-generated queries and synthetic data
to improve recognition in low-resource set-
tings. Experimental results on three scenarios
(CDR, HPO, and HOIP) highlight the effec-
tiveness of MA-COIR in recognizing both ex-
plicit and implicit concepts without the need
for mention-level annotations during inference,
advancing ontology-driven concept recognition
in biomedical domain applications. Our code
and constructed data are available at https:
//github.com/sl-633/macoir-master.

1 Introduction

Automatic recognition of biological concepts in the
text aids experts in refining ontologies and consol-
idating domain knowledge. As structured knowl-
edge evolves to include increasingly complex con-
cepts (Gargano, 2023; Yamagata et al., 2024), iden-
tifying concepts often requires significant expert
analysis. Traditional Concept Recognition (CR)
methods are inadequate for supporting tasks such
as ontology-driven knowledge graph construction,
efficient literature retrieval for specific concepts,

Figure 1: Concept recognition by MA-COIR follows the
default workflow indicated by purple arrows. When an
LLM generates simplified queries from a given pas-
sage, additional processes, denoted by blue arrows,
are incorporated. When “6-2-8-0-5” is generated,
“HOIP_0004832: TNF signalling” is predicted as a con-
cept within the query.

and the discovery of novel relationships between
concepts.

Typically, recognizing ontology concepts in pas-
sages or sentences relies on identifying mentions -
text spans where concepts appear. When mentions
are provided, Entity Disambiguation (ED) can be
applied to match each mention to a single entity
or none at all (Wu et al., 2020; Jiang et al., 2024;
Wang et al., 2023; OAKlib, 2023). When mentions
are unknown, recognition may be achieved through
a pipeline beginning with Named Entity Recogni-
tion (NER) to identify mentions, followed by ED to
resolve these predictions (Shlyk et al., 2024; Cau-
field et al., 2024). Alternatively, end-to-end Entity
Linking (EL) approaches can yield a series of (men-
tion, entity) pairs (Kolitsas et al., 2018; Cao et al.,
2020; Luo et al., 2021).

With advancements in Large Language Models
(LLMs), several LLM-based pipeline methods for
NER and ED have been introduced (Shlyk et al.,
2024; Caufield et al., 2024). In-context learning
(ICL) techniques reduce annotation requirements;
however, a substantial performance gap remains
between ICL and fully supervised methods (Shlyk
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et al., 2024). While mention-based queries are typ-
ically generated to retrieve concepts, the limitation
of this approach becomes evident when complex
concepts do not appear explicitly as “mentions”
within the text, rendering aforementioned mention-
based recognition methods ineffective in real-world
applications.

We propose MA-COIR (Mention-Agnostic
Concept Recognition through an Indexing-
Recognition Framework), a framework for recog-
nizing biomedical concepts explicitly or implicitly
mentioned in the text. Inspired by prior works (Tay
et al., 2022; Jiang et al., 2024), we reformulate
the concept recognition (CR) task into an indexing-
recognition paradigm. This approach assigns each
concept a semantic search index (ssID) and trains
a neural model to predict ssIDs corresponding to
concepts described in the input text (see Fig. 1).

By generating ssIDs instead of literal concept
names, the framework resolves ambiguities caused
by identical concept names within ontologies (e.g.,
concepts sharing preferred names but differing def-
initions). Additionally, the semantic alignment
between concepts and their assigned indexes en-
hances model learning, enabling more powerful
recognition.

Our method leverages a pretrained BART-based
language model fine-tuned on a small dataset,
thereby reducing computational demands and im-
proving accessibility for domain experts. Further-
more, we explore LLM-generated queries and syn-
thetic data, demonstrating the framework’s utility
in low-resource settings for real-world concept ex-
traction tasks. Results across datasets (CDR, HPO,
and HOIP) demonstrate the effectiveness of our
framework.

Our contributions are:

• We propose MA-COIR, a novel framework for
recognizing both explicit and implicit biomed-
ical concepts without the need for prior identi-
fication of specific mentions, thereby reducing
reliance on labor-intensive annotations needed
for entity recognizer training.

• To the best of our knowledge, we are the
first to integrate a semantic search index into
biomedical concept recognition, improving
generative model learning and enabling more
efficient recognition.

• We demonstrate the utility of query and train-
ing data generated by an LLM in concept

recognition tasks, providing a reference frame-
work for efficient recognition in low-resource
settings.

2 Related work

Biomedical Concept Recognition. In recent
years, biomedical CR methods have largely fol-
lowed two main approaches. The first approach
involves fully-, weakly-, or self-supervised learn-
ing methods based on pretrained language models,
such as domain-specific BERT or BART models
(Liu et al., 2021; Lee et al., 2019; Yuan et al., 2022;
Zhang et al., 2022), and fine-tuned these models on
small annotated datasets (Luo et al., 2021). The sec-
ond approach leverages the strong generalization
capabilities of LLMs to perform NER and ED tasks
in zero- or few-shot settings (Wang et al., 2023).Ex-
isting biomedical CR methods that operate without
mention annotations are LLM-based. For instance,
(Caufield et al., 2024) explored a schema guiding
LLMs to perform NER with specified constraints,
using (OAKlib, 2023) for subsequent ED tasks.
(Shlyk et al., 2024) proposed the REAL framework,
which combines LLM-based zero-shot NER with
an ED method using retrieval-augmented genera-
tion (RAG). (El Khettari et al., 2024) developed an
ICL demonstration selection strategy to generate
concept names closely aligned with ontology terms,
subsequently linking them based on the similarity
between generated names and ontology terms.

Hierarchical Indexing. Hierarchical indexing
has proven effective in handling large output
spaces, as seen in applications like extreme multi-
label classification (Zhang et al., 2021; Kharbanda
et al., 2022) and document retrieval (Tay et al.,
2022). By organizing labels or documents into
tree-structured hierarchies based on semantic rela-
tionships, these methods improve computational
efficiency and prediction performance. Notably, in
the context of biomedical CR, well-defined con-
cept taxonomies already exist through ontologies,
offering a natural foundation for hierarchical orga-
nization. However, the application of hierarchical
indexing in this field remains relatively unexplored
despite its potential benefits.

3 Methodology

3.1 Task formulation

Let O represent a set of concepts {C1, ..., Cn} de-
fined within a domain ontology. Given a query text
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Figure 2: Indexing Phase in MA-COIR: A semantic
search index (ssID) is assigned based on a label tree
derived from the domain ontology. Through hierarchical
clustering, the ssID for the concept “HOIP_0004832:
TNF signaling” is “6-2-8-0-5”.

Q, the CR task aims to identify a subset of concepts
{C ′

1, ..., C
′
p} from the ontology that are referenced

in the text.
We approach the CR task as an end-to-end gen-

erative process. First, we assign each concept C
a unique semantic search index (ssID). Then, our
model generates one or more ssIDs for the input
text Q, thereby retrieving the concepts are pre-
sented in the text.

3.2 Concept Indexing

As illustrated in Fig. 2, each concept C is rep-
resented as a vector EC , obtained by encoding
its canonical name NameC using a text encoder.
Given our focus on the biomedical domain, we
select SapBERT (Liu et al., 2021) as the text en-
coder.1 The representation EC is derived by averag-
ing the last hidden states for the tokens in NameC .

XC = TextEncoder(NameC) ∈ Rl×H (1)

EC = avg(XC) ∈ RH (2)

where l is the token length, and H is the dimension
of each token’s embedding.

Starting with the ROOT node that encompasses
all concepts in the target ontology, we construct
a label tree using a top-down hierarchical clus-
tering process. Specifically, if a node contains

1Through preliminary experiments, we observed that using
the average of token embeddings yields better performance
than the [CLS] token. We evaluated several pretrained lan-
guage models, including BioBERT v1.1, PubMedBERT, Sap-
BERT, and SciBERT, with SapBERT achieving the best re-
sults.

more than g elements, we divide it into ≤ m cate-
gories until each leaf node corresponds to a single
concept (with g = 10,m = 10 in this study)2 by
K-means algorithm implemented with Scikit-learn
(Pedregosa et al., 2011). Each node is assigned an
index based on its category, forming a sequence
of “semantic search indexes” (ssIDs) that encode
semantic information from each concept’s repre-
sentation.

3.3 Concept Recognition
During recognition phase following the indexing
process, the input may consist of a passage (e.g., a
paragraph of one PubMed article), a sentence, or a
span (mention or concept name), while the output
is a text sequence listing ssIDs (e.g., “6-2-8-0-5; 9-
6-6-9-5;”). Each ssID is separated by a semicolon
(“;”), as illustrated in Fig. 1.

To effectively map natural language text to a
formatted sequence, we selected a BART-based
pretrained language model (facebook/bart-large)
(Lewis et al., 2019). This model, with its encoder-
decoder architecture and cross-attention mecha-
nism, is well-suited for our tasks.

To ensure the BART-based model generates valid
ssID sequences, we apply a constrained decoder
that filters the output to retain only valid ssIDs. The
decoder’s vocabulary T is restricted to ssID tokens.
The token embedding et for each token t ⊂ T is ob-
tained from the embedding layer LmEmbedding
of the language model LM :

et = LmEmbedding(t) ∈ RH (3)

where H is the dimension of a token’s embedding.
At the i-th time step, the decoder selects the

token with the highest score based on the token
embedding et and the last hidden state hi. One
feature hi,t is computed using a one-layer linear
classifier:

hi = LM(ŷi−1) ∈ RH (4)

hi,t = W o
t hi + bo (5)

where W o is the weight and bo is the bias of the
classifier.

Another feature ei,t is the dot product of et and
hi, representing the relevance between the token t
and hi:

ei,t = ethi (6)
2We initially adopted DSI’s setting (g=10, m=100) (Tay

et al., 2022) but observed better performance with a smaller
m. The choice of g=10 aligns naturally with our use of digits
(0–9) to label clusters, forming an intuitive decimal tree.
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Figure 3: An example of constructing a claim-concept instance is as follows: Given a passage, we prompt the LLM
to breakdown the passage into several claims. For one claim, we then perform excerpt mining. Next, we match
these mined excerpts to the passage’s annotated concepts by assessing semantic similarity. If an excerpt closely
aligns with an annotated concept, we pair the concept with the claim. In this example, seven concepts are paired
with a single claim, forming a claim-concept instance.

The final score of the token t is the average of two
features:

zi,t = avg(ei,t, hi,t)) (7)

ŷi = argmax
t

(σ(zi,t)) (8)

where hi,t, ei,t, zi,t ∈ R1, σ is the Softmax func-
tion. The model parameters are optimized by mini-
mizing the CrossEntropyLoss(y, ŷ).

Our preliminary experiments revealed that us-
ing only one canonical name-ssID pair to intro-
duce a concept into the model did not provide
strong performance. It is crucial to incorporate
synonym-, mention-, and passage-ssID pairs for
model improvement if they are available. There-
fore, our model is trained on various input-output
pairs. When the input is a span and the output
is the ssID of a single concept, the model learns
“indexing”. When the input is a longer text and
the output includes multiple ssIDs for the concepts
are presented in the input, the model is trained for
“recognition”.

3.4 Multi-level queries generated by LLMs
Biomedical concepts are more challenging to rec-
ognize when the query is a passage compared to a
sentence or span. By extracting shorter segments
(e.g., sentences, phrases) from a passage, the model

can better identify concepts that are difficult to cap-
ture when the query is a passage. Our framework,
MA-COIR, is trained to process multiple levels of
queries, enabling the integration of results from
various query types derived from a passage into the
final predictions.

In this study, we employ an open-source LLM
- llama-3-8b (AI@Meta, 2024), to generate sim-
plified queries from passages. For the CDR and
HPO datasets, where concepts are associated with
specific “mentions”, the model generates concept
names to serve as queries. Given that HOIP con-
cepts are not consistently expressed as phrases, we
use the model to transform passages into sentence-
level claims and span-level concept names.

Claims are prioritized over segmented sentences
because they encapsulate the passage’s meaning
in a coherent and self-contained manner, facilitat-
ing comprehension and recognition. In contrast,
segmented sentences often lack sufficient context,
leading to ambiguity. Claims provide the neces-
sary abstraction and semantic synthesis, aligning
more effectively with downstream tasks that rely
on conceptual understanding.

The concept name generation is performed under
a 10-shot ICL setting. For a given passage in the
test set, we randomly select 10 passage-concept
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Split Data Passage Claim Concept Mention

Train
CDR 500 - 1,328 2,672
HPO 182 - 416 926
HOIP 225 682 337 -

Test
CDR 500 - 2,778 4,600
HPO 23 - 159 237
HOIP 37 165 265 -

Table 1: Statistics of instances.

pairs from the training set as demonstrations of the
prompt.3 Claim generation is done in a zero-shot
setting due to the lack of annotated passage-claim
pairs. Prompts we used are provided in Appendix
Fig. 5.

3.5 Data augmentation
After breaking down the passage into claims using
an LLM on the HOIP dataset, we generate claim-
ssID pairs from the training set for semi-supervised
learning. This data construction follows a common
weakly supervised NER approach, consisting of
two steps:

• Excerpt mining: Identify noun phrases and
excerpts consisting of “a noun phrase and a
verb linked to that noun phrase” using the
dependency tree of a generated claim. We use
spaCy (Honnibal and Montani, 2017) as the
dependency parser.

• Labeling function: Represent each excerpt
similarly to how a concept or query is rep-
resented, then compute the cosine similarity
between the excerpt and annotated concepts
from the passage. If any excerpt in the claim
has a cosine similarity ≥ 0.5 to a gold concept,
that concept is assigned to the claim.

Many matched excerpts only capture part of the
meaning of the corresponding concept. Pairing
the entire claim (which the excerpt appears) with
the concept reduces noise compared to pairing the
excerpt alone with the concept. An example of
constructing a claim-concept instance is shown in
Fig. 3.

4 Experiments

4.1 Datasets
Target concepts in an ontology are expressed fre-
quently either as mentions or not. The motivation

3Preliminary experiments using n-shot settings (n =
0, 1, 3, 5, 10) for LLM prompting on the HOIP dataset showed
that the best results were achieved with a 10-shot setting.

for proposing MA-COIR is to apply a pragmatic
approach for the latter. To evaluate the framework’s
effectiveness in both cases, we conduct experi-
ments on the three datasets.

CDR The pair of the MeSH 4 and BC5CDR
dataset (Li et al., 2016). The 2015 version of
the MeSH vocabulary includes 258K terms and
BC5CDR comprises 1,500 passages annotated with
MeSH terms based on entity mentions. MeSH is
not a formally defined ontology, evaluating perfor-
mance on this scenario establishes a reference for
the lower bound of ontological content.

HPO The pair of Human Phenotype Ontology
(HPO) (Gargano, 2023)5 and HPO GSC+ dataset
published by Lobo et al. (2017). The latest ver-
sion of the HPO ontology includes over 19,000
concepts. The HPO GSC+ dataset comprises 228
PubMed abstracts and 1,933 mention annotations,
each mention linked to a concept.

HOIP The pair of Homeostasis Imbalance Pro-
cess (HOIP) ontology (Yamagata et al., 2024) and
HOIP dataset (El Khettari et al., 2024).6 The on-
tology includes over 60,000 concepts related to
homeostasis imbalance processes, of which 44,439
biological process concepts are target concepts.

The dataset consists of 362 passages extracted
from PubMed papers. Each passage is annotated
with biological process concepts from the HOIP
ontology. Mention annotations of concepts are not
provided. Notably, a concept may be annotated
based on its relevance to a process mentioned in
the passage, even if the concept is not stated in the
passage (this relevance may depend on the annota-
tor’s background knowledge).

We conduct training with the original train/dev
set, and evaluation with a refined test set containing
only explicitly mentioned concepts.

4.2 Comparison system
XR-Transformer. Prior to MA-COIR, no super-
vised biomedical CR model directly generated a
list of ontology concepts from free text. By treat-
ing concepts as labels, CR task can be naturally
framed as an instance of extreme multi-label text
classification (XMC), where a passage is assigned
multiple relevant ontology terms. We adopt XR-
Transformer (Zhang et al., 2021), a state-of-the-art

4https://www.ncbi.nlm.nih.gov/mesh/
5https://hpo.jax.org/
6https://github.com/norikinishida/

HOIP-dataset
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XMC model with top-tier performance across mul-
tiple public benchmarks, as a strong baseline.

kNN-searcher. Given the lack of existing ap-
proaches that do not use mentions for CR, we se-
lected a straightforward baseline method: the top-k
Nearest Neighbor (kNN) search, which can retrieve
candidate concepts based on a given query. As the
way we represent a concept EC that described in
Section 3.2, we get the representation of the query
EQ by the TextEncoder:

XQ = TextEncoder(Q) ∈ Rl×H (9)

EQ = avg(XQ) ∈ RH (10)

where l is the token length of the query, and H is
the dimension of a token’s embedding.

With EQ and representations of all concepts
{EC1 , ..., ECn} as input vectors, we implemented
Faiss (Douze et al., 2024) for a fast vector search
of EQ among large-scale concept spaces, by calcu-
lated similarity based on Euclidean distance. The
kNN-searcher may return a candidate even if its
distance from the query is large, when no other
concepts closer to the query exceed the distance
of the candidate. To mitigate false positives, we
classify retrieved concepts with a similarity score
< 0.6 as non-predictions.

Additionally, we conduct a comparative analysis
of our approach against (Shlyk et al., 2024) and
(El Khettari et al., 2024) under a controlled setup.
Details are described in Section 6.4.

4.3 Setups
We trained MA-COIR and XR-Transformer using
passage-, name-, and synonym-ssID pairs for all
three datasets. When annotated mentions or gener-
ated claims were available, the model was trained
with mention- and claim-ssID pairs. The mod-
els trained with synthetic claim-ssID pairs is re-
ferred to as MA-COIR-a and XR-Transformer-a.
For checkpoint selection, we used only passage-
ssID pairs from the development set. Evaluation
involved testing the model with various types of
queries, including passages, gold mentions (for
CDR and HPO), generated claims (only for HOIP),
and generated concept names. The statistics for the
instances are provided in Table 1. Hyperparameters
are listed in Appendix A.1.

4.4 Evaluation metrics
We evaluate all models using precision (Pre), recall
(Rec), and micro F1-score (F1), measured across

different query levels. For MA-COIR, we use beam
search to generate top-k concept sequences per
query. Each sequence is segmented into ssID-like
spans using semicolons as delimiters. Spans not
matching any defined ssID are discarded. All valid
spans across k sequences are then merged and dedu-
plicated to form the final prediction set. When mul-
tiple queries are derived from a single passage, their
predictions are aggregated and compared against
the gold annotations for that passage.

To ensure a fair comparison, passage-level input
for the kNN-searcher is the same full-text passage
used by MA-COIR, rather than shorter fragments
obtained via "excerpt mining" we described in Sec-
tion 3.5.

5 Results

Tables 2 and 3 summarize model performance
across three biomedical concepts. On both CDR
and HPO, MA-COIR consistently achieves the
best F1 scores with passage-level inputs (47.6 and
60.0, respectively), while kNN-searcher and XR-
Transformer perform best with span-level inputs.
In the more challenging HoIP setting, MA-COIR-a
and XR-Transformer-a outperform kNN-searcher,
with XR-Transformer-a achieving the highest F1
for passage- and claim-level inputs ((19.8 and 23.4),
and MA-COIR leading in the span-level setting
(26.8). We analyze results from three complemen-
tary perspectives: concept type, input granularity,
and real-world applicability.

Concept Type. The three datasets involve con-
cept spaces of increasing complexity—from chem-
ical and drug names (CDR), to phenotype abnor-
malities (HPO), and finally to abstract homeostasis
imbalance processes (HoIP).

In CDR, most gold concepts are explicitly men-
tioned in text or have close surface-level synonyms,
making the kNN-searcher highly effective. How-
ever, HPO concepts such as “Abnormality of body
height” or “Abnormal platelet morphology” are
semantically richer and less likely to appear verba-
tim. Here, supervised models like MA-COIR and
XR-Transformer gain a clear edge by leveraging
learned task-specific information.

HoIP presents the greatest challenge: many tar-
get concepts are abstract, fine-grained, and rarely
expressed via identifiable mentions, challenging to
recognize even for experts (e.g., “dysregulation of
matrix metalloproteinase secretion”). In addition,
HoIP lacks mention-ssID training pairs, limiting
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Dataset k Query MA-COIR XR-Transformer kNN-searcher
Pre Rec F1 Pre Rec F1 Pre Rec F1

CDR

1
Passage 51.0 44.6 47.6 79.6 11.6 20.3 13.3 0.1 0.1
Mention 67.2 72.0 69.5 67.1 71.4 69.1 75.5 82.5 78.9
Concept 57.2 41.2 47.9 57.2 41.5 48.1 63.5 48.2 54.8

5
Passage 36.5 49.6 42.0 45.3 33.1 38.3 12.5 0.1 0.2
Mention 17.1 74.8 27.9 13.8 73.6 23.3 18.9 92.0 31.3
Concept 15.2 44.2 22.6 12.4 44.4 19.4 16.5 56.1 25.5

10
Passage 29.9 52.0 37.9 26.7 39.0 31.7 10.5 0.1 0.2
Mention 9.2 75.5 16.4 7.1 74.1 13.0 11.4 93.1 20.3
Concept 8.3 45.4 14.0 6.4 44.8 11.2 9.9 57.3 16.9

HPO

1
Passage 67.7 53.8 60.0 91.3 13.5 23.5 33.3 0.6 1.3
Mention 85.6 80.1 82.8 88.1 85.3 86.6 70.7 71.2 70.9
Concept 65.9 57.1 61.2 65.2 57.7 61.2 58.5 50.6 54.3

5
Passage 60.8 57.7 59.2 61.7 45.5 52.4 11.1 0.6 1.2
Mention 21.2 84.0 33.8 19.2 87.8 31.5 21.3 87.8 34.3
Concept 18.5 66.7 29.0 15.4 66.0 25.0 18.1 66.7 28.4

10
Passage 54.1 59.6 56.7 43.9 64.7 52.3 7.7 0.6 1.2
Mention 12.4 87.2 21.7 9.9 87.8 17.7 13.9 89.1 24.0
Concept 11.0 73.7 19.2 8.2 67.9 14.6 11.0 67.9 18.9

Table 2: Results of the top-k generated sequences by MA-COIR and the top-k retrieved concepts by the XR-
transformer and kNN-searcher on the CDR and the HPO. “mention” are gold annotated mentions of a passage.
“concept” are generated concepts by the LLM given a passage. Red values indicate the highest F1 score achieved for
each query type on a given dataset.

k Query MA-COIR MA-COIR-a XR-Transformer-a kNN-searcher
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

1
Passage 11.1 25.0 15.4 13.0 27.3 17.6 32.4 13.6 19.2 6.7 2.3 3.4
Claim 8.2 21.6 11.9 14.1 30.7 19.3 19.8 28.4 23.4 6.7 8.0 7.3

Concept 18.2 46.6 26.2 18.5 48.9 26.8 17.8 45.5 25.6 13.0 35.2 19.0

5
Passage 8.6 34.1 13.8 11.0 39.8 17.2 14.6 30.7 19.8 2.1 3.4 2.6
Claim 6.0 45.5 10.7 7.4 47.7 12.8 6.5 45.5 11.4 3.8 17.0 6.3

Concept 6.4 64.8 11.6 6.7 68.2 12.1 5.5 64.8 10.1 5.0 56.8 9.1

10
Passage 7.2 36.4 12.0 9.8 45.5 16.2 10.0 42.0 16.2 2.4 6.8 3.6
Claim 4.7 54.5 8.7 5.9 59.1 10.7 4.2 55.7 7.8 2.6 17.0 4.4

Concept 3.9 69.3 7.4 4.4 78.4 8.4 3.0 69.3 5.7 3.3 62.5 6.2

Table 3: Results of the top-k generated sequences by MA-COIR and the top-k retrieved concepts by the XR-
Transformer and kNN-searcher on the HOIP dataset. “claim” and “concept” refer to generated claims and concepts,
produced by the LLM given a passage. Red values indicate the highest F1 score achieved for each query type.

supervised grounding.7 As a result, all models
struggle, but the gap between supervised and un-
supervised methods widens. This underscores a
key insight: concept complexity and the mentioned
way are critical determinants of method suitability.

Input Granularity. MA-COIR excels with
passage-level inputs, outperforming XR-
Transformer by large margins on CDR (47.6 vs.
38.3) and HPO (60.0 vs. 52.4), and achieving
stronger recall on HoIP. The kNN-searcher, by
contrast, underperforms in this setting due to poor
alignment between full passages and span-based
embeddings.

At the span-level, performance varies: MA-

7A study examining the impact of mention information on
MA-COIR, conducted on CDR, revealed a significant differ-
ence with and without mention-ssID pairs as training data, as
detailed in Appendix A.4.

COIR outperforms XR-Transformer when given
gold mentions on CDR, but lags slightly on HPO.
When using concept names generated by LLMs,
MA-COIR matches or exceeds XR-Transformer.
This reflects the robustness of MA-COIR to input
variation and highlights a key practical strength: in
real applications, gold mentions are unavailable,
and LLM-generated spans often differ in granular-
ity from ontology entries, making retrieval harder.
MA-COIR’s adaptability makes it better suited for
such realistic, mention-free scenarios.

Practical Considerations. On CDR and HPO,
MA-COIR demonstrates strong and consistent
performance, proving its effectiveness for real-
world biomedical CR. On HoIP, XR-Transformer-a
achieves slightly higher F1 than MA-COIR-a (19.8
vs. 17.6). This is largely due to the dataset’s statis-
tics: each passage contains, on average, 7.2 gold
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concepts. XR-Transformer-a’s fixed-k retrieval
(with k = 5) benefits from limiting false posi-
tives, whereas MA-COIR-a uses beam search to
generate unbounded concept sequences, trading off
precision for recall. In practice, however, concept
density varies across documents, and setting an
optimal k is non-trivial, limiting the robustness of
fixed-k methods like XR-Transformer.

On span-level CDR tasks, MA-COIR and XR-
Transformer perform comparably, but both fall
short of kNN-searcher when provided with gold
mentions. On HPO, kNN-searcher is only com-
petitive when given gold mentions and big k val-
ues (e.g., k = 5 or 10). Further analysis (Ap-
pendix A.3) reveals that MA-COIR struggles to
recognize unseen concepts lacking training ex-
posure—an issue shared with XR-Transformer.
In contrast, kNN-searcher remains unaffected.
Nonetheless, we believe this limitation can be miti-
gated via data synthesis strategies: our preliminary
experiments confirm the feasibility of using syn-
thetic samples to improve MA-COIR’s generaliza-
tion.

Summary. MA-COIR delivers strong perfor-
mance across diverse concept types and input set-
tings. While training data coverage remains a limi-
tation, this can be addressed with scalable augmen-
tation techniques. Given its flexibility, robustness
to input variation, and effectiveness even without
gold mentions, MA-COIR offers a practical and
reliable solution for biomedical CR.

6 Analysis

6.1 Effectiveness of ssID
To verify the effectiveness of ssID, we compared
it with other types of indexes can be used for the
recognition on the HOIP.

• Random ID: Randomly assign a number to
each concept as an index. The index ranges
from 0 to the number of all ontology concepts.

• Ontology ID: The unique ID of each concept
in the ontology is used as the index. Like
“HOIP_0004832” is the ontology ID of “TNF
signaling”, and the index for generation.

• ssID (name): As described in Section 3.2.

• ssID (+hypernyms): The indexes are based on
constructing a label tree using the concatena-
tion of the representation of a name of each

Index type Pre Rec F1
Random ID 7.8 31.8 12.5
Ontology ID 6.7 47.7 11.8
ssID (name) 11.1 25.0 15.4
ssID (+hypernyms) 9.7 20.5 13.1

Table 4: Results of the top-1 generated sequence using
various index types with the passage queries on the
HOIP dataset by MA-COIR.

Figure 4: F1 scores by MA-COIR between complex
query (passage) and the average of the simpler set of
queries (claim/concept) from top-1 generated sequence
using different indexes on the HOIP.

concept, and the average of the representa-
tions of its hypernyms. The hypernymy and
hyponymy relations is known from the ontol-
ogy. Let UC denote a set of concepts that are
hypernyms of concept C defined in the ontol-
ogy. The representation of the concept C used
for label tree construction changed from eq. 2
to eq. 4.

EUCi
= avg(XUCi

) ∈ RH (11)

EC = [avg(XC) : avg(EUC
)] (12)

where “:” is the concatenation operation, H is
the dimension of a token’s embedding, EC ∈
R2×H .

The experimental results are summarized in Ta-
ble 4. Both Random ID and Ontology ID per-
formed well on span-level queries, providing higher
recall compared to ssIDs. On the other hand, using
ssID (name) achieved the highest precision and F1
scores for passage-level queries. As shown in Fig.
4, ssID-based indexing demonstrates robustness
across both complex and simple queries, whereas
Random ID and Ontology ID perform optimally
only on shorter queries. In the absence of tools
to retrieve non-passage level information, ssID is
clearly the superior choice.

6.2 Effectiveness of data augmentation
The results for the MA-COIR-a are presented in Ta-
ble 3. Incorporating claim-ssID pairs, as described
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Query Pre Rec F1
passage 13.0 27.3 17.6

+ claim 12.5 45.5 19.7
+ concept 12.3 64.8 20.7

+ concept 14.7 61.4 23.7

Table 5: Results of the top-1 generated sequence by
MA-COIR-a on HOIP.

Dataset Method Pre Rec F1

HPO

REAL-1st hit 40.0 49.0 44.0
REAL-GPT3.5 68.0 48.0 56.0
kNN-searcher 58.5 50.6 54.3

MA-COIR 63.4 54.5 58.6

HOIP-o
ICL-Llama 43.1 11.8 18.6

kNN-searcher 42.0 13.9 20.9
MA-COIR 23.7 19.6 21.5

Table 6: Comparison between our methods and previ-
ous works. “HOIP-o” refers to the original test set.

in Section 3.5, leads to improvements across all
metrics for all query types. F1 scores for claim-
queries increase by 4.6 points compared to MA-
COIR. Across all query types, the improvement in
recall exceeds that in precision, indicating that the
added data is both accurate (with minimal noise,
which helps maintain precision) and diverse, bene-
fiting all query types.

6.3 Combination of different-level queries

The results of combining predictions of various
types of queries are presented in Table 5. While the
accuracy of decomposing full passages into shorter
units is low, MA-COIR captures additional con-
cepts that are difficult to detect from full-length
inputs alone. The predictions from different query
levels exhibit partial but non-trivial overlap, reveal-
ing their complementary strengths.

Each query type offers distinct advantages. Ag-
gregating predictions across all levels yields sub-
stantial gains. Recall improves significantly from
(27.3 → 45.5 → 64.8) when integrating all three,
underscoring the value of multi-level querying.

6.4 More comparisons

Our framework operates under different setups
compared to previous studies that were validated
on the same dataset. We provide results using a
more comparable setting to ensure fair evaluation
(see Table 6).

For HPO dataset, REAL (Shlyk et al., 2024)

reports results for two approaches: for an LLM
generated mention, selecting the top-1 candidate
from three candidates provided to GPT-3.5 (REAL-
GPT3.5) or taking the top-1 concept retrieved by
kNN searching (REAL-1st hit). For comparison,
we report the results by MA-COIR trained with-
out mention-ssID pairs and the kNN-searcher we
implemented using concept queries with k = 1.

For HOIP dataset, El Khettari et al. (2024) re-
port the results of a similarity-based kNN search
for concepts generated by llama-3-8b in its few-
shot setting (ICL-Llama). After retrieval, they fil-
tered out out-of-dataset predictions. We replicated
their approach by using their generated concepts
as queries and applying the same filter with kNN-
searcher and setting k = 1.

From the results of REAL-1st hit and kNN-
searcher on HPO (F1: 44.0/54.3), as well as kNN-
searcher on concepts from ICL-Llama and our gen-
erated concepts (F1: 18.6/20.9) on HOIP-o, we can
infer that the quality of our generated concepts and
the representation of concepts/queries is consistent
with previous methods.

The removal of out-of-dataset concepts signifi-
cantly reduced false positives in similarity-based
methods, improving precision to over 40.0 on the
HOIP-o. In contrast, MA-COIR does not predict
concepts never appeared in the training phase, such
post-processing does not provide benefits.

Overall, our supervised recognizer, MA-COIR,
outperforms unsupervised LLM-based solutions
like REAL-GPT3.5 and ICL-Llama.

7 Conclusion

We present the MA-COIR framework, a flexi-
ble and implementable solution for recognizing
both simple and complex biomedical concepts ex-
plicitly or implicitly appeared in scientific texts,
without requiring specific mention information.
The framework meets the needs of domain ex-
perts, as demonstrated by experiments on three
vocabulary/ontology-dataset pairs. We introduce
efficient methods for obtaining queries at various
levels and data augmentation using an LLM and
proving their efficacy in low-resource scenarios.
MA-COIR’s adaptability to multi-level queries en-
hances its practical utility. We further provide an in-
depth analysis of biomedical concept recognition
and potential directions for future improvement.
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Limitations

Although we would like MA-COIR to generate
ssIDs for unseen concepts based on semantic sim-
ilarities with seen concepts, results indicate that
it lacks this capability. This restricts the model’s
applicability to the available dataset. Given that
the annotated dataset contains significantly fewer
concepts than the full ontology, further framework
refinement is needed to allow comprehensive pro-
cessing across different input levels and consistent
mapping of all ontology concepts and their indexes.

It is essential to develop validation datasets that
align with the needs of domain experts. In the
HPO and HOIP test sets, the low proportion of un-
seen concepts limits the evaluation of the model’s
generalization to out-of-dataset concepts. With-
out observing MA-COIR’s performance decline on
the CDR dataset, this limitation might have gone
unrecognized.

Last but not least, the performance of MA-COIR
also depends on query quality. There is a substan-
tial gap between results for concept names gen-
erated by an LLM and those derived from gold
annotated mentions. Although we have not fully
explored LLM-based query generation, it is un-
realistic to expect consistent query quality across
specialized biomedical domains. Thus, it is critical
to both improve the model’s robustness to lower-
quality queries and identify ways to generate high-
quality queries.
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A Appendix

A.1 Hyperparameters

The BART-based language model (facebook/bart-
large) used in MA-COIR for recognition is trained
with hyperparameters listed in the Table 7.

The hyperparameters of the K-Means clustering
algorithm used for hierarchical clustering process,
are g and m, while g is the maximum number of
the elements covered by a node when we can stop
further dividing the node into smaller clusters. m is
the number of clusters when we divide the elements
in a node. For example, when g = 10,m = 10, if
there are 9 elements in the current node, we do not
divide the elements in this node by clustering; if
there are 18 elements in the current node, we will
do a clustering for these elements, so that these
elements will be categorized into m = 10 clusters.

In this work, we set g = 10,m = 10. Our choice
is based on two main considerations: (1) Empiri-
cal evidence: Preliminary experiments using the
DSI-inspired configuration (g = 10, m = 100)
resulted in lower F1 scores on the HOIP validation
set, compared to the current setting. (2) Struc-
tural consistency: Using decimal numbering (0–9)
aligns naturally with our hierarchical “ssID” de-
sign, which organizes concepts into 10 branches
per level, facilitating both interpretability and im-
plementation.

For the training of XR-Transformer, we imple-
ment the model with the library pecos8, setting the
hyperparameters provided by the authors, as those
have already been tuned. The architecture of the
Transformers model we used in the experiments is
BERT.

8https://pypi.org/project/libpecos/
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Figure 5: Prompt template for generating concept names / claims for passage. A prompt consists of task instruction,
output format instruction, several demonstrations and the query.

CDR HPO
k Query Seen Unseen Seen Unseen

passage 57.2 0.3 60.0 0.0
1 mention 92.4 0.0 89.3 0.0

concept 52.9 0.0 63.6 0.0
passage 63.6 0.3 64.3 0.0

5 mention 95.2 2.9 92.1 12.5
concept 56.3 1.5 74.3 0.0
passage 66.6 0.4 66.4 0.0

10 mention 95.8 4.0 95.0 18.8
concept 57.7 2.2 80.7 12.5

Table 8: Recalls on the seen and unseen concepts of the
top-k generated sequences by MA-COIR.

A.2 LLM Application

We applied a large language model llama-3-8b for
query generation. For all concept generation tasks,
the prompt consists of “instruction”, “n demonstra-
tions” under the n-shot setting, and the passage.
The prompts we used for concept name generation
on CDR, HPO and HOIP are shown in Fig. 5. For
claim generation, the prompt template we used for
a passage on HOIP is shown in Fig. 5. The gen-
eration is conducted in a zero-shot scenario cause
there is no annotated data for passage-claim pairs.

A.3 Performance on seen and unseen concepts

Upon examining MA-COIR’s performance on both
seen (concepts appeared in the training set) and un-
seen concepts (concepts only appeared in the test
set), we found that the performance gap between
it and the kNN-searcher is primarily due to its in-
ability to recognize unseen concepts. As presented
in the Table 8, when we evaluated the model on
unseen concepts, MA-COIR achieved a recall of
nearly 0.0 on both the CDR and the HPO.

A.4 Training data for “Indexing” capability
of the recognizer

The indexing capability of the model refers to the
model’s ability to generate the correct ssID for the
query when it is a span. On datasets labelled with

Data Query Pre Rec F1

All
passage 51.0 44.6 47.6
mention 67.2 72.0 69.5
concept 57.2 41.2 47.9

- mention
passage 36.1 30.5 33.1
mention 39.5 42.8 41.1
concept 32.4 22.3 26.4

- synonym
passage 48.2 42.3 45.0
mention 67.4 72.0 69.6
concept 58.2 41.4 48.3

- mention passage 36.0 30.5 33.0
- synonym mention 41.9 44.8 43.3

concept 37.6 24.8 29.9

Table 9: Results on CDR with different training data.
“All” contains passage-ssIDs pairs, name-ssID pairs,
synonym-ssID pairs and mention-ssID pairs constructed
from the original training set.

mentions, in addition to the canonical names and
synonyms of a concept in the ontology that can
be used to train model indexing capabilities, men-
tions are also very effective data. We conducted an
ablation study on the CDR dataset to confirm the
impact of synonym- and mention-ssID information
on the model’s ability to recognize concepts. The
results can be seen in Table 9.

After removing the mention-ssID data, the
model’s performance dropped significantly; remov-
ing the synonym-ssID data, the performance on
the passage-level query dropped less and even im-
proved on the span-level query. This illustrates that
the way a concept is expressed within a particular
application (passage) is important for capturing the
relationship between the concept and the ssID. Not
only the indexing capability are influenced by re-
moving mention data, but also the recognition on
the passage query (↓ 14.5 F1 score). The slight
improvement after removing synonym-ssID pairs
indicates how different the common expressions
written in scientific papers and the technical terms
of a concept are. Using synonyms to enrich con-
cept information makes the query and a concept
further apart in representation.
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