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Abstract. Model selection is a fundamental step in phylogenetic inference, aim-
ing to identify the evolutionary model that best fits a given multiple sequence
alignment (MSA). Tools such as ModelFinder, implemented in the widely-used
IQ-TREE software, rely on maximum-likelihood methods and information crite-
ria (e.g, Akaike or Bayesian) to determine the optimal model. Recently, Model-
Revelator introduced a deep neural network that predicts one of six commonly
used substitution models and the Gamma-distributed rate heterogeneity model
directly from the MSA. While ModelFinder is more accurate, it becomes com-
putationally expensive for large MSAs, whereas ModelRevelator offers faster but
less precise.

Here, we present ModelFinder-DL, a hybrid model selection framework that
integrates ModelRevelator with ModelFinder. In this framework, neural net-
work predictions guide and constrain likelihood-based evaluation, thereby com-
bining efficiency with robustness. To further enhance computational performance,
we integrate OpenMP-based parallelism with ModelFinder-DL, enabling effi-
cient multi-core utilization. In our experiments, ModelFinder-DL achieves up
to a 1.4x speed-up over the single-threaded ModelFinder baseline. With four
OpenMP threads, ModelFinder-DL attains a 5.3x speedup, compared to 3.8X
for four-threaded ModelFinder. This demonstrates the first step towards how
deep-learning-guided optimization, combined with OpenMP parallelization, can
improve efficiency while maintaining high accuracy.
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1 Introduction

Reconstructing evolutionary relationships among organisms, known as phylogenetic in-
ference [6], is central to understanding biodiversity and evolution. Applications range
from tracking pathogen evolution (e.g., SARS-CoV-2) to describing species diversifi-
cation. Among available methods, maximum likelihood [6, 9] offers high accuracy but
can be computationally expensive compared to simpler heuristic approaches, for large
genomic datasets.

Evolutionary model selection is a critical computational step in all typical phylo-
genetic analyses. It determines how biological sequences evolve over time and directly



2 H. Kumarasinghe et al.

affects both accuracy and computational cost [8]. Choosing an inappropriate model can
lead to incorrect tree topologies and misleading biological interpretations [12]. Con-
versely, overly complex models can overfit the data, increasing runtime without improv-
ing accuracy [10]. As genomic datasets continue to grow, the need for fast and accurate
model selection becomes increasingly essential.

The widely used IQ-TREE software [9] implements ModelFinder [7] to optimize the
parameters of each candidate substitution model, and evaluates model fit using Akaike
[2] or Bayesian information criteria [11]. Although IQ-TREE includes efficient likelihood
optimization and supports multi-core parallelization via the OpenMP API [5], model
selection remains computationally demanding for large datasets.

Recent advances in machine learning have introduced alternatives to determine the
best evolutionary model from trained networks [1,3,4], offering advantages in compu-
tational efficiency and scalability over traditional likelihood-based methods. However,
machine learning applicability is limited, as it currently seems impossible to train a
network that discovers all available evolutionary models.

To balance speed and accuracy, we propose ModelFinder-DL(MF-DL), a hybrid
framework that combines ModelRevelator [4] with IQ-TREE’s ModelFinder. MF-DL
leverages the computational efficiency of ModelRevelator for DNA substitution and rate-
heterogeneity model selection by using the predictions to guide ModelFinder’s likelihood
evaluation while retaining robustness of the likelihood approach. It supports GPU infer-
ence and OpenMP parallelization for scalability across multi-core systems. Our results
demonstrate that the MF-DL reduces runtime without compromising phylogenetic ac-
curacy, showcasing the promise of combining deep learning with HPC for large-scale
evolutionary studies.

2 Methods

Our framework integrates ModelRevelator [4], which includes two neural networks, NN-
modelFind and NNalphaFind, into IQ-TREE’s ModelFinder [7]. In the standard im-
plementation, ModelFinder evaluates all candidate substitution models to identify the
best-fit. In ModelFinder-DL (Fig. 1), NNmodelFind predicts probabilities over six sub-
stitution models, and the top-k models with cumulative probability > 95% are eval-
uated by ModelFinder. This threshold is user-configurable, but we choose 95% as the
default because probability-mass filtering in statistical and machine-learning contexts
commonly retains 90-97% of the total probability to balance coverage and efficiency.
For rate-heterogeneity modeling, NNalphaFind predicts the initial Gamma shape pa-
rameter («). Together, these steps accelerate model selection while preserving accuracy.
The neural inferences were performed via ONNX Runtime, with the GPU used only for
neural network predictions. The implementation remains compatible with IQ-TREE’s
OpenMP parallelization, enabling efficient multi-core utilization.

Experiments were conducted on the empirical DNA dataset Wu et al. 2018 [13], con-
taining 90 mammal taxa and 15,486 partitions, using the Gadi supercomputer. Since
processing the full dataset would require several days, a subset of 500 partitions was
randomly selected using a fixed seed to ensure reproducibility and achieve a feasible
runtime for benchmarking. Partition merging was performed using IQ-TREE’s Parti-
tionFinder module [8], which identifies and merges partitions with similar evolutionary
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Fig. 1: Hybrid ModelFinder-DL workflow. Neural predictions from ModelRevelator (NN-
modelFind, NNalphaFind) guide IQ-TREE’s likelihood evaluation, reducing redundant
model tests and accelerating selection.

patterns. As NNmodelFind supports six substitution models (GTR, JC, K80, F81, HKY,
TN), IQ-TREE was run with the same set for fairness. We benchmarked four configu-
rations: baseline ModelFinder, ModelFinder-DL, and their 4-thread OpenMP variants.
All MF-DL experiments were performed on GPU environments.

3 Results

For the subsampled Wu et al. 2018 dataset, the baseline ModelFinder took 14.4 h of
wall-clock time, whereas ModelFinder-DL took 10.3 h, achieving a 1.4x speed-up. The
full dataset (15,486 partitions with 9,150,597 sites, 30x larger) would thus scale to 432
h and 309 h, respectively, assuming linear behavior. These estimates indicate a clear
advantage of the GPU-accelerated MF-DL for large-scale analyses, although real-world
scaling may deviate from linear. With 4 OpenMP threads, the baseline ModelFinder
took 3.7 h (3.8x speedup over single-threaded), while the MF-DL took 2.7 h, achieving
a 5.3x speedup (Figure 2).

A direct comparison between ModelRevelator and MF-DL on the full dataset is not
possible due to IQ-TREE’s partition-merging step, which removes correspondence with
the original alignment structure required by ModelRevelator. We therefore performed
all comparisons on the unmerged subset of 500 partitions. ModelRevelator agreed with
ModelFinder on 47.2% of partitions, while MF-DL agreed on 75.6%. This difference re-
flects their design goals, ModelRevelator provides a single independent prediction and
is not intended to match ModelFinder’s choices, whereas MF-DL re-evaluates the top-k
ModelRevelator candidates using ModelFinder’s exact likelihood and AIC/BIC scor-
ing. Consequently, MF-DL attains higher agreement because it preserves ModelFinder’s
decision rule while operating on a reduced search space.

ModelFinder chieves consistently lower information-criterion scores than MF-DL.
Specifically, MF-DL obtains an AIC score of 11,410,020.5450 and a BIC score of 11,420,150.0469,
whereas the baseline ModelFinder achieves lower values of 11,406,216.9905 (AIC) and
11,416,961.0436 (BIC). These results indicate that MF attains a better statistical fit,
largely because it performs an exhaustive evaluation of all candidate models.

To further assess accuracy, we reconstructed phylogenetic trees using the best-fit
models from each configuration. The topological comparison between ModelFinder and
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ModelFinder-DL revealed only a minor clade swap, suggesting that the hybrid approach
preserves phylogenetic accuracy to a high degree. Future improvements to MF-DL may
reduce these discrepancies while maintaining its computational advantages.

Runtime Comparison: ModelFinder vs ModelFinder-DL
(Wu et al. 2018 dataset, 500 partitions)
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Fig. 2: Wall-clock time comparison on the Wu et al. (2018) dataset. ModelFinder-DL
achieves 1.4x (single-thread) and 5.3x (4-thread) speedups over the baseline.

4 Conclusion and Future works

This paper presents ModelFinder-DL, a hybrid framework that integrates the deep-
learning-based ModelRevelator with the likelihood-based ModelFinder in IQ-TREE.
ModelFinder-DL reduces computation time while maintaining comparable phylogenetic
accuracy. The OpenMP implementation enables efficient multi-core utilization, achiev-
ing speed-up compared to the single-threaded baseline. Our experiments on the Wu et
al. (2018) dataset demonstrate up to a 1.4x speed-up in single-threaded runs and a fur-
ther 5.3x speed-up when executed with OpenMP using four threads. These results are
preliminary but highlight the feasibility and promise of combining deep learning with
HPC for accelerating large-scale phylogenetic analyses.

In future work, we plan to extend the range of substitution and rate-heterogeneity
models supported by the neural networks. This hybrid framework lays the foundation for
next-generation phylogenetic tools that effectively leverage both deep learning prediction
and likelihood-based methods.
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