
Neural Lower Bounds for Verification

Abstract—Recent years have witnessed the deployment of
branch-and-bound (BaB) frameworks for formal verification in
deep learning—proving or disproving a desirable property of a
neural network. The main computational bottleneck of BaB is the
estimation of lower bounds via convex relaxations. Past work in
this field has relied on traditional optimization algorithms whose
inefficiencies have limited their scope. To alleviate this deficiency,
we propose a novel graph neural network (GNN) based approach.
Our GNN architecture closely resembles the network we wish to
verify. During inference, it performs forward-backward passes
through the GNN layers to compute a feasible dual solution of
the convex relaxation, thereby providing a valid lower bound.
During training, its parameters are estimated via a loss function
that encourages large lower bounds over a time horizon. Using
standard publicly available data sets, we show that our approach
provides a significant speedup for formal verification compared
to the state of the art solvers. Moreover, the GNN achieves good
generalization performance on unseen networks.

I. INTRODUCTION

The application of deep learning to safety critical domains
such as autonomous vehicles [4] and personalized medicine
[29] requires its formal verification, that is, proving or dis-
proving its desirable properties. For instance, one desirable
property is the robustness of a given network to so-called
adversarial examples. These are examples that are similar to
real images but ones which the neural network misclassifies
with a high probability. They are obtained by applying small but
deliberately chosen perturbations that are often imperceptible
to the human eye.

Formal verification is typically carried out using the branch-
and-bound (BaB) framework. The BaB framework solves
a mixed integer programming (MIP) formulation of the
verification problem. It works by hierarchically splitting the
domain of the MIP into subdomains via a routine known as
branching. For each subdomain it computes an upper and a
lower bound of the MIP objective. If the upper bound of a
subdomain is less than the lower bound of another, the latter
subdomain can be pruned thereby reducing the search space
for the optimal solution.

Branching is usually performed using an efficient heuristics
that is either hand-designed or learnt [16, 18, 23]. The upper
bound is also efficient to compute as it involves evaluating the
objective for any feasible solution. In contrast, the lower bound
computation requires solving a large convex relaxation. Typi-
cally, the relaxation is solved using either commercial solvers
such as Gurobi [15] or traditional optimization algorithms such
as subgradient descent or proximal minimization [5]. However,
neither approach scales elegantly with the size of the relaxation,
which prevents current formal verification methods from being
applied to deep state-of-the-art networks. In other words, lower

bound estimation forms the main computational bottleneck for
BaB.

A natural question that arises is why do traditional algorithms
fail? We argue that by their very nature, they ignore the rich
inherent structure of lower bound estimation for the problem
of verification. Specifically, all lower bounds that one wishes
to estimate across multiple subdomains of the same property,
across multiple properties of the same network, and across
multiple networks share the same form of variables, constraints
and objectives. Furthermore, the coefficients of the objective
and constraints are determined from network weights, which
themselves are not random but are estimated using real data.
Traditional optimization algorithms are agnostic to this complex
high-dimensional structure as it is not “visible” to human
intelligence. However, we argue that this is exactly the type of
structure that can be readily exploited by artificial intelligence.
To this end, we propose to use deep learning to efficiently
estimate accurate lower bounds of neural networks.

Specifically, we propose the use of a graph neural network
(GNN) whose architecture closely resembles that of the network
we wish to verify. Given a subdomain and some initial dual
variables it repeatedly computes a direction of ascent. Every
single run of the GNN is made up of one or more forward and
backward passes that mimic a run of the network that we’re
verifying. When training the GNN we consider a horizon with
a decay factor to output an ascent direction that maximizes
the dual objective function that directly corresponds to a lower
bound on the final output of the network.

By using a parameterization of the GNN that depends only
on the type of nodes and the order of the passes and not on
the underlying architecture, we can train a GNN using one
network and test it on another. Our approach can be used to
initialize the dual problem for traditional optimization methods,
but somewhat surprisingly, we found that it wasn’t necessary.
In all our experiments, we use our GNN-based approach as a
stand alone method, that is, we directly use its lower bound in
the BaB framework. Our method leads to a significant reduction
in verification time by reducing the number of subdomains
visited in the BaB framework due to the computation of more
accurate lower bounds. We consistently beat all baselines on
over 80% of all images. Moreover, the GNN shows good
generalization performance in two ways: when trained purely
on easy properties it performs well on difficult properties
as well; moreover, when trained on a small network it also
generalizes well to larger networks. This is important as the
training complexity is directly proportional to the difficulty of
the training properties and the size of the model we do the
training on.



II. RELATED WORK

Neural network verification has been an active field of
research in recent years with plenty of different methods being
proposed in the literature [10, 17, 28, 30, 31]. Bunel et al. [6]
introduced a unified framework for many of these methods by
writing them as branch-and-bound frameworks (BaB). BaB is
made up of three components: the branching strategy decides
how to split the current domain into several smaller subdomains;
the upper bound computation aims to find a counter-example
of the property in each subdomain; and the computation of
the lower bound, which is the focus of this work, that aims to
return a certificate of robustness for each subdomain.

Most bounding methods create relaxations of the original
problem. There are a variety of relaxations that have easily
computable closed-form solutions such as Interval Bound
Propagation (Gowal et al. [12]) or WK, the method introduced
by Wong and Kolter [30]. However, these relaxations tend to be
quite loose and therefore lead to bad estimates of the final layer
output of a neural network. Hence different linear programming
(LP) relaxations were proposed that provide tighter bounds:
Planet introduced by Ehlers [10], Reluplex by Katz et al. [17],
or the Anderson relaxation (Anderson et al. [2]). However,
these often require an iterative solver to optimize them, which
tends to not scale well. We will therefore use machine learning
approaches to come up with better bounds than the best current
iterative methods.

Our work is similar in spirit to the recent machine learn-
ing approaches for a variety of combinatorial optimization
problems [3, 7], and mixed integer linear programs (MILPs)
[1, 11, 16, 18]. Often, different instances of these problems
share a common structure, which can be exploited using
learning. In the context of MILPs, learning has mostly been
used to improve the branching strategies in BaB algorithms
[16, 18, 23], including a recent approach that focuses on
neural network verification [23]. Encouragingly, for the task
of branching, the learning frameworks have been shown to
outperform hand-designed heuristics. However, only limited
work has been done on learning the bound computation in
the BaB algorithm: Dvijotham et al. [8, 9] propose several
different learned methods: one that treats every layer separately,
and another that uses a simple forward-backward architecture.
Gowal et al. [13] propose a method called predictor-verifier
(PVT) that learns a robust training procedure and a verifier
simultaneously. However, these methods end up beating Interval
Bound propagation, a comparatively weak baseline, by a small
margin only. There is thus a large scope for improvement which
we explore in our work.

III. BACKGROUND

In our work we focus on returning a lower bound on the
output of the neural network we are trying to verify on a
given subdomain. As the neural network is highly non-convex
and thus hard to optimize over, Bunel et al. [5] introduced
a decomposition based technique for the Planet relaxation
[10]. We therefore begin with a brief description of the Planet

relaxation [10] and the decomposition technique of [5] before
describing our learning framework.

We are given a convex input domain C, an input vector
z0 ∈C, together with the network weights W and biases b, and
a non-linear activation function σ(·). In our case we use the
ReLU activation defined as σ(x) = max(x,0) as it is widely
used in machine learning in general [21, 24] as well as in
neural network verification [6, 8, 10].

a) Planet Relaxation.: We denote the output of the k-
th layer before the application of the ReLU as ẑk and the
output of applying the ReLU to ẑk as zk. Given the lower
bounds lk and upper bounds uk of the values of ẑk, we
relax the ReLU activations zk = σ(ẑk) to its convex hull
cvx_hullσ (ẑk,zk, lk,uk), defined as follows:

cvx_hullσ (ẑk,zk, lk,uk)≡
zk[i]≥ 0 zk[i]≥ ẑk[i]
zk[i]≤ uk[i](ẑk[i]−lk[i])

uk[i]−lk[i]
if lk[i]< 0 and uk[i]> 0

zk[i] = 0 if uk[i]≤ 0
zk[i] = ẑk[i] if lk[i]≥ 0.

(1)

Note that the computation of the convex hull requires the
knowing of the lower and upper bounds (i.e. lk and uk) for
each intermediate node. The bounds do not have to be optimal,
however, the tighter the bounds are, the tighter the relaxation
will be as well. There are different ways of computing said
bounds that have been proposed in the literature [12, 27, 30].
In our experiments we use the method proposed by Wong and
Kolter [30]. For the sake of clarity, we introduce the following
notations for the constraints corresponding to the input and the
k-th layer respectively:

P0(z0, ẑ1)≡

{
z0 ∈C
ẑ1 =W1z0 +b1

and

Pk(ẑk, ẑk+1)≡


∃zk s.t.
lk ≤ ẑk ≤ uk

cvx_hullσ (ẑk,zk, lk,uk)

ẑk+1 =Wk+1zk +bk+1.

(2)

Using the above notation, the Planet relaxation for computing
the lower bound can be written as:

min
z,ẑ

ẑn s.t. P0(z0, ẑ1);Pk(ẑk, ẑk+1) for k ∈ [1, . . . ,L−1]. (3)

b) Lagrangian Decomposition.: We often merely need
approximations of the bounds rather than the precise values of
them. We can therefore make use of the primal-dual formulation
of the problem as every feasible solution to the dual problem
provides a valid lower bound for the primal problem. Following
the work of Bunel et al. [5] we will use the Lagrangian
decomposition [14]. To this end, we first create two copies



ẑA,k, ẑB,k of each variable ẑk:

min
z,ẑ

ẑA,n s.t.

P0(z0, ẑA,1);Pk(ẑB,k, ẑA,k+1) for k ∈ [1, . . . ,L−1]
ẑA,k = ẑB,k for k ∈ [1, . . . ,L−1].

(4)
Next we obtain the dual by introducing Lagrange multipliers
ρρρ corresponding to the equality constraints of the two copies
of each variable:

q(ρρρ) =min
z,ẑ

ẑA,n + ∑
k=1,...,n−1

ρρρ
⊤
k (ẑB,k− ẑA,k)

s.t. P0(z0, ẑA,1);
Pk(ẑB,k, ẑA,k+1) for k ∈ [1, . . . ,L−1].

(5)

Problem (5) is unconstrained with respect to ρρρ . In other words
any possible ρρρ is a feasible solution and thus by duality provides
a lower bound for the primal problem (4). We therefore aim
to maximize q(ρρρ) to get the tightest possible lower bound.
Given an assignment to the dual variables, Bunel et al. [5]
showed that the minimization over z∗0, ẑ∗A, ẑ∗B can be done
efficiently. The supergradients can then be easily computed as
∇ρρρ(q) = ẑ∗B− ẑ∗A. This is used to come up with lower bounds
via supergradient ascent (see appendix X for a more detailed
explanation). Unfortunately, this is known to be quite slow. We
therefore take a different approach that learns to estimate a
better ascent direction, thereby providing larger lower bounds
more efficiently.

IV. GNN FRAMEWORK

The key observation of our work is based on the fact that
several previously known lower bound computation techniques
can be thought of as performing forward-backward style passes
through the network to update the dual variables. These include
supergradient ascent and proximal maximization [5]. However,
the exact form of the passes is restricted to those suggested
by standard optimization algorithms, which are agnostic to
the special structure of neural lower bound computation. This
observation suggests a natural generalization: parameterize the
forward and backward passes, and estimate the parameters using
a training data set so as to exploit the problem and data structure
more successfully. In what follows, we first provide an overview
of our approach that achieves this generalization through graph
neural networks (GNN). The remaining subsections describe
the various components of the GNN and the forward and
backward passes in greater detail.

A. Overview

Inspired by the approach of Lu and Kumar [23], who use a
graph neural network (GNN) to come up with better branching
decisions, we propose to use a GNN for efficient bound
computation. Since previous bound computation approaches
perform forward and backward passes on the network they
wish to verify, it makes sense to use a GNN that mimics the
architecture of that network as closely as possible. To this
end, we treat the neural network as a graph GNN = (VNN ,ENN)
and provide it as input for the GNN. We denote the GNN as

an isomorphic graph to GNN , that is, GGNN = (VGNN ,EGNN)
where there is a one-to-one correspondence between the nodes
VNN and VGNN and edges ENN and EGNN . For every node
v ∈VGNN we first compute a feature vector f, which contains
local information about the node. We then use this feature vector
and a learned function g to compute an embedding vector µµµ , a
high-dimensional vector that encapsulates a lot of the important
information about the corresponding node, the structure of the
neural network, and the state of the optimization algorithm. The
embedding vectors are initialized based on the nodes’ features
and then updated using forward and backward passes in the
GNN. Exchanging information with its neighbours ensures
that the embedding vectors capture the global information of
the structure of the problem. Once we have gotten a learned
representation of each node we will convert the embedding
vectors into a dual ascent direction, which will be used to
update the dual variables. Having provided an overview we
will now describe the GNN’s main elements in greater detail.

B. GNN Components

a) Nodes.: We create a node vk[i] in our GNN for every
dual variable ρρρk[i]. Every dual variable corresponds to the
output of the non-linear activation and the input to the next
linear layer. We denote the set of all nodes in the GNN by
VGNN .

b) Node Features.: For each node vk[i] we define a cor-
responding d-dimensional feature vector fk[i] ∈ Rd describing
the current state of that node as follows:

fk[i] :=
(
ρρρk[i], ẑA,k[i], ẑB,k[i], ẑB,k[i]− ẑA,k[i]

)⊤
. (6)

Here, ρρρk is the current assignment to the corresponding dual
variables and ẑB,k and ẑA,k are the closed-form solutions
to the inner minimization problem of the dual problem as
explained above. The term ẑB,k[i]− ẑA,k[i] corresponds to the
supergradient of q. While more complex features could be
included, we deliberately chose the simple features described
above and rely on the power of GNNs to efficiently compute
an accurate ascent direction.

c) Edges.: We denote the set of all the edges connecting
the nodes in VGNN by EGNN . The edges are equivalent to the
weights in the neural network that we are trying to verify. We
define ek

i j to be the edge connecting nodes vk[i] and vk+1[ j]
and assign it the value of W k

i j.

d) Embeddings.: For every node vk[i] we compute a
corresponding p-dimensional embedding vector µµµk[i] ∈ Rp

using a learned function g:

µµµk[i] := g(fk[i]). (7)

In our case g is a multilayer perceptron (MLP), which is made
up of a series of linear layers Θi and non-linear activations σ .
We have the following set of trainable parameters:

Θ0 ∈ Rd×p, Θ1, . . . ,ΘT1 ∈ Rp×p, b0, . . . ,bT1 ∈ Rp. (8)



Given a feature vector f we compute the following set of
vectors:

µµµ
0 = Θ0 · f+b0, µµµ

l+1 = Θl+1 · relu(µµµ l)+bl+1. (9)

We initialize the embedding vector to be µµµ =µµµT1 , where T1+1
is the depth of the MLP.

C. Forward and Backward Passes.

So far the embedding vector µµµ solely depends on the current
state of that node and does not take the underlying structure
of the problem or the neighbouring nodes into consideration.
We therefore introduce a method that updates the embedding
vectors by simulating the forward and backward passes in the
original network. The forward pass consists of a weighted sum
of three parts: the first term is the current embedding vector,
the second is the embedding vector of the previous layer passed
through the corresponding linear or convolutional filters, and
the third is the average of all neighbouring embedding vectors:

µµµ
′
k[i] = relu

(
Θ

f or
1 µµµk[i]+Θ

f or
2

(
Wkµµµk−1 +bk−1

)
[i]+

Θ
f or
3

(
∑

j∈N(i)
µµµk−1[ j]/Qk+1[ j]

)
[i]

)
. (10)

Both the second and the third term can be implemented using
existing deep learning functions. Similarly, we perform a
backward pass as follows:

µµµk[i] = relu

(
Θ

back
1 µµµ

′
k[i]+Θ

back
2 (W T

k+1
(
µµµ
′
k+1−bk+1

)
)[i]+

Θ
back
3

(
∑

j∈N′(i)
µµµ
′
k+1[ j]/Q′k+1[ j]

)
[i]

)
.

(11)

Here Θ
f or
1 ,Θ f or

2 ,Θ f or
3 ,Θback

1 ,Θback
2 ,Θback

3 ∈ Rp×p are all learn-
able parameters. To ensure better generalization performance to
unseen neural networks with a different network architecture we
include normalization parameters Q and Q′. These are matrices
whose elements are the number of neighbouring nodes in the
previous and following layer respectively for each node. We
repeat this process of running a forward and backward pass
T2 times. The high-dimensional embedding vectors are now
capable of expressing the state of the corresponding node
taking the entire problem structure into consideration as they
are directly influenced by every single other node, even if we
set T2 = 1.

D. Update Step

Finally, we need to reduce each p-dimensional embedding
vector to a single value to get an ascent direction ρ̂̂ρ̂ρ

t+1
k . We

simply use a linear output function ΘΘΘ
out to get: ρ̂̂ρ̂ρ

t+1
k =ΘΘΘ

out
µµµk.

Ideally the GNN would output a new ascent direction that
will lead us directly to the global optimum of equation (5).
However, as the dual problem is complex this may not be
feasible in practice without making the GNN very large, thereby

resulting in computationally prohibitive inference. Instead, we
propose to run the GNN a small number of times to return
ascent directions that gradually move towards the optimum.
Given a step size η t+1, previous dual variables ρρρ t , and the new
ascent direction ρ̂̂ρ̂ρ

t+1 we update the dual variables as follows:

ρρρ
t+1 = ρρρ

t +η
t+1

ρ̂̂ρ̂ρ
t+1. (12)

Similar to many iterative optimization methods we decay
our stepsize as we want to take smaller steps the closer we
get to the optimal solution. Given an initial step size η0, we
define the step size at time t as follows: η t = η0 ∗

√
t.

The hyper-parameters for the GNN computation of the duals
are the depth of the MLP (T1), how many forward and backward
passes we run (T2), and the embedding size (p).

E. Fail-safe Strategy.

As with almost all machine learning based optimization
algorithms, we do not have any convergence guarantees. For a
few subdomains our GNN might diverge rather than improve
on the value returned for its parent. We therefore introduce a
fail-safe strategy that ensures our algorithm performs well even
when our GNN fails. We compare whether the final bound
of a given subdomain outputted by the GNN beats the bound
returned for its parent domain by a given absolute threshold. If
it fails to do so, then we add the subdomain into a second set
of current subdomains. We use supergradient ascent to solve
these subdomains on which our GNN performed poorly. This
way we reduce the risk of our branch-and-bound algorithm
timing out on certain properties.

F. Running Standard Algorithms using the GNN

As mentioned earlier, the motivation behind our GNN
framework is to offer a parameterized generalization of previous
methods for lower bound computation. We now formalize the
generalization using the following proposition.

Proposition 1: Our GNN architecture can simulate supergra-
dient ascent [5] (proof in appendix XI).

V. GNN TRAINING

Having described the structure of the GNN we will now
show how to train its learnable parameters. Our training dataset
D consists of a set of samples di = (x,ε,W i,bi, li,ui,ρρρ i), each
with the following components: a natural input to the neural
network we wish to verify (x), for example an image; a domain
for which we wish to compute the lower bound (ε), which in
our case is an ℓ∞ ball; the weights and biases of the neural
network (W,b); the intermediate bounds of the neural network
(l,u) computed via the WK method [30]; and the initial value
of the dual variables (ρρρ).

Recall that we do not use the GNN to directly compute
the optimum dual solution. Instead, we run it iteratively,
where each iteration computes an update direction for the
dual variables. In order for the training procedure to more
closely resemble its behaviour at inference time, it is crucial
to train the GNN using a loss function that takes into account
the dual values across a large number of iterations K. In order



to ensure that a single training sample does not dominate
the loss by reaching a large positive value, we truncate the
loss values for each sample. The natural point to clamp the
individual losses at is the value returned by supergradient
ascent (qi

SupG) plus a small positive threshold κ . Inference
time of our GNN is shorter than supergradient ascent as
we run it for significantly fewer iterations (100 and 500
respectively); so as long as the duals returned by the GNN
are as good as those returned by supergradient ascent, the
GNN will outperform the baseline in the BaB setting. Given
the i-th training sample di = (x,ε,W i,bi, li,ui,ρρρ i) ∈ D , the
corresponding dual objective qi, and the dual value returned
by supergradient ascent qi

SupG, we define its loss Li to be:

Li =−
K

∑
t=1

qi(ρρρ i,t
GNN)∗ γ

t ∗1qi(ρρρ
i,K
GNN)<qi

SupG+κ
. (13)

Instead of maximizing over the dual value, we minimize over
the negative dual instead. If the decay factor γ ∈ (0,1) is
low then we encourage the model to make as much progress
in the first few steps as possible, whereas if γ is closer to
1, then more emphasis is placed on the final output of the
GNN, sacrificing progress in the early stages. Readers familiar
with reinforcement learning may be reminded by the discount
rates used in algorithms such as Q-learning and policy-gradient
methods. We sum over the individual loss values corresponding
to each data point to get the final training objective L : L =

∑
|D|
i=1 Li.

VI. EXPERIMENTS

We will now show the practical effectiveness of our method
by comparing its performance with several state-of-the-art
verification methods.

a) Setup.: All our experiments are performed on the
test set of the CIFAR10 dataset [20]. We use the same
properties used by Lu and Kumar [23]. They randomly chose
the properties to verify against out of the list of false classes
and compute the epsilon value that determines the size of the
input domain using binary search and the BaBSR method. All
properties considered are either true (i.e. the model is provably
robust on the given input domain) or time out on all baselines.
We will use three different neural networks to verify properties
on, similar to [23]. We will use the main one, which we call the
‘base model’, to do all of our training and most of our testing
on. It is trained robustly using the method introduced by Madry
et al. [25] to achieve robustness against l∞ perturbations of size
up to ε = 8/255 (the amount typically considered in empirical
works). We will further test the transferability of our GNN on
two larger networks. The different network architectures are
explained in greater detail in appendix XII.

b) Training Dataset.: We would like to train the GNN
on the same samples that we will encounter during inference
time. However, that is impossible as the structure and the
elements of the BaB tree computed at test time depend on
the lower bound computation and thus on the GNN. The
depth, breadth and individual elements of the Branch and

Bound tree depend on the branching, the upper bounding,
and the lower bounding methods. Depending on the exact
methods used, different subproblems are created and different
ones pruned away. In other words, the subdomains found
in the ith level depend on the lower bounding method used
in all of the i− 1 previous layers. This is why we cannot
simulate the subdomains from the ith layer perfectly during
the training of the GNN without running an entire Branch-and-
Bound computation with the current version of the GNN. This
would be very computationally expensive, as it would require
rerunning the BaB verification on each property of the training
dataset after every gradient update step in the GNN training
phase. We will add this explanation to the revised version of
the paper.

To resolve that problem we dynamically create a training
dataset as follows. We first pick a fixed number of images from
the training dataset used in Lu and Kumar [23] together with
the corresponding properties that we are verifying our network
against and epsilon values defining the input domain. We then
create the first part of the training dataset by running a complete
BaB algorithm on these properties using the supergradient
method. We record the intermediate bounds and parent dual
variables for each subdomain visited to create a dataset to train
a first GNN on. Once we have finished training the first version
of the GNN we extend the dataset by running another complete
BaB algorithm on the same properties; this time using the first
version of the GNN instead of supergradient ascent to compute
the lower bounds. We subsequently resume training the first
GNN on the extended dataset for a fixed number of epochs to
get a second GNN. We then repeat this process of extending
the dataset and further training the GNN for a fixed number
of iterations. For most properties in the training dataset we
acquire a large number of samples over the different iterations.
To speed up training, we reduce the proportion of the training
dataset on which we train our GNNs by only picking a small
subset of the samples for each property. We make sure to pick
subdomains from different stages of the BaB algorithm in order
to get a more diverse training dataset. We train the GNN using
the loss function described in the previous section and using
the Adam optimizer [19] with no weight decay.

c) Baselines.: We compare our work to the baselines
used in both Bunel et al. [6] and Lu and Kumar [23]. We use
MIPplanet, which is a mixed integer solver by the commercial
solver GUROBI, BaBSR, a BaB based method that uses an LP
solver by GUROBI to compute bounds for the subdomains, and
supergradient ascent together with Adam as proposed by Bunel
et al. [5] (for a more detailed description see appendix X). We
run supergradient ascent for 500 steps with a learning rate of
1e-4 (both of these hyper-parameters have been optimized over
the validation dataset).

d) Implementation.: The implementation of our method
is based on Pytorch [26]. We compute the intermediate bounds
of the network using the method introduced by Wong and
Kolter [30]. The two baselines using GUROBI are run on one
CPU each, as done by Lu and Kumar [23]. We run both the
supergradient baseline and our GNN on a single GPU and
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Fig. 1: Cactus plots for the base, wide and deep models. For each, we compare the bounding methods and complete verification
algorithms by plotting the percentage of solved properties as a function of runtime.

Base Wide Deep
Method time(s) subdomains %Timeout time(s) subdomains %Timeout time(s) subdomains %Timeout

GUROBI BABSR 1592.30 1346.44 10.75 2906.71 632.59 50.33 3007.237 299.913 54.00
MIPPLANET 2042.46 36.28 3112.11 79.67 2997.115 73.60

ADAM 513.19 6348.84 6.20 986.68 5416.54 18.00 525.77 2616.97 8.00
GNN 473.05 5322.27 6.07 920.16 4599.56 17.67 494.18 2335.16 7.60

TABLE I: We compare average (mean) solving time, average number of subdomains solved, and the percentage of properties that the
methods time out on when using a cut-off time of 3600s. The best performing method for each subcategory is highlighted in bold.

CPU each. One advantage of our method compared to off-the-
shelf solvers is precisely that we can run it on GPUs and can
therefore use more efficient parallelized implementations of
mathematical operations. To speed up the BaB algorithm we
parallelize over the lower bound computation for the different
subdomains. We run both the GNN and supergradient ascent
with a batch-size of 300. We run our GNN for 100 steps with
an absolute fail-safe threshold of 0.1.

e) Base Model.: We first run experiments on the base
model using a GNN that is trained on 20 easy properties
only. We test the GNN on 425 easy properties, 704 medium
properties, and 387 hard properties taken from the dataset
created by Lu and Kumar [23]. The difficulty of the properties
is determined by how long BaBSR takes to solve them. We
compare our method with previous work by showing how
many properties are verified for any given amount of time
in seconds (Figure 1). Our method leads to an over 70%
reduction in terms of average time taken compared to BaBSR
and MIPplanet (Table I) and times out on significantly fewer
properties. Our GNN also outperforms supergradient ascent.
It leads to a 10% reduction in both time taken and number
of subdomains visited (and a 20% improvement when using
the median or the geometric mean, see appendix XIII-A, and
XIII-B). In fact, the GNN beats supergradient ascent on 93.80%
of all properties as can be seen in appendix XIII-C. Even though
the GNN is trained on easy properties only it generalizes well
to harder ones (see appendix XIII-D).

f) Transferability: Larger Models.: We show further the
generalization performance of our GNNs without the need
to perform fine-tuning or online learning by testing it on

two different larger neural networks. One of them is wider
than the base network, and the other one is deeper. A more
detailed description of the different architectures can be found
in appendix XII. To get better generalization performance, we
increase the size of the training dataset to 100 images and
train a new GNN based on the base architecture. As shown in
Figure 1 and Table I, the GNN still outperforms all baselines on
both unseen networks. The GNN beats each baseline on over
85% of all properties (appendix XIII-C). Good generalisation
performance from easy properties to difficult ones and from
small networks to larger ones is beneficial as the complexity of
training the GNN depends on both the difficulty of the training
properties and the size of the model. Moreover, it allows us to
train a single GNN and use it for many different verification
tasks on various networks.

VII. DISCUSSION

We have shown how to improve the complete verification
procedure using GNNs that learn how to use the underlying
structure of the problem to return better bounds more quickly.
We show that our method consistently beats the existing state-
of-the-art algorithms. Our GNN trained on easy properties on
a small network shows good generalization performance on
harder properties and on larger unseen networks. We’ve taken
an important step towards creating verification methods for
larger state-of-the-art networks. Further work might include
extending our approach to work on different relaxations, such
as the Anderson relaxation, which is tighter then Planet but has
significantly more constraints. Alternatively, one could learn
a lazy verifier that only solves subdomains for which there is



a high chance of pruning and further divides them into more
subdomains otherwise.

VIII. BROADER IMPACT STATEMENT

Our work expands the applicability of deep learning to
safety critical domains as it is essential to be able to verify the
robustness of neural networks used in these situations. This
has the potential to save lives when applied to areas like health
care or autonomous driving. However, it may also lead to
machines taken over jobs previously carried out by humans
and can therefore lead to an increase in unemployment.
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IX. BRANCH AND BOUND

We will now describe the branch-and-bound algorithm referenced throughout this work. We use a slightly modified version as we are
merely interested in whether the final lower bound is positive or negative instead of its precise value; we prune away all subdomains with
positive lower bounds. We use the same hand-designed ReLU splitting branching strategy used in Lu and Kumar [23].

Algorithm 1 Branch and Bound
1: function BAB(net,problem)
2: global_lb← compute_LB(net,problem) ▷ global lower bound
3: global_ub← compute_UB(net,problem) ▷ global upper bound
4: probs← [(global_lb,problem)] ▷ set of all current domains
5: while probs is not empty do
6: (_ ,prob)← pick_out(probs) ▷ the pick_out function picks an ambiguous ReLU to split on
7: [subprob_1,subprob_2]← split(prob)
8: for i = 1,2 do
9: sub_lb← compute_LB(net,subprob_i)

10: sub_ub← compute_UB(net,subprob_i)
11: if sub_ub< 0 then
12: return SAT ▷ we’ve found an adversarial example
13: end if
14: if sub_lb< 0 then
15: probs.append((sub_lb,subprob_i))
16: end if ▷ if sub_lb> 0 then the subdomain gets pruned away
17: end for
18: global_lb←min{lb | (lb,prob) ∈ probs} ▷ If probs is non-empty then global_lb is negative
19: end while
20: return UNSAT ▷ all subproblems have a positive lower bound, therefore global_lb is positive
21: end function

We will now describe the parallelized version of the BaB algorithm used whenever we use supergradient ascent or the GNN to compute
final bounds:

Algorithm 2 Branch and Bound — parallelized version
1: function BAB(net,problem)
2: global_lb← compute_LB(net,problem) ▷ global lower bound
3: global_ub← compute_UB(net,problem) ▷ global upper bound
4: probs← [(global_lb,problem)] ▷ set of all current domains
5: while probs is not empty do
6: s = min{batch_size/2,len(probs)}
7: subproblems= []
8: for i = 1 . . .s do
9: (_ ,prob)← pick_out(probs) ▷ the pick_out function picks an ambiguous ReLU to split on

10: [subprob_i1,subprob_i2]← split(prob)
11: subproblems← subproblems+[subprob_i1,subprob_i2]
12: end for
13: [sub_lb11 , sub_lb12 , . . . ,sub_lbs1 , sub_lbs2 ]← compute_LBs(net,subproblems)
14: [sub_ub11 , sub_ub12 , . . . ,sub_ubs1 , sub_ubs2 ]← compute_UBs(net,subproblems)
15: for i = 1 . . .s do
16: for j = 1, 2 do
17: if sub_ubij < 0 then
18: return SAT ▷ we’ve found an adversarial example
19: end if
20: if sub_lbij < 0 then
21: probs.append((sub_lbij ,subprob_ij))
22: end if
23: end for
24: end for
25: global_lb←min{lb | (lb,prob) ∈ probs} ▷ If probs is non-empty then global_lb is negative
26: end while
27: return UNSAT ▷ all subproblems have a positive lower bound, therefore global_lb is positive
28: end function



X. SUPERGRADIENT METHOD

We will now outline the supergradient ascent method used in Bunel et al. [5].

Algorithm 3 Supergradient method

1: function SUPERG_COMPUTE_BOUNDS({Wk,bk, lk,uk}k=1..n)
2: Initialise dual variables ρρρ0 using the duals of the parent domain or the algo of Wong and Kolter [30]
3: for nb_iterations do
4: ẑ∗, ẑ∗A ẑ∗B← inner minimization as proposed by Bunel et al. [5]
5: Compute supergradient using ∇ρρρ q(ρρρ t) = ẑ∗B− ẑ∗A
6: ρρρ t+1← Adam’s update rule [19]
7: end for
8: return q(ρρρ)
9: end function

XI. REGAINING SUPERGRADIENT ASCENT

We show that our method is strictly more expressive than supergradient ascent by showing that it can simulate it exactly.
The supergradient ascent step is equivalent to update step ρρρt+1 = ρρρt +η t+1ρ̂̂ρ̂ρ

t+1, where

ρ̂̂ρ̂ρ
t+1
k = ẑB,k− ẑA,k. (14)

Let Θ0 be the zero-matrix with non-zero elements Θ0[1,4] = 1, Θ0[2,4] =−1. Moreover, setting T1 = 1, Θ1 = 1 and b0 = b1 = 0, we get

µµµ
0
k =

(
ẑB,k− ẑA,k,−ẑB,k + ẑA,k,0, . . . ,0

)⊤
, (15)

µµµ =
((

ẑB,k− ẑA,k
)
+ ,−

(
ẑB,k− ẑA,k

)
− ,0, . . . ,0

)⊤
. (16)

If we set Θ
f or
2 = Θ

f or
3 = Θback

2 = Θback
3 = 0 and Θ

f or
1 = Θback

1 = 1, then the forward and backward passes don’t change the embedding
vector. We now just need to set ΘΘΘ

out = (1,−1,0, . . . ,0)⊤ to get the final ascent direction:

ρ̂̂ρ̂ρ
t+1
k =

(
ẑB,k− ẑA,k

)
++

(
ẑB,k− ẑA,k

)
− = ẑB,k− ẑA,k. (17)

We have shown that we can simulate supergradient ascent using our GNN architecture.



XII. NETWORK ARCHITECTURES

We perform all our experiments on the same three neural networks used by Lu and Kumar [23]. All three networks are trained robustly
using the method introduced by Madry et al. [25] to achieve robustness against l∞ perturbations of size up to ε = 8/255 (the amount typically
considered in empirical works).

The neural network architectures differ in the size and number of convolutional layers used. However, all of them have two fully connected
layers of 100 and 10 units respectively as the final layers. Each layer but the last is followed by a ReLU activation function.

Network Name No. of Properties Network Architecture

BASE
Model

Training: 430
Easy: 425 (Lu and Kumar [23]: 467)

Medium: 704 (Lu and Kumar [23]: 773)
Hard: 387 (Lu and Kumar [23]: 426)

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 3172)

WIDE 300

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6244)

DEEP 250

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6756)

TABLE II: Network Architectures

XIII. FURTHER EXPERIMENTAL RESULTS

We will now compare our method with the different baselines in greater depth. We first use different statistics to more accurately explain
the performances of the different methods.

A. Median
Unlike the arithmetic mean, the median is not skewed by outliers. The randomly picked threshold at which we stop experiments (3600s)

has a larger impact on the mean than the median so as long as methods time-out on less than half of all images.

Base Wide Deep
Method time(s) subdomains %Timeout time(s) subdomains %Timeout time(s) subdomains %Timeout

GUROBI BABSR 1239.56 1028.00 10.75 3600.00 530.00 50.33 3600.00 264.00 54.00
MIPPLANET 2063.54 36.28 3600.00 79.67 3600.00 73.60

ADAM 208.00 3922.00 6.20 276.33 3321.00 18.00 158.55 1708.00 8.00
GNN 170.39 2892.00 6.07 185.57 2038.00 17.67 120.62 1289.00 7.60

TABLE III: We compare average (median) solving time, average (median) number of subdomains solved, and the percentage of properties
that the methods time out on when using a cut-off time of 3600s. The best performing method for each subcategory is highlighted in bold.



B. Geometric Mean
The geometric mean is less skewed than the arithmetic mean but still encapsulates a lot more information than the median, and is arguably

the best suited measure to compare the different methods. The geometric mean of a set of numbers x1, . . . ,xn is defined to be:
(
∏

n
i=1 xi

) 1
n .

As shown in Table IV the GNN is about 20% faster than supergradient ascent and more than 6 times faster than GUROBI and MIPplanet
when using the geometric mean.

Base Wide Deep
Method time(s) subdomains %Timeout time(s) subdomains %Timeout time(s) subdomains %Timeout

GUROBI BABSR 1228.08 1015.15 10.75 2727.59 542.03 50.33 2869.54 264.58 54.00
MIPPLANET 1217.43 36.28 2603.76 79.67 2502.48 73.60

ADAM 256.07 3988.68 6.20 392.87 3480.53 18.00 214.33 1750.46 8.00
GNN 205.40 2921.26 6.07 301.34 2419.67 17.67 179.60 1406.00 7.60

TABLE IV: We use the geometric mean to compare solving time, number of subdomains solved, and the percentage of properties that the
methods time out on when using a cut-off time of 3600s. The best performing method for each subcategory is highlighted in bold.

C. Head to Head Performance
The following table outlines the 1-on-1 comparison between the different methods. The GNN beats each individual baseline on more than

82% of all images on the base and on the wide model and on over 74% on the deep model.

Base
Method GUROBI BABSR MIPPLANET SUPERGRADIENT GNN IM 20 Best

GUROBI BABSR 60.44 0.77 0.70 0.07
MIPPLANET 39.56 18.10 17.96 17.96

SUPERGRADIENT 99.23 81.90 6.95 4.05
GNN 99.30 82.04 93.05 77.92

Wide
Method GUROBI BABSR MIPPLANET SUPERGRADIENT GNN IM 100 Best

GUROBI BABSR 71.67 1.61 1.61 0.37
MIPPLANET 28.33 13.81 14.23 13.43

SUPERGRADIENT 98.39 86.19 14.57 12.31
GNN 98.39 85.77 85.43 73.88

Deep
Method GUROBI BABSR MIPPLANET SUPERGRADIENT GNN IM 100 Best

GUROBI BABSR 61.97 1.29 1.28 0.41
MIPPLANET 38.03 9.21 8.71 8.26

SUPERGRADIENT 98.71 90.79 25.86 22.73
GNN 98.72 91.29 74.14 68.60

TABLE V: We compare head-to-head performance of the different methods on the base, wide, and deep model. The numbers refer to
the percentage of images on which the method in the row header beats the method in the column header. The final column represents the
percentage of images on which the method beats all other methods. If two models timeout on an image than that image is not included in
their head-to-head performance as neither method beats the other. The better performing method is highlighted in bold



D. Base Model Experiments
We now provide a more in-depth analysis of the results on the base model in Figure 2. The properties are separated into three sets based

on the time ti it takes GUROBI BaBSR to solve them: “easy" (ti < 800), “medium" and a “hard " (ti > 2400). The GNN is trained on easy
properties only, but it beats the baselines on all three types of properties thus showing good generalization performance.
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Fig. 2: Cactus plots for the base model, separated into three different graphs based on the difficulty of the properties. We
compare the different bounding methods by plotting the percentage of properties that have been solved for any given time.

Easy Med Hard
Method time(s) subdomains %Timeout time(s) subdomains %Timeout time(s) subdomains %Timeout

GUROBI BABSR 550.48 584.53 0.00 1374.32 1411.19 0.00 3132.97 2588.51 42.12
MIPPLANET 1535.05 16.71 2239.23 42.76 2241.74 45.99

SUPERGRADIENT 155.12 2350.02 0.47 258.80 5304.62 0.00 1369.20 14 574.71 23.77
GNN 131.86 1809.59 0.47 217.70 4174.40 0.00 1312.24 13 046.03 23.26

TABLE VI: We compare average (mean) solving time, average number of subdomains solved, and the percentage of properties solved for
easy, medium, and hard properties on the base model. The best performing method for each subcategory is highlighted in bold. (Note that by
definition Gurobi BaBSR doesn’t time out on easy and med experiments)

.



XIV. EXPERIMENT SETUP

We will now explain in greater detail how the experiments described in this paper were run. We first describe the training procedure used
to train the two different GNNs mentioned above. We then further detail all hyperparameters used in the verification experiments.

A. GNN Training
We train two different GNNs, one on 20 properties and the other on 100. All of the training properties used are easy; that is BaBSR takes

less than 800 seconds to solve them. We showed above that it suffices to use 20 training images to get good performance on the base model.
In order to achieve better generalization performance on the wide and deep networks we had to train a second GNN on more images. We
train both GNNs for three iterations, as explained above. For each iteration we train the GNN on 10,000 subdomains for a total of 50 epochs.
At the start of each of the three iterations, we randomly select the subdomains to train on, choosing the same number of subdomains for each
property. We aim to minimize the loss function (13) using a horizon of 100 and a decay factor γ = 0.99. We train the GNN using the Adam
optimizer [19] with a learning rate of 1e−2 and no weight decay; we manually decay the learning rate by a factor of 10 if the loss function
doesn’t improve for two consecutive epochs. For the update step we use an initial step size of µ = 1e−3, and decay it as explained above.
We set the embedding size to be 32 for all GNNs. Moreover, we set T1 = 1 and T2 = 1. That is, we use a 2-layer MLP to initialize the
embedding vectors and perform just one set of forward and backward passes. At the beginning of the first iteration we create the dataset by
running the BaB algorithm using supergradient ascent and Adam to compute the lower bounds; we set the learning rate to be 1e−4. For the
second and third iterations we further extend the dataset, this time using the current version of the GNN to compute the final lower bounds.

B. Verification Experiments
For all verification experiments mentioned in this work we run the BaB algorithm outlined in appendix IX. We run 100 iterations of

the GNN compared to 500 when using supergradient ascent. This together with the significant reduction in subdomains visited in the
BaB algorithm when using the GNN more than compensates for the fact that one iteration of the GNN takes longer than one iteration of
supergradient ascent. If the GNN performs poorly on a subdomain and the fail-safe method is used, it is likely to also not do well on the
child subdomains. We therefore use supergradient ascent to solve all subdomains that result from further subdividing the current one. For all
experiment we use a batch-size of 300 for both the GNN and supergradient descent. For the base experiments we store all current subdomains
in memory because it is quicker; for the deep and wide models we store them as files because the experiments are more memory expensive.

XV. COMPARISON TO PREVIOUS WORK

Whilst [22] and our work both focus on using GNN for neural network verification problems, there are several key differences between the
two papers. Firstly, they focus on different elements of the Branch-and-Bound algorithm. Whilst our method outputs an ascent direction
for the dual variables, the branching GNN returns a branching score for each ReLU node. The two papers use different loss functions: we
train the GNN in a self-supervised way by optimise the dual objective, whilst [22] train their GNN in a supervised manner based on the
actual improvement score, that evaluates the possible gain from branching at each node. They aim to imitate the strong branching strategy.
Another key difference between the two methods is the training dataset for the GNN, as they use the strong branching heuristic to create
some training properties which is very expensive. The two papers also differ in the GNN architectures they use: they have different feature
vectors, and different types of forward and backward update steps. Finally, Lu and Kumar [22] use online-learning to fine-tune their GNN at
inference time, which we do not.

XVI. GNN
We now present the GNN Bounding Method as an algorithm below.

Algorithm 4 GNN Bounding
1: Input: natural image x, perturbation norm ε , weights and biases W,b, lower and upper bounds l,u, dual variables ρρρ

2: function GNN(x,ε,W i,bi, li,ui,ρρρ i)
3: ρρρ0 := ρρρ ▷ Initialize dual variables
4: for t = 0, · · · ,K−1 do
5: fk[i] :=

(
ρρρk[i], ẑA,k[i], ẑB,k[i], ẑB,k[i]− ẑA,k[i]

)⊤. ▷ Initialize Feature vectors for all layers k and nodes i
6: µµµk[i] := g(fk[i]) ▷ Initialize Embedding vectors for all layers k and nodes i
7: µµµk[i] := F(µµµk−1,µµµk,Wk) ▷ Forward Pass as defined in (10) from the second to the last layer
8: µµµk[i] := B(µµµk,µµµk+1,Wk+1) ▷ Backward pass as defined in (11) from the penultimate to the first layer
9: ρ̂̂ρ̂ρ

t+1
k =ΘΘΘ

out
µµµk. ▷ Compute a new ascent direction

10: ρρρt+1 = ρρρt +η t+1ρ̂̂ρ̂ρ
t+1 ▷ Compute new dual variables

11: end for
12: if q(ρρρK)> 0 then
13: return UNSAT
14: else
15: return ρρρK and q(ρρρK)
16: end if
17: end function
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