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ABSTRACT

We introduce a novel score-based diffusion framework that incorporates forking
for conditional generation tasks. Specifically, a single parent diffusion process
is associated with a primary variable (e.g., graph structure), while multiple child
diffusion processes are employed, each dedicated to a dependent variable (e.g.,
graph property or label). The parent process guides the co-evolution of its child
processes. Orchestrating, and regulating, the conditional flows effectively, this
approach allows us to uncover intricate interactions and dependencies, and unlock
new generative capabilities. We provide extensive experiments to demonstrate
performance gains of the proposed method over contemporary baselines in the
context of conditional graph generation, underscoring the potential of forking in
challenging generative tasks such as inverse molecular design.

1 INTRODUCTION

The generation of high-quality data samples with desired properties is a fundamental challenge in
numerous real-world applications, such as drug design, material synthesis, and image editing (Kot-
sias et al., 2020; Gebauer et al., 2022; Stokes et al., 2020; Meng et al., 2022; Couairon et al.,
2023; Lugmayr et al., 2022). However, searching for new molecules with desired physicochemi-
cal properties (e.g., in a vast combinatorial space for molecules) makes it challenging for traditional
brute-force methods to capture influential data factors. As a result, learning informative condi-
tional representations is increasingly becoming imperative for tasks such as designing constrained
molecules (Gebauer et al., 2019).

Deep generative models (DGMs) have shown remarkable ability to generate realistic data samples
by accurately learning the underlying data distribution and mimicking the true generation process. In
particular, these models have been deployed in various settings that involve conditional generation of
high-quality data samples with desired properties. Among many DGMs that have gained widespread
attention over recent years, Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs), and Normalizing Flows (NFs) have found frequent use for both images (Higgins et al.,
2017; Karras et al., 2020; Chen et al., 2016; Rezende & Mohamed, 2015) and graphs (Simonovsky
& Komodakis, 2018; Lim et al., 2018; Jin et al., 2018; De Cao & Kipf, 2018; Verma et al., 2022).

Score-based diffusion models (SGMs) (Song et al., 2021) and probabilistic denoising diffusion mod-
els (DDPM) (Ho et al., 2020) have demonstrated superior capabilities in the estimation of complex
data distributions in recent years. This class of models inject controlled noise gradually into the
data through a series of small Markov steps during inference, resulting in the intentional degrada-
tion of information. Subsequently, these models are trained to remove the noise from the corrupted
samples, effectively transforming them back into faithful data samples.

Diffusion offers a flexible training mechanism that can be extended to accommodate the require-
ments of downstream tasks. In particular, few mechanisms have been proposed to enable conditional
data generation. Primarily, they fall in two categories: classifier-free (Ho & Salimans, 2022) and
classifier-based (Dhariwal & Nichol, 2021) guidance. These techniques have been employed for
tasks such as conditional image generation and text-to-image generation (Radford et al., 2021).

Diffusion techniques have also been adapted for graph-based applications. For instance, the de-
noising score matching mechanism introduced by Song et al. (2021) has found utility in diverse
graph-related tasks. Specifically, Jo et al. (2022) have utilized this mechanism for unconditional
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Table 1: Comparison of generative modeling methodologies.

Method Conditional Energy-Guidance Non-Autoregressive Continuous-time End-to-End Authors

JT-VAE ✗ ✗ ✗ ✗ ✓ Jin et al. (2018)
ModFlow ✗ ✗ ✓ ✓ ✓ Verma et al. (2022)
GDSS ✗ ✗ ✓ ✓ ✓ Jo et al. (2022)
EDM ✓ ✗ ✓ ✗ ✓ Hoogeboom et al. (2022)
cG-SchNet ✓ ✗ ✗ ✗ ✓ Gebauer et al. (2022)
EEGSDE ✓ ✓ ✓ ✓ ✗ Bao et al. (2023)
JODO ✓ ✗ ✓ ✓ ✓ Huang et al. (2023)

FDP ✓ ✓ ✓ ✓ ✓ This work

graph generation, while Corso et al. (2022) have applied it to computational molecular docking.
Similarly, diffusion approaches have also been employed for conditional molecule generation. Ini-
tially, Hoogeboom et al. (2022) proposed an equivariant approach based on probabilistic denoising
diffusion models (DDPM). This method has since been extended by Bao et al. (2023), who incorpo-
rated energy guidance into the framework, and more recently by Huang et al. (2023), who introduced
further improvements by incorporating score-based modeling techniques.

In contrast to prior studies on diffusion, as outlined in Table 1, we introduce a novel approach to
model conditional graphs. Our approach reimagines the diffusion process by postulating that struc-
tural evolution should occur in conjunction with the evolution of specific properties. Our objective
in developing an alternative to existing conditional diffusion processes is to empower a model by
bestowing it with a finer control over two key aspects: the 1) evolution of structural graph compo-
nents, including nodes and edges, and 2) co-evolution of the structure in conjunction with one or
more associated properties.

Toward that end, we define a novel conditional diffusion mechanism (please see Figure 1 for
overview), Forked Diffusion Processes (FDP), which resembles forking. Specifically it defines a
parent process over a primary variable and multiple independent child processes one per depen-
dent variable. The parent process is able to guide the co-evolution of child processes, resulting
in the learning of more flexible representations, which enable as well as benefit from the unravel-
ing of complex interactions and dependencies. We establish rigorous theoretical underpinnings of
our model by appealing to the theory of denoising score matching Song et al. (2021) and the tools
from stochastic differential equations (SDEs) (Anderson, 1982), formalizing the validity of forked
processes.

We demonstrate the merits of the proposed method with detailed empirical investigations on several
standard constrained generation tasks with molecular and generic graph datasets, comparing with
the latest advances in the field of conditional graph diffusion.

1.1 CONTRIBUTIONS

We now summarize our key contributions. We

• (Conceptual and methodological) introduce forking as a new technique for conditional
generation, and propose an effective score-based, end-to-end trainable, non-autoregressive
generative model designed for acquiring conditional representations.
Our novel approach enables precise energy guidance through multiple property-
conditioned forked diffusion processes.

• (Technical) provide a rigorous mathematical framework leveraging tools from Stochas-
tic Differential Equations (SDEs) to derive both the forward forking diffusion process as
well as the corresponding reverse SDE; and extend the formalism to incorporate additional
contexts as conditioning information.

• (Empirical) demonstrate the versatility of the proposed forked diffusion mechanism (FDP)
with strong empirical evidence. Our extensive evaluations showcase the superlative per-
formance of the proposed model in diverse and challenging conditional graph generation
settings across multiple datasets, surpassing contemporary baselines.
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Figure 1: Overview of the reverse process of forked diffusion process (FDP). We define the
parent process over the primary variable i.e. structure xs and multiple forked child processes, one
for each dependent variable, namely, xp1

and xp2
. The variables start from a prior distribution

N (0, I) and are guided via a joint score function with an additional context xc to generate the data-
sample conditioned on this context.

2 RELATED WORKS

Diffusion guidance Guidance is a technique applied to regulate the diffusion process for condi-
tional generation. Previous approaches, such as those by Dhariwal & Nichol (2021) and Song et al.
(2021), employed classifier-based guidance for class-conditional image generation. This concept
was extended to text-to-image generation using CLIP (Radford et al., 2021). Recently, Bao et al.
(2023) introduced a method that trains an energy guidance property classifier on top of a pre-trained
diffusion model to enhance the generation of molecular graphs, akin to classifier guidance. Unlike
prior approaches, we introduce a novel strategy for guidance by 1) learning forked diffusion flows
during training, where conditioning is requested, and 2) employing multiple interacting processes
during sampling. Notably, our method eliminates the need for training a separate classifier, a feature
referred to as ”End-to-End” in Table 1, distinguishing it from methodologies such as (Dhariwal &
Nichol, 2021) for images and (Bao et al., 2023) for graphs.

Conditional Diffusion for Graphs Recent advances in generative modeling have leveraged score-
based techniques employing diffusion or stochastic differential equations Jo et al. (2022); Liu et al.
(2021); Jing et al. (2022); Guth et al. (2022); Ingraham et al. (2022). These approaches have been
extended to the realm of conditional generation (Hoogeboom et al., 2022; Gebauer et al., 2022;
2019; Bao et al., 2023; Verma et al., 2023), wherein pre-trained generative models are fine-tuned
to produce 3D molecules conditioned on specific properties. EDM (Hoogeboom et al., 2022) in-
troduces a DDPM (Ho et al., 2020) designed for conditional generation by incorporating properties
into node features during training. More recently, (Huang et al., 2023) introduced JODO, a score-
based diffusion model for conditional generation, demonstrating performance improvements over
EDM (Hoogeboom et al., 2022) and EEGSDE (Bao et al., 2023). Our method is also inspired by
stochastic differential equations (SDE), similar to GDSS (Jo et al., 2022) and JODO (Huang et al.,
2023), where we aim to learn more expressive representation by having interacting and separated
forked diffusion processes based on properties, aimed at conditional generation.

3 FORKED DIFFUSION PROCESSES

Diffusion models present a versatile recipe for the construction of stochastic processes, playing a
crucial role in generative modeling (Jo et al., 2022; Song et al., 2021) and decision-making (Ajay
et al., 2023). In this work, we appeal to the stochastic differential equation (SDE)-based diffusion
framework as proposed by Song et al. (2021) to define our forked diffusion process. The next
subsections will delve into the mathematical details of our method.
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3.1 FORKED DIFFUSION PROCESSES

We present a new paradigm for diffusion models, where we leverage the data structure to diffuse
multiple processes and achieve a more robust representation. Specifically, we define a parent process
over the primary variable ys (e.g., structure) and a child process over each dependent variable yi

(e.g., property). We define the parent forward process over the primary variable ys as,

dys = fs(ys,t, t)dt+ gs(t)dw (1)

where fs and gs are corresponding diffusion and drift functions, and dw is the weiner noise. Now,
we define the child forward process over k dependent variables y = {y1, . . . ,yk} as,

dy(t)=

dy1(t)
...

dyk(t)

=

fp(y1,t,ys,t, t)dt+ gp(t)dw
...

fp(yk,t,ys,t, t)dt+ gp(t)dw

 (2)

Here, fp and gp denote the diffusion and drift functions, respectively, corresponding to k child
processes related to dependent variables. Collectively, along with the parent forward process, they
constitute our forked diffusion process. Like diffusion processes (Song et al., 2021), these operations
introduce random Gaussian noise to the data to approach a prior or uninformed distribution. We will
now outline the reverse diffusion process.

3.2 REVERSE DIFFUSION PROCESS

The reverse diffusion process can be simulated by starting from a prior distribution and moving
towards the data point, given by the reverse SDE as:

dx = [f(x, t)− g2t∇x log pt(x)]dt+ gtdw̄ (3)

The term ∇x log pt(x) resembles the score function, responsible for guiding the diffusion process
that generates data from the prior distribution, with its parameters defined by a neural network.
We aim to integrate scores from our child-forked process to guide the parent diffusion process in
generating primary variables. We exploit the independence among the child variables in the forking
mechanism to modify the reverse process as,

Proposition 1: Reverse SDE without context

The reverse SDE for the forward SDE system yt = {ys,t,y1,t, . . . ,yk,t}, when considering
the conditional dependence on dependent variables {y1, . . . ,yk} is shown in Eq. 4. For
more details and derivation, see the Appendix A.1.

dyt = [f(yt, t)− g2t∇yt
log pt(yt)]dt+ gtdw̄ (4)

We exploit the independence among dependent variables {y1, . . . ,yk}, to factorize the score func-
tion as,

pt(ys,t,y1,t, . . . ,yk,t) = pt(y1,t, . . . ,yk,t | ys,t)pt(ys,t) =

k∏
i

pt(yi,t | ys,t)pt(ys,t)

∇yt
log pt(ys,t,y1,t, . . . ,yk,t) = ∇yt

log pt(ys,t) +

k∑
i

∇yt
log pt(yi,t | ys,t)

(5)

Plugging it into the main Eq. 4, we obtain,

dyt=[f(yt, t)− g2t (∇yt
log pt(ys,t) +

k∑
i

∇yt
log pt(yi,t | ys,t)]dt+ gtdw̄ (6)

3.3 CONDITIONAL SCORE FUNCTION

We expand our proposed approach to enable conditional generation with an external context
yC = {yc | c ∈ C}, where C ⊆ {1, . . . , k}. This context can be represented as a scalar or vec-
tor, describing a particular value associated with a data-dependent variable. For example, it could
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Table 2: FDP comparison to Classifier-based (Dhariwal & Nichol, 2021) and Classifier-free guid-
ance (Ho & Salimans, 2022) applied for conditional generation in Diffusion models. Here, the x
represents the primary data variable, and y is a scalar value which is the external context for condi-
tional generation, the fϕ is the classifier trained for classifier-based guidance, and ϵθ is a learnable
score model parametrized by θ. For FDP, we have one parent and child process where x represents
the primary data variable,y is the external context for conditional generation, and y′ is the only child
process forked from x, i.e., for the same property as y, sθ,ϕ are learnable score models.

Method Diffusion Scheme Approach

Classifier-based dx = f(x, t)dt+ g(t)dw ∇xt
log p (xt, y) = ∇xt

log p (xt) +∇xt
log p (y | xt)

dx = [f(x, t)− g2t∇x log pt(x, y)]dt+ gtdw̄ ≈ − 1√
1−ᾱt

ϵθ (xt, t) +∇xt log fϕ (y | xt)

Classifier-free dx = f(x, t)dt+ g(t)dw ∇xt
log p (y | xt) = ∇xt

log p (xt | y)−∇xt
log p (xt)

dx = [f(x, t)− g2t∇x log pt(x, y)]dt+ gtdw̄ = − 1√
1−ᾱt

(ϵθ (xt, t, y)− ϵθ (xt, t))

FDP
dx = f(x, t)dt+ g(t)dw, dy′ = fy(x,y

′, t)dt+ gy(t)dw ∇ log pt(xt, y,y
′) = ∇ log pt(xt, y) +∇ log pt(y

′ | xt, y)
dx = [f(x, t)− g2t∇x log pt(x, y,y

′)]dt+ gtdw̄ ∇ log pt(xt, y) ≈ sθ,t(xt, y), ∇ log pt(y
′ | xt, y) ≈ sϕ,t(x, y,y

′)
dy′ = [f(x,y′, t)− g2t∇y′ log pt(x, y,y

′)]dt+ gtdw̄ ∇ log pt(xt, y,y
′) = sθ,t(xt, y) + sϕ,t(x, y,y

′)

represent properties such as Synthetic Accessibility (SA) score or plogp in the case of molecules
or image labels for images. This extension modifies the joint distribution for the score function in
Equation 5 as follows:

Proposition 2: Reverse SDE with context

The reverse SDE for the system yt = {ys,t,y1,t, . . . ,yk,t} provided an external condition-
ing context yC , is shown in Eq. 7. The score function ∇yt

log pt(yt,yC) can be factorized
as shown in Eq. 8, leading to factorized parameterization in Eq. 8. For more details, see
Appendix A.2.

dyt = [f(yt, t)− g2t∇yt log pt(yt,yC)]dt+ gtdw̄ (7)

We utilize our independence assumption to factorize the distribution as where the external context
yC affects the process corresponding to its child and parent processes, thus remaining independent
of other child processes.

pt(ys,t,y1,t, . . . ,yk,t,yC) =

k∏
i

pt(yi,t | ys,t,yC)pt(ys,t,yC) (8)

Given the distribution obtained in Equation 8, the score function factorizes as follows:

∇yt log pt(ys,t,y1,t, . . . ,yk,t,yC) = ∇yt log pt(ys,t,yC)

+

k∑
i /∈ C

∇yt
log pt(yi,t | ys,t)

+

C∑
c

k∑
i

δi=c∇yt
log pt(yi,t | ys,t,yc)

(9)

The conditional reverse SDE is obtained by plugging the score from Eq 9 into Eq. 7. Our method
offers a novel approach to integrating external contextual information into conditional generation.
We compare our approach with conventional classifier-based and classifier-free guidance methods in
Table 2. Given a trained conditional model, our generative process begins by sampling an external
context or conditioning value yC , which can also be supplied externally. We then simulate the
reverse diffusion process, similar to the one described in Equations 9 and 7, but with a modified
score function to generate the data.

3.4 TRAINING OBJECTIVE

The score functions can be estimated by training the time-dependent score-based models sθ,t and
sϕi,t such that they approximate the score-matching objective (Hyvärinen & Dayan, 2005). Our
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Algorithm 1 Training FDP

Require: Dataset D, iterations niter, batch size
B, number of batches nB , K properties to
consider

1: Initialise parameters sθ,t, {sϕi,t}Ki=1 for
Score Networks

2: for k = 1, . . . , niter do
3: for b = 1, . . . , nB do
4: t ∼ U(0, 1]
5: Db = {(ys,l, {yi,l}Ki=1)

B
l=1,yC} ∼ D

6: Lb ←− Eq. 10
7: end for
8: θ, {ϕi}Ki=i ←− optim( 1

nB

∑nB

b=1 Lb)
9: end for

Algorithm 2 Generating with FDP

Require: Score-based models sθ,t, {sϕi,t}Ki=1,
Time step schedule {t}0t=T , Langevin
MCMC step size α, External context yC

1: ysT , {yi,T }Ki=1 ∼ N (0, I)
2: for t = T, . . . , 0 do
3: sθ,t ←− sθ,t(yst , {yi,t}Ki=1,yC)
4: {sϕi,t}Ki=1 ←− {sϕi,t(yst ,yi,t,yC)}Ki=1
5: yst ← yst+

α
2 sθ,t+

√
αzs; zs ∼ N (0, I)

6: yit ← yit+
α
2 sϕi,t+

√
αzi; zi ∼ N (0, I)

7: end for

training routine, reported in Algorithm 1 leverages a denoising score matching technique (Song
et al., 2021; Jo et al., 2022). Specifically, the distribution p0t(yt|y0) is used for updating from p0
to pt during the forward diffusion, and for sampling both y0 ∼ pdata and yt ∼ p0t(yt|y0), where
yt = {ys,t, {yi,t}Ki=1} and yC is the external contextual information. As a result, we provide an
objective function for optimizing the score networks sθ, sϕi , which we write as follows:

min
θ,ϕi

Et{λyt(t)Ey0Eyt|y0
∥sθ,t(ys,t,yc)+

k∑
i

sϕi,t(yi,t,ys,t,yc)−∇yt log p0t(yt,yC)∥22} (10)

where Ey0 = Eys,0,yi,0 and Eyt = Eys,t,yi,t . It is worth noting that the additional influence in-
troduced by the variable sϕi can be conceptually characterized as an energy guidance mechanism
for the properties under consideration. This guidance mechanism operates in conjunction with the
structural information provided by sθ, resulting in a novel form of guidance that is orchestrated by
a branching diffusion process.

4 EXPERIMENTS

We evaluate our model on the task of generating molecules conditioned on chemical properties in
Section 4.1 and quantum properties in Section 4.2. We evaluate the performance of our method for
conditional generic graph generation in Section 4.3 and for unconditional molecule generation in
Section 4.4.

4.1 CONDITIONAL GENERATION ON MOLECULAR CHEMICAL PROPERTIES

Task In this experiment, the objective is to generate molecules while conditioning on specific
chemical properties. We incorporate three key chemical properties for conditioning: Penalized logP
(plogP), Quantitative Estimate of drug-likeliness (QED), and SA score. These properties are calcu-
lated based on a given molecule using the RDKit library (Landrum et al., 2016). We consider QM9
and ZINC250k data Ramakrishnan et al. (2014); Irwin et al. (2012), following the evaluation setup
from (Jo et al., 2022). More details on our model parameterization, forking setup, datasets are given
in Section B.2.

Baseline To assess the effectiveness of the proposed forking methodology, we introduce a con-
ditional version of GDSS (Jo et al., 2022) that relies on classifier-free guidance. This modi-
fied GDSS baseline model is capable of conditioning graph information on a single chemical
property by incorporating the conditional property vector into the node feature matrix, thereby
learning conditional representations. Specifically, the score network is conditioned as follows:
sθ = MLP(GNN([X,yc],A)), where X represents node features, A is the adjacency matrix, and
yc denotes the property being conditioned upon.
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Figure 2: Left: Generated molecules and the corresponding Tanimoto similarity calculated concerning the
dataset Right: Visualization of Conditional Molecule generation. We conditioned on property values (de-
noted as Value row), and the shown molecule has the true property value within two places after the decimal.
The top row shows results from QM9, and the bottom row is from the ZINC250k dataset.

Table 3: Left: Molecular metrics on QM9. Our model outperforms GDSS on all metrics, obtaining lower
FCD and MMD values while achieving higher Validity and Novelty. Right: MAE results for the QM9 and
ZINC250k datasets. The forked diffusion process enables our model to obtain lower MAE values.

Property Method Validity % (↑) FCD (↓) MMD (↓) Novelty % (↑)

plogp GDSS 38.4 17.63 0.120 100
FDP 54.44 17.43 0.118 100

QED GDSS 32.51 16.91 0.125 100
FDP 50.76 16.21 0.125 100

SA Score GDSS 61.25 19.12 0.124 85
FDP 88.87 18.17 0.119 100

Prop Method ZINC MAE ↓ QM9 MAE ↓

plogp GDSS 8.84 7.82
FDP 6.43 7.37

QED GDSS 0.15 0.10
FDP 0.06 0.08

SA score GDSS 6.07 9.08
FDP 5.64 8.45

Metrics First, we evaluate the performance for molecular generation via established metrics, in-
cluding Validity, Novelty, Maximum Mean Discrepancy (MMD), and Fréchet ChemNet Distance
(FCD). Second, we evaluate the effectiveness of conditioning by computing the Mean Absolute Er-
ror (MAE) between the intended ground truth property and the property extracted via RDKit from
the molecule sampled via Algorithm 2.

Results In Table 3 (right), we present the MAE results for QM9 and ZINC250k datasets. The con-
sistently lower MAE values achieved by our model, compared to GDSS, highlight its proficiency in
generating molecules with the desired chemical properties. These results underscore the substan-
tial improvements facilitated by the forking mechanism. In Table 3 (left), our model consistently
outperforms GDSS on the QM9 dataset across various graph generation metrics, including Valid-
ity, Novelty, MMD, and FCD. Figure 2 illustrates the Tanimoto similarity scores obtained with our
model and provides visual samples of molecules generated by conditioning on specific chemical
property values.

4.2 CONDITIONAL GENERATION ON MOLECULAR QUANTUM PROPERTIES

Task In this experiment, we evaluate the effectiveness of the proposed forked diffusion mechanism
in the domain of molecular generation, with a specific focus on conditioning the process on six
quantum properties sourced from the QM9 dataset (Ramakrishnan et al., 2014). We follow the
evaluation setup from (Huang et al., 2023), and implement the forking based on the Diffusion Graph
Transformer (DGT) model. Further details on forking and parameterizations settings are provided
in Section B.3.

Metrics In the evaluation, we follow previous works Hoogeboom et al. (2022); Huang et al. (2023)
by using the MAE to measure the disparity between the ground truth properties and the properties
of molecules generated by the model being conditioned on that property value.

Results We conducted a comprehensive comparison of our approach with several prominent con-
ditional generative models, including JODO (Huang et al., 2023), EDM (Hoogeboom et al., 2022)
and EEGSDE (Bao et al., 2023). The results of our evaluation are summarized in Table 4. It’s
evident from the findings that our model consistently outperforms these multiple conditional dif-
fusion baselines, namely JODO, EDM, and EEGSDE, across all the evaluated quantum properties
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Figure 3: Samples of graphs generated by FDP on Enzymes and Ego-small dataset.

Table 4: Evaluation for molecule generation conditioned on single target quantum property for the QM9
dataset. Our model consistently achieves lower MAE values across all the six evaluated properties.

Method Cv ( cal
molK) µ (D) α (Bohr3) ∆ϵ (meV) ϵHOMO (meV) ϵLUMO (meV)

U-bound 6.879±0.015 1.613±0.003 8.98±0.02 1464±4 645±41 1457±5
# Atoms 1.971 1.053 3.86 866 426 813
EDM 1.065 ± 0.010 1.123 ± 0.013 2.78 ± 0.04 671 ± 5 371 ± 2 601 ± 7
EEGSDE 0.941 ± 0.005 0.777 ± 0.007 2.50 ± 0.02 487 ± 3 302 ± 2 447 ± 6
JODO 0.581 ± 0.001 0.628 ± 0.003 1.42 ± 0.01 335 ± 3 226 ± 1 256 ± 1
FDP 0.559 ± 0.002 0.627 ± 0.001 1.36 ± 0.01 323 ± 2 225 ± 1 244 ± 3
L-bound 0.040 0.043 0.09 65 39 36

Table 5: Evaluations on MMD statistics and MAE values on Ego-small and Enzyme datasets. FDP consis-
tently outperforms the competing method across all the metrics for the considered properties.

Ego-small Enzymes

Property Method Degree ↓ Clustering ↓ Orbit ↓ Spectral ↓ MAE ↓ Degree ↓ Clustering↓ Orbit↓ Spectral↓ MAE↓

Nodes GDSS 12.7 25.4 0.6 3.8 3.0 50.2 21.5 16.0 0.7 16.4
FDP 3.5 6.4 0.2 1.1 2.9 5.6 7.6 2.6 0.5 15.3

Edges GDSS 10.9 21.7 0.5 2.8 6.1 19.5 10.7 2.5 0.5 23.8
FDP 1.8 4.9 0.5 2.4 3.7 4.2 5.2 0.6 0.5 20.8

Density GDSS 4.0 10.6 0.5 2.6 0.18 16.8 9.0 2.1 0.5 0.085
FDP 0.6 1.6 0.2 1.1 0.18 2.6 6.7 1.2 0.5 0.081

ANND GDSS 9.3 20.1 0.4 3.8 2.0 17.3 8.1 5.5 0.6 0.5
FDP 2.3 3.6 0.2 1.1 2.0 10.1 7.3 1.5 0.6 0.4

within the QM9 dataset. The consistently superior performance of our model can be attributed to
the effective conditional guidance facilitated by our forked diffusion mechanism.

4.3 CONDITIONAL GENERATION ON GENERIC GRAPH PROPERTIES

Task In this experiment, we employ the forked diffusion technique to assess its performance on
generic graphs while conditioning on the following graph properties: (i) Number of nodes, (ii)
Number of edges, (iii) Density and (iv) ANND: Average Nearest Neighbor Degree. Our evaluation
setup follows (Jo et al., 2022), by evaluating on Ego-small and Enzymes datasets (Sen et al., 2008;
Schomburg et al., 2004). We consider a single baseline which is the conditional GDSS model that
we described in Section 4.1. Further details on models and dataset setups are given in Section B.4.

Metrics In terms of evaluation metric, we measure the MAE between the property values of the
generated graphs (via the NetworkX library (Hagberg et al., 2008) and the ground truth conditional
property. Furthermore, we evaluate standard MMD statistics (You et al., 2018; Jo et al., 2022),
including Degree, Clustering Coefficient, Orbit Count, and Spectral MMD.

Results The results are displayed in Tables 5, and Figure 3 provides examples of generated graphs.
Our observations reveal that FDP consistently outperforms the baseline methods across all evaluated
properties. Notably, the lower MAE values attained by FDP compared to other methods highlight
its exceptional capacity to finely control conditional information flow, resulting in superior sample
generation.

8



Under review as a conference paper at ICLR 2024

Figure 4: Samples of molecules generated by our model for unconditional molecule generation.

Table 6: Molecular graph metrics for unconditional generation on the QM9 and ZINC250k dataset. FDP
outperforms current baselines in achieving the highest validity score.

QM9 ZINC250k

Validity % (↑) MMD (↓) FCD (↓) Novelty % (↑) Validity % (↑) MMD (↓) FCD (↓) Novelty % (↑)
GraphAF+FC 74.43 0.021 5.625 86.59 68.47 0.044 16.023 99
GraphDF+FC 93.88 0.064 10.928 98.54 90.61 0.177 33.546 100
MoFlow 91.36 0.017 4.467 94.72 63.11 0.046 20.931 100
EDP-GNN 47.52 0.005 2.680 86.58 82.97 0.049 16.737 100
GraphEBM 8.22 0.030 6.143 97.01 5.29 0.212 35.471 100
GDSS-seq 94.47 0.010 4.004 85.48 92.39 0.030 16.847 100
FDP 95.21 0.004 2.434 96.16 94.40 0.033 17.937 100

4.4 UNCONDITIONAL MOLECULE GENERATION

Task We assess the performance of our model for unconditional generation of molecular struc-
tures, on the QM9 and ZINC250K datasets (Ramakrishnan et al., 2014; Irwin et al., 2012). We com-
pare our model to several contemporary autoregressive models, including GraphAF+FC (Shi et al.,
2020) and GraphDF+FC (Luo et al., 2021), as well as one-shot methods, including MoFlow (Zang
& Wang, 2020), GraphEBM (Liu et al., 2021), GDSS (Jo et al., 2022), following the experimental
setup from Jo et al. (2022).

Results The results pertaining to molecular graph generation metrics have been systematically
documented and are accessible in Table 6. This comprehensive analysis reveals that our model
surpasses other baseline models in a majority of the test cases, demonstrating notable strengths in
terms of Validity and Novelty. This performance superiority is consistent across both the QM9
and ZINC250k datasets. Visual representations of molecular structures generated by our model are
provided for reference in Figure 4.

5 CONCLUSION, BROADER IMPACT, AND LIMITATIONS

We introduced forking as a novel approach to model conditional information within generative
models tailored for graph data. FDP incorporates an effective mechanism to control the overall
generative process: it bifurcates diffusion into a parent process and multiple child processes.
Our experimental results showcase the superior performance of FDP when compared to cur-
rent state-of-the-art baselines across various tasks. Specifically, FDP demonstrates exceptional
capabilities in the domains of conditional graph generation for molecular structures, inverse
molecule design tasks, and the generation of generic graphs, surpassing contemporary diffusion-
based methods. These findings underscore the utility of the forking mechanism as an effective
means of enhancing the accuracy of conditional predictions within generative models for graph data.

Conditional generation is fast emerging as one of the most exciting avenues within machine learning,
and would benefit from techniques beyond classifier-based and classifier-free schemes. Thus, fork-
ing as a concept should be broadly applicable in conditional settings beyond this work. That said,
the current work has focused solely on conditional graph generation, and the efficacy of forking in
other domains (e.g, conditional image and text generation settings) needs to be investigated.
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Reproducibility statement All the experiments used in our evaluation are reproducible, and upon
acceptance we will make all our code and trained model available under the MIT License on Github.
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A PROOFS

A.1 DERIVATION OF THE REVERSE SDE

For a Stochastic Differential Equation (SDE) of the form,

dx = f(xt, t)dt+ g(xt, t)dw (11)

where f(·) and g(·) are diffusion, drift function and dw is the weiner noise. The evolution of the
distribution of xt is governed by the Kolmogorov Forward Equation (KFE) as,

∂tp (xt) = −∂xt
[f (xt) p (xt)] +

1

2
∂2
xt

[
g2 (xt) p (xt)

]
(12)

Kolmogrov Forward/Backward Equation (KFE/KBE) Essentially KFE describes the evolution
of a probability distribution p(xt) forward in time. The reverse-time SDE can be derived by solving
the Kolmogorov Backward Equation (K.B.E) as derived in Anderson (1982). It can be defined for
t1 ≥ t0 as,

−∂tp (xt1 | xt0) = f (xt0) ∂xt0
p (xt1 | xt0) +

1

2
g2 (xt0) ∂

2
xt0

p (xt1 | xt0) (13)

where xt0 and xt1 are distributions at the respective time steps. Specifically, it models how the
distribution dynamics at a later point t1 in time changes as we change t0 at an earlier time.

In our case, we consider the diffusion over structure ys and properties {y1, . . . ,yk}. The KFE of
the system y = {ys,y1, . . . ,yk} is given by,

∂tp (yt) = −∂yt
[f (yt) p (yt)] +

1

2
∂2
yt

[
g2 (yt) p (yt)

]
(14)

Independence Factorization We can factorize p (yt) based on our assumption that the properties
{y1,t, . . . ,yk,t} are independent conditioned on the structure ys,t as

p(yt) = p(ys,t,y1,t, . . . ,yk,t)

= p(ys,t)p(y1,t, . . . ,yk,t | ys,t)

= p(ys,t)

k∏
i

p(yi,t | ys,t) (15)

Leveraging this factorization, we can define a system of SDEs with KFEs for each variable, leading
us to the SDE system defined in Eq. 1 and Eq. 2.

Reverse SDE: In the reverse case, we aim to denoise the full vector y = {ys,y1, . . . ,yk} where
ys denotes the diffusion over structure and {y1, . . . ,yk} over the k properties via reverse SDE.
Expressing in the form of Eq. 13, we note that for t1 ≥ t0,

−∂tp (yt1 | yt0) = f (yt0) ∂yt0
p (yt1 | yt0) +

1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0) (16)

Anderson (1982) defines a joint distribution over the time-ordered variables yt1 and yt0 to derive
the reverse SDE. We utilize their analysis and define a joint distribution

p (yt1 ,yt0) := p (ys,t1 ,y1,t1 , ...,yk,t1 ,ys,t0 ,y1,t0 , ...,yk,t0)

= p (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) p(ys,t0 ,y1,t0 , . . . ,yk,t0) (17)

We denote p(ys,t0 ,y1,t0 , . . . ,yk,t0) by p(yt0), and note that it can be decomposed similarly as in
Eq. 15. Taking the time derivative of Eq. 17, we get

−∂tp (yt1 ,yt0) = −∂tp (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) p(yt0)

− ∂tp(yt0)p (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) (18)
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Comparison with KFE/KBE We observe that ∂tp (ys,t1 ,y1,t1 , . . . ,yk,t1 | ys,t0 ,y1,t0 , . . . ,yk,t0)
corresponds to the KBE in Eq. 16 and ∂tp(yt0) to the KFE in Eq. 14. Denoting
{ys,t1 ,y1,t1 , . . . ,ykt1} by yt1 , we immediately get

− ∂tp (yt1 | yt0) p(yt0)− ∂tp(yt0)p (yt1 | yt0)

=

(
f (yt0) ∂yt0

p (yt1 | yt0) +
1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0)

)
p(yt0)

+ p (yt1 | yt0)

(
∂yt0

[f (yt0) p (yt0)]−
1

2
∂2
yt0

[
g2 (yt0) p (yt0)

]) (19)

The derivatives can be handled, by following standard differentiation rules as,

∂yt0
p (yt1 | yt0) = ∂yt0

[
p (yt1 ,yt0)

p (yt0)

]
=

∂yt0
p (yt1 ,yt0)

p (yt0)
−

p (yt1 ,yt0) ∂yt0
p (yt0)

p2 (yt0)

(20)

Evaluating the derivative of the products in the forward Kolmogorov equation and substituting the
derivatives accordingly we obtain,

−∂tp (yt1 ,yt0) = ∂yt0
[f (yt0) p (yt0 ,yt1)] +

1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0) p(yt0)

− 1

2
p (yt1 | yt0) ∂

2
yt0

[
g2 (yt0) p(yt0)

] (21)

Matching the terms of the second-order derivatives with the expansion of the derivative and doing
some algebraic manipulations, we obtain

−∂tp (yt1 ,yt0) = ∂yt0
[f (yt0) p (yt0 ,yt1)] +

1

2
∂2
yt0

[
p (yt1 ,yt0) g

2 (yt0)
]

− ∂yt0

[
p (yt1 | yt0) ∂yt0

[
g2 (yt0) p (yt0)

]]
,

(22)

which can be written as

−∂tp (yt1 ,yt0) =− ∂yt0

[
p (yt1 ,yt0)

(
−f (yt0) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))]
+ (23)

1

2
∂2
yt0

[
p (yt1 ,yt0) g

2 (yt0)
]

(24)

Comparison with KFE The above result is in the form of a Kolmogorov forward equation
with the joint probability distribution p (yt1 ,yt0). The time-ordering is t1 > t0 and the term
−∂tp (yt1 ,yt0) describes the change of probability distribution as we move backward in time. We
can marginalize over t1, using the Leibniz rule, to obtain

−∂tp (yt0) = −∂yt0

[
p (yt0)

(
−f (yt0) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))]
+

1

2
∂2
yt0

[
p (yt0) g

2 (yt0)
]

(25)

This finally gives a stochastic differential equation analogous to the Fokker-Planck/forward Kol-
mogorov equation that can be solved backward in time:

dyt0 =

(
−f(yt0 , t) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))
dt+ g (yt0) dw (26)

We keep g2 (yt0) independent of yt0 . Applying the log-derivative trick, the SDE simplifies to

dyt0 = (f(yt0 , t)− g2t0∇yt0
log p(yt0))dt+ gt0dw (27)

A.2 CONDITIONAL SCORE FACTORIZATION

We extend our method to incorporate an external context or conditional information for conditional
generation, similar to classifier-based (Dhariwal & Nichol, 2021) and classifier-free (Ho & Salimans,
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2022) guidance. Following similar notation, the reverse SDE, given an external context yC can be
written as Song et al. (2021)

dyt = [f(yt, t)− g2t∇yt
log pt(yt,yC)]dt+ gtdw̄ (28)

Here yt = {ys,t,y1,t, . . . ,yk,t}, and yC = {yc | c ∈ C} is an external context or conditioning
variable. This external context can be a scalar or vector describing a property value of the primary
variable like QED or plogp in the case of molecules or image labels in the case of images. The
∇yt log pt(yt,yC) term pertains to the score function which guides the process (see table 2 for
comparison with both classifier-based and classifier-free guidance). Under our condition indepen-
dence assumption, the score function factorizes as

pt(ys,t,y1,t, . . . ,yk,t,yC) =

k∏
i

pt(yi,t | ys,t,yc)pt(ys,t,yC) (29)

∇yt
log pt(ys,t,y1,t, . . . ,yk,t,yC) = ∇yt

log pt(ys,t,yC) +

k∑
i /∈ C

∇yt
log pt(yi,t | ys,t)

+

C∑
c

k∑
i

δi=c∇yt
log pt(yi,t | ys,t,yc)

(30)

B DETAILS OF EXPERIMENTS

B.1 CODE REPOSITORY

We provide the link to an anonymized repository for the computational experiments: https://
anonymous.4open.science/r/Forked-Diffusion-on-Graphs-F852.

B.2 CHEMICAL PROPERTIES EXPERIMENT

Further details for generation conditioned on chemical properties from Section 4.1.

Datasets setup In terms of datasets, we train our models on the QM9 and ZINC250k datasets,
and follow the preprocessing and the train/test splits outlined in (Jo et al., 2022). We consider
3 chemical properties for conditioning, namely: Penalized logP (plogP), Quantitative Estimate of
drug-likeliness (QED), and SA score, which can be obtained given a molecule through the RDKit
library (Landrum et al., 2016).

Score models parameterization We follow (Jo et al., 2022) in terms of score-networks blocks
and molecule representation, but adding the necessary modules for modeling the forked diffusion.
The child process models properties yi as follows:

Pool(MLPi(GNN((X ∥ yi, ∥yc),A))) (31)

while the parent process also combines the contributions from properties yi and the structure ys, as
follows:

MLP(GNN(X, ∥yc,A)) +
∑
i

MLPi(GNN((X ∥ yi ∥ yc),A)) (32)

Forking configuration In this experiment the forking diffusion is configured with a parent pro-
cess that models the molecular graph information, and 3 child-processes (one for each considered
property) to model the information pertaining to the chemical properties. The parent score network
is trained to generate a graph, while the child score networks are trained to generate a property vec-
tor, via graph pooling operations. Parent and child processes are trained to evolve together as in
Algorithm 1, and during generation, the output of the child process is reused into the parent process
(Algorithm 2).

B.3 QUANTUM PROPERTIES EXPERIMENT

Further details for generation conditioned on quantum properties from Section 4.2.
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Dataset setup The experiment is on QM9 dataset (Ramakrishnan et al., 2014). To ensure con-
sistency and comparability with previous works (Hoogeboom et al., 2022; Bao et al., 2023; Huang
et al., 2023), we adhere to the identical dataset preprocessing and training/test data partitions out-
lined by Huang et al. (2023).

Forking configuration The parent process learns the score for the graph structure ys, and a child
process learns the evolving property yi, corresponding to the property that we are conditioning on.
The score networks corresponding to parent and child processes evolve both structure and labels
as in Algorithm 1. Specifically, the parent network performs a diffusion operation, while the child
network performs a diffusion operation and subsequently a classification. Note that differently from
our previous experiment in 4.1, we use a single child process, for computational reasons.

Score models parameterization We design modifications of the Diffusion Graph Transformer
(DGT) (Huang et al., 2023). Within a DGT framework, the parent process model combines the
evolving properties yi and it combines it with the context yc, as:

MLP(MLP(yi) + MLP(yc)) (33)

The child process network models the evolving properties yi by performing a pooling operation
after DGT diffusion, more specifically:

Pool(DGT(ys,yi,yc)) (34)

B.4 GENERIC GRAPH EXPERIMENT

Further details for generation conditioned on generic graph properties, from Section 4.3.

Datasets setup We consider the following datasets: (1) Ego-small: 200 small ego graphs which
are drawn from a larger Citeseer network dataset (Sen et al., 2008) and (2) Enzymes: Real protein
graphs representing the tertiary structures of the enzymes from the BRENDA database (Schomburg
et al., 2004). Properties:

1. # Nodes,
2. # Edges;
3. Density: the ratio of the number of nodes to the number of edges
4. ANND: Average Nearest Neighbor Degree

The properties can be extracted via network-X library (Hagberg et al., 2008).

Model setup We employ a single child process for simultaneously evolving structure and one of
the aforementioned properties. We use a parameterization based on (Jo et al., 2022), which we
described in the experiment for chemical properties B.2. We consider our previous conditional
GDSS baseline from the same experiment.

C EXPANDED RELATED WORKS

Digress (Vignac et al., 2023) proposes a classifier guidance approach based on DDPM (Ho et al.,
2020), as a result, differs from continuous methodologies. MiCAM (Geng et al., 2023) generates
goal oriented molecules on mined connection-aware motifs.

D EVALUATION METRICS

D.1 MOLECULE GENERATION

When evaluating generative models for molecular graphs, domain-specific metrics are often em-
ployed to assess the quality of generated chemical structures. Used in chemical properties experi-
ment 4.1 and for unconditional generation 4.4.
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We follow metrics for evaluating molecules have been presented in previous works (Gómez-
Bombarelli et al., 2018; Jin et al., 2018), that we describe as follows.

• Validity (without correction) is the fraction of valid molecules without valency correction
or edge resampling, as done in (Jo et al., 2022).

• Uniqueness: Quantifies the diversity of generated molecules by computing the percentage
of unique molecular graphs.

• Novelty: Evaluates the proportion of generated molecules that are dissimilar from
molecules in the training dataset.

• Frechet ChemNet Distance (FCD) measures the distance between the test set and the
generated set with the activation of the penultimate layer of ChemNet. Lower FCD values
indicate more similarity between the two distributions.

D.2 GRAPH GENERATION

Evaluation of graph generative models is a crucial aspect to assess their performance and quality
in capturing the underlying structure of complex graph-structured data. Various evaluation metrics
have been proposed to measure the fidelity, diversity, and other characteristics of generated graphs.
Here we describe: 1) Maximum Mean Discrepancy (MMD) and 2) Degree, clustering, and orbit
statistics, which are derived from MMD and were introduced from (You et al., 2018).

Maximum Mean Discrepancy (MMD) We use MMD for evaluating generic graph generation 4.3
and chemical properties conditional molecule generation 4.1.

MMD (Gretton et al., 2012) is a metric commonly used to quantify the statistical difference between
distributions. Given two sets of samples, X and Y , MMD computes the distance between their
empirical means in a reproducing kernel Hilbert space (RKHS):

MMD2(X,Y ) =
1

n2
X

nX∑
i,j=1

k(xi, xj) +
1

n2
Y

nY∑
i,j=1

k(yi, yj)−
2

nXnY

nX∑
i=1

nY∑
j=1

k(xi, yj), (35)

where k(·, ·) is a positive definite kernel function and nX , nY are the sample sizes of X and Y
respectively. MMD can be used to compare the distribution of real and generated graphs, providing
insights into how well the model captures the true underlying data distribution.

Degree, clustering, orbit In the generic graph generation experiment 4.3 we use the metrics MMD
statistics described here, which have been introduced by (You et al., 2018) and used in related
works (Jo et al., 2022).

• Degree Distribution: The degree of a node in a graph is the number of edges connected
to that node. The degree distribution, represented as a histogram, illustrates the frequency
of nodes with different degrees. In the evaluation of graph generation models, it is crucial
to assess how well the generated graphs replicate the degree distribution of real-world net-
works. Deviations from the expected degree distribution may indicate structural issues in
the generated graph.

• Clustering Coefficient: The clustering coefficient of a node in a graph measures the extent
to which its neighbors are also connected to each other, indicating the local connectivity
or cliquishness of nodes. Evaluating a graph generation model involves comparing the
clustering coefficients of generated graphs to those of real-world networks. A high-quality
model should produce graphs with clustering coefficients similar to those observed in real
networks, facilitating an evaluation of the local structure.

• Orbit Statistics: Orbit statistics involve counting different substructures in a graph, such
as triangles and squares, and categorizing nodes into equivalence classes based on their
roles in the network’s structure. In evaluating graph generation models, we employ or-
bit statistics to capture global structural properties. By comparing the orbit statistics of
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generated graphs to those of real-world networks, the quality of the generated structural
features can be assessed. In our experiment, we follow previous works (You et al., 2018;
Jo et al., 2022), and count the number of occurrences of all orbits with 4 nodes (to capture
higher-level motifs).
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