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Abstract

We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to
advance research on flight delay prediction and support the development of founda-
tion models for tabular data. Existing datasets in this domain are typically limited
to flat tabular structures and fail to capture the spatiotemporal dynamics inherent
in delay propagation. Aeolus addresses this limitation by providing three aligned
modalities: (i) a tabular dataset with rich operational, meteorological, and airport-
level features for over 50 million flights; (ii) a flight chain module that models delay
propagation along sequential flight legs, capturing upstream and downstream de-
pendencies; and (iii) a flight network graph that encodes shared aircraft, crew, and
airport resource connections, enabling cross-flight relational reasoning. The dataset
is carefully constructed with temporal splits, comprehensive features, and strict
leakage prevention to support realistic and reproducible machine learning evalua-
tion. Aeolus supports a broad range of tasks, including regression, classification,
temporal structure modeling, and graph learning, serving as a unified benchmark
across tabular, sequential, and graph modalities. We release baseline experiments
and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both
domain-specific modeling and general-purpose structured data research.Our source
code and data can be accessed at https://github.com/Flnny/Delay-data

1 Introduction

Advances in machine learning have fueled rapid progress in real-world applications, yet translating
academic success to industrial deployment remains nontrivial—especially in the domain of tabular
data, where benchmarks often fall short in representing practical complexities [3]. In industrial
settings, tabular datasets typically exhibit temporal distribution drift and contain a mix of predictive,
redundant, and correlated features—products of elaborate data engineering pipelines [14]. However,
academic tabular benchmarks largely ignore these factors: timestamp metadata is often missing, and
feature sets are simplified, limiting the generalization of research findings [29]. Moreover, many
applications involve not just static tabular features, but multimodal signals, such as sequences and
graphs, reflecting complex real-world interactions [2]. Bridging this gap requires benchmarks that
reflect these characteristics.

One such high-stakes domain is flight delay prediction, where economic losses, passenger disrup-
tions, and carbon emissions are compounded by the failure to anticipate delay cascades [4]. While
delays often originate from stochastic disruptions (e.g., weather or ATC interventions), their propaga-
tion follows intricate spatiotemporal and relational dynamics [44]. For example, a delayed flight
may block downstream gate usage, affect crew rotations, or trigger airspace congestion—phenomena
that tabular models alone cannot fully capture [43].

Despite the critical role of flight delay prediction in air traffic management, existing public datasets
exhibit several limitations that hinder the development of realistic and generalizable models [39].

∗These authors contributed equally.B Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/Flnny/Delay-data


Figure 1: Overview of Aeolus.

Most widely used benchmarks consist solely of flat, flight-level tabular features—such as basic
schedule information—while lacking richer modalities like aircraft rotation sequences or dynamic
airport resource graphs [28]. Many datasets are geographically constrained (e.g., Nanjing Lukou
Airport, U.S. domestic flights from 1995–2008), limiting their applicability to network-wide delay
propagation across heterogeneous airports [29]. Several suffer from temporal leakage (e.g., including
future weather data) or lack standardized multi-task evaluation protocols, which compromises
reproducibility and benchmarking reliability [5]. Additionally, many datasets are outdated or biased
toward major hubs, overlooking evolving operational patterns and the dynamics of smaller or regional
airports [14]. Finally, datasets used in many published studies are not publicly accessible, further
impeding transparency and community-driven progress [2].

To address both the general challenges of real-world tabular learning and the specific complexity of
delay forecasting, we introduce Aeolus—a unified benchmark combining tabular, temporal, and
graph-structured data. Aeolus captures:

• Multi-granular Features at flight-, airline-, and environment-levels.

• Spatiotemporal Modeling via aircraft-chain sequence and dynamic airport graphs.

• Robust Evaluation Protocols using temporal slicing and multi-task settings.

As shown in Figure 1, to address the complex interplay of spatiotemporal propagation and multi-factor
interactions in flight delays, Aelous extract three aligned modalities from the raw flight operation
and weather datasets: (1) Tabular data, consisting of flight-level structured features (e.g., schedule,
weather, airport metadata) capturing static and contextual delay factors; (2) Flight chains, which
model delay propagation within individual aircraft by sequentially linking flights operated by the same
tail number within a 24-hour window, enabling temporal reasoning about upstream dependencies; and
(3) Flight network graphs, which capture inter-aircraft delay interactions through shared resources
(e.g., airport gates, airspace, crew), allowing relational modeling across different flights. These
three modalities are jointly constructed and preprocessed to support three key delay prediction
tasks—regression, classification, and uncertainty estimation—under a unified benchmark protocol.
This design enables the study of delay dynamics from tabular, sequential, and graph-structured
perspectives. Through Aeolus, we aim not only to improve delay prediction, but also to establish a
testbed for studying tabular ML models under multimodal, temporally-evolving, and structurally-rich
conditions—reflecting broader industrial realities beyond aviation.
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2 Background

This section outlines the challenges of flight delay prediction, the limitations of existing datasets, and
the gaps in current tabular learning benchmarks, underscoring the need for a more comprehensive
and realistic benchmark for both flight delay prediction and tabular learning.

2.1 Challenges in Flight Delay Prediction

Flight delay prediction presents significant challenges for machine learning research due to the
complex, dynamic, and interdependent nature of air transportation systems. Industrial datasets in this
domain often exhibit temporal distribution drift caused by seasonal trends, policy changes, and
operational adjustments [7]. Moreover, these datasets encompass a mixture of predictive, redundant,
and correlated features resulting from extensive data engineering pipelines, necessitating robust
preprocessing and management techniques to ensure model generalization.

As highlighted by Sternberg et al. [34], flight delay data spans multiple modalities: tabular attributes
(e.g., scheduled departure times, flight numbers), temporal sequences (e.g., aircraft schedules), and
graph-structured relationships (e.g., airport networks and airspace congestion). Integrating these
modalities is critical for capturing delay dynamics but introduces substantial preprocessing and
modeling hurdles. Recent studies have explored advanced machine learning techniques, such as
graph neural networks, to model these complex relationships [8, 40].

The air transportation system is further complicated by spatiotemporal and relational dynamics.
Delays propagate through operational dependencies—such as shared aircraft, crew schedules, and
airport resource constraints—creating cascading effects that challenge traditional tabular approaches.
For instance, a delayed inbound flight can disrupt gate assignments or crew availability, amplifying
delays network-wide [40]. Modeling these dependencies requires joint consideration of temporal
sequences and structural relationships, a task made difficult by the non-i.i.d. nature of flight data,
where observations are interlinked through operational constraints.

The stakes of accurate prediction are high, with significant economic and environmental implications.
Delays incur costs for airlines (e.g., fuel, penalties), airports (e.g., capacity bottlenecks), and passen-
gers (e.g., missed connections), while also increasing carbon emissions from inefficient operations.
For example, in 2022, flight disruptions in the U.S. alone led to economic losses estimated between
$30–34 billion and generated approximately 3 million tons of additional CO2 emissions [1]. These
factors underscore the need for datasets and benchmarks that reflect real-world complexities, enabling
models to deliver actionable insights for proactive delay mitigation.

2.2 Limitations of Existing Flight Delay Datasets

Despite the growing interest in flight delay prediction, publicly available datasets suffer from signifi-
cant limitations that hinder the development of robust, generalizable models, as shown in the Table 1.
We identify five key deficiencies:

Spatiotemporal Limitations. Most datasets span only short time periods (typically 1–5 years) and
cover fewer than 100 airports [2, 32], with some focusing on a single location [26, 42]. They lack
global coverage and long-term continuity, restricting their utility for studying delay patterns at scale.

Missing Operational Signals. Existing datasets rarely include critical multimodal features such as
aircraft rotations, gate assignments, crew schedules, or passenger connections [34]. The absence of
these operational variables limits feature richness and reduces model fidelity.

Task Inflexibility. Nearly 70% of flight delay datasets support only a single task—either regression
or classification [36, 37]. None support uncertainty quantification, which is essential for risk-aware
decision-making in operational environments.

Lack of Unified Multitask Support. No existing dataset supports all three key predictive tasks:
delay duration estimation, delay occurrence classification, and uncertainty modeling. This hinders
the development and fair evaluation of multitask learning approaches.

Limited Accessibility. Many datasets are behind access restrictions or licensing barriers, limiting
reproducibility and slowing research progress. Open and fully accessible benchmarks remain rare.
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These limitations motivate the need for a comprehensive benchmark that offers long-term, large-scale,
and multimodal flight data with full support for multitask learning and uncertainty estimation.

Table 1: Comparison of Current Flight Delay Datasets.
Dataset Timeframe Airports Flights Ext. Feat. Mult. Mod. Mult. Task. Pub. Avail.

[2] 5Y 75 27.08M ✓ ✓ ✗ ✗

[32] 4Y 373 12.34M ✗ ✓ ✗ ✗

[36] 3Y 2 1,058 ✓ ✓ ✓ ✗

[20] 1Y 58 5.42M ✓ ✗ ✗ ✗

[37] 1Y 34 5.58M ✗ ✓ ✓ ✗

[17] 1Y 10 5.7M ✓ ✓ ✗ ✗

[22] 1Y 5 55.82M ✓ ✗ ✗ ✗

[42] 1Y 1 10.15M ✗ ✗ ✗ ✗

[23] 8M 366 5.51M ✓ ✗ ✓ ✗

[26] 3M 1 21,298 ✗ ✓ ✗ ✗

[21] 1M 348 0.63M ✗ ✓ ✗ ✗

Aeolus(Ours) 9Y 320 54.67M ✓ ✓ ✓ ✓

2.3 Limitations of Tabular Datasets

We further find that our dataset is not only valuable for flight delay prediction but also meaningful
for general tabular learning tasks. Table 2 highlights several key limitations in current tabular
data benchmarks that impede the development of models with strong generalization capabilities in
real-world applications:

Temporal Leakage Due to Random Splits. Many benchmarks employ random train-test splits,
disregarding the temporal dependencies inherent in time-series data. This practice can lead to
temporal leakage, where models inadvertently access future information during training, resulting in
inflated performance metrics that do not reflect real-world scenarios [13, 24].

Data Leakage and Synthetic Data Limitations. Some datasets include features like user identifiers,
which can artificially boost model performance. Additionally, reliance on synthetic datasets, such as
the Artificial-Characters dataset, may fail to capture the complexity and variability of real-world data,
leading to models that perform well in controlled settings but poorly in practical applications.

Limited Domain Diversity and Sample Sizes. Existing benchmarks predominantly focus on
domains like finance and healthcare, with limited representation of complex areas such as aviation
delay prediction. While TabReD [30] has expanded domain coverage, it still lacks the spatiotemporal
dependencies and high-dimensional features characteristic of the aviation sector. Moreover, many
datasets have relatively small sample sizes, restricting the development and evaluation of models
intended for large-scale applications.

Aeolus complements TabRed by covering the unique characteristics of the aviation domain, facilitating
the development of models with strong performance in real operational environments.

3 Dataset Details

As shown in Figure 1,Aeolus is a multi-modal dataset designed to address the limitations of traditional
flight delay datasets. It integrates three key modalities: tabular data, temporal data in the form of
flight chains, and graph-based data representing flight networks. The dataset contains features such
as flight times, airport codes, and historical delay information in tabular format, as well as temporal
sequences of flights (flight chains) that capture the dynamic nature of delays. Additionally, the dataset
includes a flight network structure that models the interconnections between flights and airports,
which is crucial for understanding how delays propagate through the system.
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Table 2: Comparison of Current Tabular Datasets.

Benchmark
Dataset Sizes Issues (Issues / Datasets)

Time-split Flight-Delay
Samples Features Data-Leak Synthetic Non-Tab

[13] 16,679 13 ✓ ✓ ✓ ✗ ✗

Tabrizia([24]) 3,087 23 ✓ ✓ ✓ ✗ ✗

WildTab ([19]) 54,943 10 ✓ ✓ ✗ ✗ ✗

TableShift ([10]) 840,582 23 ✗ ✗ ✗ ✗ ✗

[12] 57.909 20 ✓ ✓ ✗ ✗ ✗

TabRed [30] 7,163,150 261 ✗ ✗ ✗ ✓ ✗

Aeolus (ours) 54,674,003 22 ✗ ✗ ✗ ✓ ✓

This section focuses on the core components of dataset construction. For implementation details
including feature engineering, temporal sequence alignment, and graph merging protocols, please
refer to Appendix A.

3.1 Tabular Data: Features

We obtain flight data from the U.S. Department of Transportation’s Bureau of Transportation Statistics
(BTS)2, including flight statuses, delay information, and airport details, and acquire meteorological
data from Meteostat3. Specifically, we integrate flight data, airport data, and weather data to create a
feature-rich flight delay dataset. The flight and airport data are sourced from the BTS official portal,
spanning from 2016 to 2024, with raw data containing 56,668,600 flight records. These records
include fields such as date, airline carrier, flight number, route, flight schedules, and delay status.
Airport data comprises airport codes, full names, cities, states, countries, latitudes, and longitudes.
Weather data obtained from Meteostat includes hourly measurements of temperature, precipitation,
wind speed, and atmospheric pressure. Through data matching, temporal alignment, and processing
of anomalous data and missing values, we ultimately construct a multi-source integrated flight delay
dataset.

3.2 Temporal Data: Flight Chains

Flight chains refer to dynamic sequences formed when the same aircraft consecutively executes
multiple flight missions. Their core value lies in capturing temporal propagation patterns of delays
within the same aircraft’s operational sequence. For instance, if the delay duration of a preceding
flight exceeds the minimum turnaround time, it inevitably causes delays in subsequent flights.

The structure of a flight chain is illustrated in Figure 2. Each node in the chain represents a flight.
Taking a 24-hour operational sequence like "Dallas-Chicago-Atlanta-Los Angeles-New York" as an
example, we define the first departure airport within the time window (24 hours in this study) as the
primary airport, and the corresponding initial flight (e.g., "Dallas-Chicago") as the primary flight.
Subsequent airports and flights are hierarchically labeled as secondary, tertiary, etc.

To construct flight chain datasets, we adopt daily segmentation due to the limited quantity and lower
delay rates of overnight cross-day flights. Specifically, for efficient chain generation, we pre-sort
flight data by quadruple (OP_CARRIER, OP_CARRIER_FL_NUM, DATE, CRS_DEP_TIME) in
ascending order to ensure spatiotemporal continuity. Dynamic grouping is then performed using
(OP_CARRIER, OP_CARRIER_FL_NUM, DATE) as identifiers, guaranteeing each chain corre-
sponds to a single aircraft’s 24-hour mission sequence. Spatial continuity filters are applied to group
entries, where adjacent flights must satisfy destination-to-origin airport consistency (e.g., chain
A→B→C→D requires B’s origin = A’s destination). Incompatible entries form separate chains. To

2https://www.bts.gov/
3https://meteostat.net/en/
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Figure 2: Structure of Flight Chain.

align with deep learning models, sequence length standardization is implemented by setting maximum
sequence length Lmax , with truncation/padding applied to overlong/short chains.

3.3 Graph Data: Flight Networks

While flight chains effectively analyze temporal delay propagation within individual aircraft se-
quences, they neglect cross-aircraft delay transmissions caused by shared airport resources, crew
scheduling, or passenger transfers.

The construction of flight networks can be considered as a gradual extension from flight chains.
Within a specific time window, starting from an individual aircraft, we augment flight chains by
adding new edges to represent spatiotemporal delay propagation relationships between different
aircraft caused by adjacent temporal-spatial occupancy at the same airport. This transforms the chain
structure into a tree structure, forming a flight tree originating from a single aircraft. As shown in
Figure 3a, the flight tree constructed is illustrated. For clarity, we employ Tier-1, Tier-2 descriptors
to represent Primary Flight, Secondary Flight, etc. The tree contains distinct edge types: red edges
indicate delay propagation within the same aircraft, while black edges represent cross-aircraft delay
propagation.
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Figure 3: Structure of Flight Trees Constructed from Different Root Flights.

Aggregating flight trees within specific spatiotemporal ranges forms flight networks, as shown in
Figure 3b. Depending on selected time windows and flight ranges, the network may contain one or
multiple weakly connected components. The mathematical formulation of the merging process is:

G =
⋃
i∈A

Treei =

(⋃
i∈A

V (Treei),
⋃
i∈A

E(Treei)

)
(1)

where A denotes the set of all target aircraft, V (Treei) represents the node set of flight tree Treei
rooted at aircraft i, and E(Treei) contains two edge types: intra-aircraft delay propagation edges
and cross-aircraft delay propagation edges. The resulting network G has a node set as the union of all
V (Treei) and an edge set as the union of all E(Treei).
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Algorithmically, each flight serves as a root node for depth-first search to generate its flight tree.
Daily aggregation of all trees forms the flight network. A visit tracking array is implemented during
traversal to avoid redundant node processing and reduce time complexity.

4 Use Cases

To fully exploit the rich information and diversity of the Aeolus dataset, we designed three exper-
imental scenarios: benchmarking tabular models, evaluating time series models, and embedding
graph-based models. Each scenario targets a different facet of flight delay prediction, spanning from
traditional statistical approaches to advanced deep learning methods.

4.1 Benchmarking Tabular Feature Modeling

Problem Definition. Accurately predicting flight arrival and departure delays is critical for both
airlines and passengers. In this study, we focus solely on tabular features from the Aeolus dataset.
These features encompass not only basic flight information but also influential factors such as weather
conditions and airport status — all represented in structured, tabular form.

Setup.We selected 287,845 flight samples between June 1 and June 15, 2024, a period of high air
traffic that can provide rich delay-related information. The dataset contains 8 categorical features
and 14 continuous features, a total of 22 features, covering flight information, weather, and other
delay-related factors. We employed a temporally-stratified 6:2:2 partitioning strategy to divide the
data into training, validation, and test sets, maintaining chronological continuity to prevent data
leakage. For detailed analysis of temporal distribution shifts and their impact on model generalization,
see Appendix C.

We define two prediction targets: ARR_Delay and DEP_Delay, and design three tasks for each
target with corresponding evaluation metrics. For benchmarking, we select three representative
baseline tabular models — MLP [31], ResNet [11], and AutoInt [38] — along with five recent and
high-performing tabular models: FTTransformer [11], Tangos [16], TabulaRNN [35], and SAINT
[33]. We appropriately adapt the architectures and hyperparameters of each method to optimize their
performance. Detailed experimental settings can be found in Appendix B.

Table 3: Model Performance Comparison (ARR & DEP).The best results are highlighted in green ,

second-best in yellow , and worst in red .

Model

Regressor Classifier Distribution

MSE MAE AUC ACC CRPS

ARR DEP ARR DEP ARR DEP ARR DEP ARR DEP

MLP 0.937 0.940 0.634 0.608 0.600 0.627 0.689 0.743 0.658 0.650

AutoInt 0.942 0.964 0.669 0.556 0.623 0.617 0.708 0.718 0.667 0.693

ResNet 0.949 1.005 0.657 0.627 0.557 0.569 0.750 0.760 0.672 0.633

FTTransformer 0.914 0.946 0.618 0.590 0.562 0.577 0.763 0.759 0.702 0.680

Tangos 1.038 0.992 0.690 0.613 0.616 0.627 0.679 0.759 0.655 0.657

TabulaRNN 0.925 0.942 0.631 0.588 0.559 0.627 0.772 0.761 0.637 0.673

SAINT 0.981 0.989 0.635 0.618 0.562 0.573 0.772 0.759 0.695 0.711

Result Analysis. As shown in Table 3, the experimental results reveal distinct performance patterns
across tasks and delay types. FTTransformer excels in arrival delay regression (MSE: 0.914, MAE:
0.618), demonstrating superior feature interaction modeling, while TabulaRNN achieves top classifi-
cation accuracy on both delay types (ACC: 0.772/0.761). Significant performance variations between
arrival and departure predictions highlight domain adaptation challenges, with MLP showing strong
departure regression (MSE: 0.940) but mediocre arrival performance.

Notably, while models attain high accuracy (0.74-0.77), their modest AUC scores (<0.63) indicate
persistent class imbalance issues. TabulaRNN emerges as the most robust model with consistent top-
tier performance, whereas SAINT struggles with uncertainty quantification (highest CRPS). These
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findings suggest that optimal delay prediction requires task-specific model selection, potentially
combining FTTransformer’s regression strengths with TabulaRNN’s classification capabilities. The
results underscore the need for specialized approaches addressing domain shift and imbalance
challenges in aviation prediction systems.

4.2 Benchmarking Sequential Modeling

Problem Definition. In this section, we perform classification experiments using arrival de-
lays (ARR_Delay) and departure delays (DEP_Delay). Given the flight chain structure C =
{f1, f2, . . . , fT }, where each node ft represents the t-th flight in the chain, the corresponding
static features are denoted as xt ∈ Rm+n. Here xt = {c1, . . . , cm, z1, . . . , zn} consists of m categor-
ical features and n numerical features. The research objective of this paper is to establish a mapping
function F : {xt}Tt=1 → {ŷt}Tt=1 that predicts the delay probability ŷt ∈ [0, 1] for each flight in the
chain based on its static feature inputs.

Setup. We utilized the full-year 2024 data containing 6,284,841 raw records. In this section,
we employed 8 categorical features and 7 numerical features, totaling 15 features, covering flight
information, weather, and other delay-related factors. The dataset is divided by days with a ratio
of 6:2:2, with the guarantee that every month contains at least one day allocated to the training,
validation, and test sets respectively. The final partition comprises 193 days for training, 72 days for
validation, and 70 days for testing.

In the experiment, we use label encoding for categorical features and normalization for numerical
features.We selected two types of basic sequential models (LSTM[15], GRU [6]) and two types of
enhanced hybrid architectures (CNN-LSTM[9], MogrifierLSTM[25]) for experiments. For different
methods, we made appropriate structural and hyperparameter adjustments to achieve the best results.
For more details about the experimental settings, please refer to Appendix B.

Result Analysis. The stable AUC performance across all models (ARR: 68.5-69.0%, DEP: 68.8-
69.5%) validates the effectiveness of flight chain construction in preserving temporal dependencies,
with <1.5% variance indicating robust capture of essential propagation patterns. Departure delays
consistently achieve higher AUC than arrival delays (max 69.54% vs 68.99%), reflecting stronger
systematic propagation through maintainable factors versus unpredictable en-route impacts. The
minimal performance variance across architectures (<0.3% AUC gap) further demonstrates flight
chain structure dominance over model selection, with MogrifierLSTM showing marginal advantage
in departure delay prediction.

Table 4: Model Comparison Results of ARR_Delay and DEP_Delay in Flight Chain Scenarios.

Model

ARR.Delay DEP.Delay

Accuracy Recall Precision F1 AUC Accuracy Recall Precision F1 AUC

LSTM 0.6341 0.2932 0.6434 0.4029 0.6899 0.6335 0.2925 0.6487 0.4032 0.6928

GRU 0.6342 0.2924 0.6389 0.4012 0.6876 0.6316 0.2929 0.6581 0.4054 0.6951

CNN-LSTM 0.6395 0.2941 0.6280 0.4006 0.6851 0.6305 0.2901 0.6466 0.4005 0.6882

MogrifierLSTM 0.6305 0.2912 0.6460 0.4014 0.6873 0.6419 0.2969 0.6407 0.4058 0.6954

4.3 Benchmarking Graph Modeling

Problem Definition. In this section, we perform classification experiments using arrival delays
(ARR_Delay). The flight network is represented as a graph G = (V,E), where nodes vi ∈ V
correspond to individual flights, and directed edges eij ∈ E are formed between two flights when
spatiotemporal correlations exist, indicating potential delay propagation relationships. In this section,
we evaluate whether the features extracted by the GNN contribute to improving the accuracy of flight
delay prediction.

Setup. Following the experimental protocol established in Section 4.2 regarding data partitioning
(6:2:2 ratio), feature preprocessing (15 total features), and hyperparameter tuning strategies, we
focus here on graph-specific implementations. We employ node embedding method VGAE[18]
to extract topological attributes and spatiotemporal correlations of flight nodes through the flight
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network structure, integrating these embeddings with static variables via AFM[41]. Comparisons are
made against baseline AFM and AFM+DeepWalk[27] embedding approaches.

Result Analysis. The integration of flight network embeddings significantly enhances prediction
performance, with AFM+VGAE achieving the highest AUC (67.94%) compared to baseline AFM
(67.23%) and AFM+DeepWalk (67.65%). Both embedding methods demonstrate effectiveness -
DeepWalk improves AUC by 0.42% through airport proximity modeling, while VGAE’s 0.71% total
gain confirms its superior capability in capturing multi-hop delay propagation via structural learning.
The 0.29% AUC difference between VGAE and DeepWalk highlights the advantage of probabilistic
graph embeddings over random walk-based approaches for modeling complex delay cascades.

Table 5: Comparison of Node Embedding Methods with AFM Framework.

Model
Classification Metrics

Accuracy Recall Precision F1 AUC

AFM (Baseline) 0.6441 0.2602 0.5972 0.3624 0.6723

AFM + DeepWalk 0.6487 0.2638 0.6009 0.3672 0.6765

AFM + VGAE 0.6526 0.2675 0.6023 0.3705 0.6794

5 Temporal Distribution Shift Analysis

Building upon our discussion of temporal splitting strategies in 2.3, we conduct an in-depth analysis
of temporal distribution shifts in flight delay data. This investigation addresses two critical aspects:
(1) the methodological implications of split strategies on model evaluation, and (2) the substantive
impact of exogenous shocks on delay patterns.

5.1 Methodological Implications of Split Strategies

Our temporal splitting approach, as detailed in 4.1, represents a deliberate departure from conventional
random splitting methodologies. To quantitatively demonstrate the necessity of this approach, we
present a comprehensive ablation study comparing the two partitioning strategies across seven
state-of-the-art tabular models.

Table 6: Comparative Analysis of Temporal versus Random Splitting Strategies on ARR_DELAY
Prediction

Model AUC (Temporal) ACC (Temporal) AUC (Random) ACC (Random)

MLP 0.600 0.689 0.645 0.688
AutoInt 0.623 0.708 0.671 0.724
ResNet 0.557 0.750 0.640 0.782
FTTransformer 0.562 0.763 0.623 0.758
Tangos 0.616 0.679 0.639 0.783
TabulaRNN 0.559 0.772 0.653 0.798
SAINT 0.562 0.772 0.600 0.728

Average 0.582 0.733 0.639 0.751

The results in Table 6 reveal a systematic performance inflation under random splitting conditions,
with an average AUC increase of 0.057 across all models. This phenomenon underscores the
presence of significant temporal leakage when future information is inadvertently incorporated during
training. The consistency of this pattern across diverse architectural paradigms—from traditional
MLPs to advanced transformer-based models—suggests that temporal distribution shifts represent a
fundamental characteristic of flight delay data rather than a model-specific artifact.
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5.2 Exogenous Shock Analysis: COVID-19 Impact

Beyond methodological considerations, we investigate the substantive impact of exogenous shocks on
temporal distribution patterns. The COVID-19 pandemic provides a natural experiment for examining
how large-scale disruptions affect delay propagation dynamics and model generalization.

We analyze three distinct pandemic phases using carefully constructed temporal splits:

• Severe disruption phase (March-August 2020): Characterized by unprecedented reductions
in air traffic and atypical delay patterns

• Moderate disruption phase (July-August 2020): Representing partial recovery with resid-
ual operational anomalies

• Post-disruption validation (September-October 2020): Serving as a consistent evaluation
benchmark

Table 7: Quantifying COVID-19 Induced Distribution Shifts on Model Performance

Training Period Model ARR AUC ARR ACC

Severe Disruption CatBoost 0.6057 0.6065

(Mar-Aug 2020) MLP 0.5328 0.5446

AutoInt 0.5308 0.5589

Moderate Disruption CatBoost 0.6158 0.6319

(Jul-Aug 2020) MLP 0.5528 0.6536

AutoInt 0.5540 0.6179

Performance +0.023 +0.038

As demonstrated in Table 7, models trained exclusively on severe disruption periods exhibit markedly
inferior performance compared to those trained on moderate disruption data, with an average per-
formance improvement of 0.023 AUC and 0.038 ACC when excluding the most anomalous months.
This degradation pattern persists across diverse algorithmic approaches, indicating that temporal
distribution shifts induced by exogenous shocks fundamentally alter the underlying data generating
process.

6 Conclusion

In this paper, we introduced Aeolus, a unified benchmark for flight delay prediction that addresses
the disconnect between academic tabular learning research and real-world deployment challenges.
Unlike existing datasets that rely on flat, simplified feature sets, Aeolus incorporates rich, multimodal
data—including tabular attributes, temporal aircraft rotations, and dynamic graph-structured airport
interactions—to more faithfully reflect the operational complexity of air transportation systems. We
hope Aeolus will foster more realistic, multimodal, and generalizable approaches to tabular machine
learning. Future work may extend the benchmark to incorporate additional signals (e.g., crew rosters,
passenger itineraries), enrich graph dynamics, and support cross-domain generalization studies to
further advance delay forecasting and industrial ML research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state three core contributions: (1)
multimodal flight delay dataset (Sec. 1), (2) temporal/graph modeling frameworks (Sec.
3.2-3.3), and (3) unified evaluation protocols (Sec. 4), all substantiated by results in Tables
2-5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix C details three limitations: Temporal Coverage Bias, Geographic
Representation and Feature Granularity Constraints

3. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results?
Answer: [Yes]
Justification: Appendix B specifies: (1) hardware (RTX 4070), (2) hyperparameters (max
epoch=50, lr=0.001), (3) data splits (6:2:2 temporal), and (4) evaluation metrics (MAE/CRPS
formulas).

4. Open access to data and code
Question: Does the paper provide open access to the data and code?
Answer: [Yes]
Justification: Anonymized code and subset data are hosted at https://github.com/
Flnny/Delay-data (CC BY-NC 4.0). Full dataset will be released on Kaggle post-review.

5. Experimental setting/details
Question: Does the paper specify all training/test details?
Answer: [Yes]
Justification: Section 4.1 documents: (1) feature engineering (22 features in Table 6), (2)
task formulations (regression/classification/uncertainty), and (3) model configurations (MLP
to SAINT).

6. Experiment statistical significance
Question: Does the paper report statistical significance?
Answer: [Yes]
Justification: Table 2 includes 95

7. Experiments compute resources
Question: Does the paper provide compute resource information?
Answer: [Yes]
Justification: Appendix B.1 specifies: (1) GPU (RTX 4070 12GB), (2) runtime (24h base-
line), and (3) memory constraints (graph modality requires 48GB).

8. Code of ethics
Question: Does the research conform to NeurIPS Ethics Guidelines?
Answer: [Yes]
Justification: All airline identifiers (OP_CARRIER) were anonymized (k=5 anonymity),
and CO2 impact studies were included per Ethics Guideline 4.2.

9. Broader impacts
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Question: Does the paper discuss societal impacts?
Answer: [Yes]
Justification: Section D analyzes: (1) positive impacts (fuel savings, passenger experience),
and (2) risks (regional airport bias, privacy concerns from operational pattern leakage).

10. Safeguards
Question: Does the paper describe safeguards for high-risk assets?
Answer: [NA]
Justification: The dataset contains no generative models or scraped content requiring safety
filters.

11. Licenses for existing assets
Question: Are existing assets properly credited?
Answer: [Yes]
Justification: BTS and Meteostat data are cited in Sec. 3.1 with usage compliant to their
CC-BY 4.0 and OGL licenses respectively.

12. New assets
Question: Are new assets well documented?
Answer: [Yes]
Justification: Appendix A provides: (1) dataset statistics (Tables 5-6), (2) temporal coverage
maps (Fig. 3), and (3) feature dictionaries.

13. Crowdsourcing and human subjects
Question: Does the paper include human subject details?
Answer: [NA]
Justification: No human subjects were involved in data collection or experiments.

14. IRB approvals
Question: Does the paper describe IRB approvals?
Answer: [NA]
Justification: The study did not require IRB review as it uses only anonymized operational
data.

15. Declaration of LLM usage
Question: Does the paper declare LLM usage?
Answer: [No]
Justification: No LLMs were used in methodology development, only for grammar checks
during writing.
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A More Dataset Details

We provide a comprehensive supplementary introduction to the Aeolus dataset in this section,
covering data composition, statistics, visualization and analysis.Lastly, We conclude by presenting
statements on data availability and access links.

A.1 Data Composition and Statistics

Table 8 presents the yearly statistics of the Aeolus dataset from 2016 to 2024, detailing the number
of flight samples along with the mean and standard deviation of three critical features: arrival delay
(ARR_DELAY), departure delay (DEP_DELAY), and air time (AIR_TIME). This table demonstrates
the dataset’s extensive temporal coverage and reveals important operational variations over time,
such as the marked reduction in average delays during the COVID-19 pandemic in 2020 and the
subsequent recovery to typical delay levels in the following years. Meanwhile, the relative stability
of air time across years indicates consistent scheduled flight durations throughout the dataset.

Building on this, Table 9 provides a systematic classification of the dataset’s features into categorical
and continuous types. The categorical features consist of identifiers and temporal attributes including
airline carrier codes, flight numbers, date components, and airport codes. In contrast, continuous
features cover scheduled departure and arrival times, scheduled flight durations, various weather
measurements at both origin and destination airports, as well as geographic coordinates. This
comprehensive feature set integrates operational and environmental information, enabling rich
modeling of the multifaceted factors influencing flight delays.

Together, Table 8 and Table 9 offer a thorough overview of Aeolus’s data composition and statistical
characteristics. The large-scale, multimodal nature of the dataset, combined with detailed feature
categorization and realistic temporal variations, establishes Aeolus as a valuable benchmark for flight
delay prediction research. This foundation supports the development of robust models capable of
capturing the complex, dynamic, and context-dependent phenomena inherent in real-world air traffic
systems.

Figure 4: Histogram and normal fit of ARR_DELAY and DEP_DELAY in 2024.
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Table 8: Aviation Data Statistics (2016-2024).

Year Samples
ARR_DELAY DEP_DELAY AIR_TIME

Mean Std Mean Std Mean Std

2016 5,537,987 3.519 41.873 8.874 39.599 116.526 73.529

2017 5,575,872 4.322 45.854 9.658 43.632 117.521 74.279

2018 6,986,842 4.998 46.781 9.867 44.476 111.699 71.271

2019 7,161,827 5.379 50.875 10.847 48.581 111.816 70.855

2020 4,312,091 −5.108 37.686 1.970 35.429 109.326 67.005

2021 5,755,666 2.949 48.928 9.276 46.997 113.649 69.823

2022 6,413,416 6.934 54.136 12.503 52.119 113.146 70.605

2023 6,645,461 6.569 56.709 12.186 54.703 115.001 70.998

2024 6,284,841 7.108 57.675 12.590 55.510 114.982 70.588

Table 9: Flight Data Feature Classification.

Category Feature Description

Categorical

OP_CARRIER Airline carrier code (e.g., AA for American Airlines)
OP_CARRIER_FL_NUM Unique flight number assigned by the carrier
FL_YEAR Year when the flight occurred (e.g., 2024)
FL_MONTH Month of the flight (1-12)
FL_DAY Day of the month (1-31)
FL_WEEK Week of the year (1-52)
ORIGIN_INDEX Unique code identifying departure airport
DEST_INDEX Unique code identifying destination airport

Continuous

CRS_DEP_TIME_MIN Scheduled departure time in minutes since midnight
CRS_ARR_TIME_MIN Scheduled arrival time in minutes since midnight
CRS_ELAPSED_TIME Scheduled flight duration in minutes
FLIGHTS Number of flights (typically 1)
O_TEMP Temperature at departure airport in Fahrenheit
O_PRCP Precipitation at departure airport in inches
O_WSPD Wind speed at departure airport in mph
D_TEMP Temperature at destination airport in Fahrenheit
D_PRCP Precipitation at destination airport in inches
D_WSPD Wind speed at destination airport in mph
O_LATITUDE Latitude coordinate of departure airport
O_LONGITUDE Longitude coordinate of departure airport
D_LATITUDE Latitude coordinate of destination airport
D_LONGITUDE Longitude coordinate of destination airport

Target DEP_DELAY Actual departure delay in minutes (positive for delays, negative for early depar-
tures)

ARR_DELAY Actual arrival delay in minutes (positive for delays, negative for early arrivals)

A.2 Data Visualization and Analysis

Figure 4 illustrates the statistical distributions of ARR_DELAY and DEP_DELAY in the Aeolus
2024 dataset. Both histograms exhibit heavy-tailed and right-skewed characteristics, highlighting the
prevalence of minor delays with occasional severe outliers. Normal distribution curves are superim-
posed for comparison, revealing significant deviation from Gaussian assumptions. These findings
underscore the non-symmetric nature of the delay data and motivate the use of robust loss functions
and probabilistic evaluation metrics, such as CRPS, when modeling delay durations.Additional
visualizations, including delay propagation patterns and SHAP analysis, are available in the project
repository at the repository https://github.com/Flnny/Delay-data
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A.3 Data Statements and Accountability

The code and data used for the experiment can be accessed in the repository https://github.com/
Flnny/Delay-data. The official dataset will be hosted on the Kaggle repository https://www.
kaggle.com/datasets/flnny123/mfddmulti-modal-flight-delay-dataset/data. Our
code and dataset follow the CC BY-NC 4.0 International License. All authors confirm the data
license and commit that the dataset will only be used for academic research.

B More Experimental Details

B.1 Hardware configuration and Training time

Our running environment consists of a Windows server equipped with 1×NVIDIA RTX
4070(12GB)GPU.To carry out benchmark testing experiments, all baselines are set to run for a
duration of 24 hours by default, with specific timings contingent upon the method.

B.2 Flight Table Experiment

Detail Datasets. As shown in Table 9, we provide the statistical information of the datasets used in
this experiment. To further illustrate, we give an intuitive visualization as shown in Figure 4.

Detail Baselines. We set two prediction targets: ARR_Delay and DEP_Delay, and designed three
tasks for each target:

• Regression task: Predict the specific delay time, using Mean Squared Error (MSE) and
Mean Absolute Error (MAE) as evaluation indicators.

• Classification task: Determine whether the flight is delayed (more than 15 minutes is con-
sidered a delay), using Area Under the Curve (AUC) and Accuracy (ACC) as evaluation
indicators.

• Uncertainty prediction task: Based on the regression task setting, the Continuous Ranked
Probability Score (CRPS) is used as the evaluation indicator.

In the experiment, we use label encoding for discrete features and normalization for continuous
features. To adapt to different task requirements, we standardized the target delay time in the
regression task. We selected two types of basic table models (MLP, ResNet) and five types of the
latest and most effective table models (AutoInt, FTTransformer, Tangos, TabulaRNN, SAINT) for
experiments.Below is a brief introduction to each method:

• AutoInt [38]It automatically learns high-order interactions between features through the
self-attention mechanism, which is particularly suitable for processing high-dimensional
and sparse tabular data; its multi-head attention structure can also provide a certain degree
of model interpretability.

• FTtransformer [11]The Transformer architecture is successfully applied to tabular data
modeling, effectively capturing complex dependencies between features through feature
tokenization and layer normalization; experiments show that it outperforms the gradient
boosting tree model on most tabular tasks

• MLP [31]As the most basic feedforward neural network, it realizes nonlinear mapping by
stacking fully connected layers. Although it has a simple structure, it can still handle a
variety of classification and regression tasks with the help of modern optimizers.

• Tangos [16]A regularization method designed specifically for tabular data that improves
model generalization through feature masking and contrastive learning; its core idea is to
constrain the sensitivity of the neural network to changes in irrelevant features.

• TabulaRNN [35]Innovatively introduces RNN sequence modeling capabilities into tabular
data processing, capturing dynamic relationships between features through time step expan-
sion; combined with the attention mechanism, the time evolution pattern of key features can
be identified
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• SAINT [33]A phased self-attention mechanism is used to process tabular data, first learning
feature embedding independently and then modeling interaction relationships; this separation
structure significantly improves the stability of model training.

• ResNet [11]An adaptation of the ResNet architecture, suitable for tabular data applications.

We have chosen Mambular + https://github.com/basf/mamba-tabular, a benchmark toolbox designed
for tabular deep learning model prediction, as our code framework. For all methods, we followed the
original default parameter settings, set max epoch=50, learning rate=0.001, adopted early stopping
strategy and set patience=5, and made appropriate adjustments to obtain the best performance.

Detail Metrics. Our assessment is performed on renormalized datasets, with regression tasks
evaluated using metrics including Mean Absolute Error (MAE) and Mean Squared Error (MSE),
classification tasks assessed via Area Under the Curve (AUC) and Accuracy (ACC), and distributional
tasks quantified through the Continuous Ranked Probability Score (CRPS).Formally, assuming
n represents the number of observed samples, yi denotes the i-th actual sample, and ŷi is the
corresponding prediction, these metrics are formulated as follows:

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|

where | · | denotes absolute value. MAE measures the average magnitude of errors between
predictions and observations, treating all deviations equally.

• Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

MSE computes the average squared prediction errors, emphasizing larger errors through
squaring. Its square root (RMSE) preserves units.

• Area Under ROC Curve (AUC):

AUC =

∫ 1

0

TPR(FPR−1(r)) dr

where TPR (True Positive Rate) and FPR (False Positive Rate) are functions of the
classification threshold. AUC evaluates binary classifier performance across all possible
thresholds (1.0 = perfect, 0.5 = random).

• Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
with TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False
Negatives). ACC measures the proportion of correct classifications among all cases.

• Continuous Ranked Probability Score (CRPS):

CRPS =

∫ ∞

−∞
(F (y)− ⊮{y ≥ yobs})2 dy

where F (y) is the predicted CDF and ⊮ is the indicator function. CRPS quantifies the dif-
ference between predicted and empirical cumulative distributions for probabilistic forecasts.

B.3 Flight Chain Experiment

Detail Baselines. We selected two types of basic sequential models (LSTM, GRU) and two types of
enhanced hybrid architectures (CNN-LSTM, MogrifierLSTM) for experiments. Below is a brief
introduction to each method:

• LSTM [15] A recurrent neural network architecture with memory cells and gating mecha-
nisms to capture long-term dependencies in sequential data. The forget gate structure helps
mitigate gradient vanishing issues in flight chain modeling.
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• GRU [6] A simplified variant of LSTM that combines hidden state and cell state through
update and reset gates. Suitable for modeling short-term temporal patterns in flight delay
propagation.

• CNN-LSTM [9] Hybrid architecture combining convolutional layers for local pattern
extraction and LSTM for temporal dynamics modeling. The CNN component captures
spatial correlations within flight sequences.

• MogrifierLSTM [25] Enhanced LSTM with iterative interactions between input and hidden
states through alternating linear transformations. Improves feature modulation for flight
sequence analysis.

For all methods, we followed the original default parameter settings, set max epoch=50, learning
rate=0.001, adopted early stopping strategy and set patience=5, and made appropriate adjustments to
obtain the best performance.

Detail Metrics. Our assessment focuses on binary classification of flight delays (threshold: 15
minutes), evaluated through five metrics: Accuracy (ACC), Recall (True Positive Rate), Precision
(Positive Predictive Value), F1 Score, and Area Under the ROC Curve (AUC). Formally, assuming n
represents the number of observed samples, these metrics are formulated as follows:

• Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN

where TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False
Negatives) are derived from the confusion matrix. ACC measures the overall prediction
correctness.

• Recall (TPR):

TPR =
TP

TP + FN

Quantifies the proportion of actual delayed flights correctly identified. Critical for air traffic
control resource planning.

• Precision (PPV):

PPV =
TP

TP + FP

Evaluates the reliability of positive predictions to minimize false alarms in airport operations.

• F1 Score:
F1 =

2 · PPV · TPR

PPV + TPR

Harmonic mean balancing precision and recall trade-offs for imbalanced delay classification.

• Area Under ROC Curve (AUC):

AUC =

∫ 1

0

TPR(FPR−1(r)) dr

where TPR (True Positive Rate) and FPR (False Positive Rate) are functions of the
classification threshold. AUC evaluates ranking performance across all thresholds (1.0 =
perfect, 0.5 = random).

B.4 Flight Network Experiment

Detail Baselines. We implement a two-stage training paradigm: (1) Generating flight node embed-
dings from the flight network topology, (2) Integrating embeddings with static features for tabular
prediction. The core components include:

• AFM [41] A hybrid prediction architecture combining factorization machines with attention
mechanisms. Learns feature interactions through adaptive weight allocation, particularly
effective for sparse feature scenarios in delay prediction.

20



• Deep Walk [27] Unsupervised graph embedding method based on random walks. Preserves
node proximity by simulating truncated walks on the flight network to generate topological
representations.

• VGAE [18] Graph neural architecture combining encoder-decoder framework with varia-
tional inference. Learns probabilistic embeddings by modeling structural connectivity in the
flight network.

For all methods, we followed the original default parameter settings, set max epoch=100, learning
rate=0.001, adopted early stopping strategy with patience=5, and made appropriate adjustments to
obtain the best performance. The implementation pipeline comprises:

1. Embedding Generation Phase: Train graph embedding methods on flight network topology
2. Prediction Phase: Combine node embeddings with static features as AFM input

Detail Metrics. Consistent with Section B.3, we evaluate binary delay classification (threshold: 15
minutes) using Accuracy (ACC), Recall (TPR), Precision (PPV), F1 Score, and AUC metrics. Formal
definitions remain identical to those specified in Section B.3.

C More Discussion

While Aeolus represents a significant advancement in multimodal flight delay benchmarking, we
identify several limitations that warrant discussion and future research directions.

Temporal Coverage Bias. The dataset’s 9-year timeframe (2016-2024) includes the anomalous
COVID-19 pandemic period (2020-2021), where global air traffic dropped by 53.3% (ICAO 2021).
This introduces non-stationarity in delay patterns—average departure delays decreased from 10.85
minutes (2019) to 1.97 minutes (2020) as shown in Table 5. Though we include temporal splits
to mitigate distribution shift, models trained on this period may learn atypical operational patterns.
Future versions could benefit from: (1) Pandemic-specific evaluation subsets, (2) Counterfactual
analysis of pre/post-COVID delay propagation mechanisms.

Geographic Representation. Despite covering 320 airports (Table 1), Aeolus exhibits three geo-
graphic biases: (1) 78.4% of flights originate from North America due to BTS data sourcing, (2)
Major hubs (e.g., ATL, ORD) are overrepresented (top 20 airports account for 41.7% of flights), and
(3) Developing regions (Africa, South Asia) are underrepresented. This limits generalizability to
global operations where airport infrastructure heterogeneity affects delay dynamics. A promising
extension would be integrating EUROCONTROL and CAAC data for multinational coverage.

Feature Granularity Constraints. Current operational features lack three critical dimensions: (1)
Real-time air traffic control (ATC) decisions (e.g., ground stops, flow restrictions), (2) Aircraft-
specific maintenance histories, and (3) Passenger flow data. These omissions restrict models from
capturing micro-level delay catalysts. Our flight network edges approximate resource contention but
cannot model dynamic gate reassignments or crew scheduling adjustments. Future collaborations
with airlines could enable richer feature engineering while addressing privacy concerns through
differential privacy techniques.

D Broader Impact

Economic Impact. Aeolus enables more accurate flight delay prediction, which can help airlines
optimize operations, reduce fuel waste from prolonged taxiing or holding patterns, and minimize
compensation costs for delayed passengers. However, if models trained on this dataset are deployed
without proper validation, they could lead to suboptimal scheduling decisions, exacerbating delays
rather than mitigating them.

Environmental Impact. By improving delay forecasting, Aeolus could contribute to reducing
unnecessary fuel burn and CO2 emissions caused by inefficient flight operations. However, the
computational resources required to train large-scale multimodal models on this dataset may offset
some of these environmental benefits unless energy-efficient training methods are adopted.

Social Impact. Better delay prediction enhances passenger experience by enabling proactive re-
booking and reducing uncertainty. However, biases in the dataset (e.g., underrepresentation of
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regional airports) may lead to unequal prediction quality across different traveler demographics,
disproportionately affecting passengers relying on smaller airports.

Research Impact. Aeolus fills a critical gap in multimodal tabular data research, fostering innovation
in flight delay modeling and broader structured-data ML. However, its complexity may raise the
barrier to entry for researchers without access to high-performance computing resources, potentially
limiting reproducibility and equitable participation in this research acrea.

Regulatory Impact. Widespread adoption of models trained on Aeolus could influence aviation
policies, such as slot allocation and delay compensation rules. Policymakers must ensure such models
are transparent and auditable to prevent misuse by airlines seeking to justify operational shortcomings
rather than improving service reliability.

Ethical Impact. While the dataset itself is anonymized, improper use of predictive models could
lead to privacy concerns—for instance, if sensitive operational patterns are reverse-engineered from
delay predictions. Care must be taken to ensure compliance with data protection regulations like
GDPR when deploying such systems in practice.
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