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Abstract
Language models can solve problems in multi-001
ple ways. For instance, they can reason step-by-002
step in natural language, or generate a program003
that can produce the final answer. In this work,004
we first empirically demonstrate that there is no005
one-size-fits-all solution; in some cases code006
is a better option with respect to accuracy and007
token-efficiency, but in other cases only natural008
language allows a correct answer to be found.009
We then examine language models’ ability to010
appropriately perform solution path routing,011
choosing the most appropriate solution path012
based on the problem. We find that models013
struggle to pick the most appropriate solution014
path simultaneously with solving the problem,015
but by using a 2-stage pipeline with explicit016
routing and then problem solving we are able017
to achieve efficiency gains and sometimes per-018
formance improvements.019

1 Introduction020

Chain of thought reasoning in natural lan-021

guage (Wei et al., 2023; Kojima et al., 2023) is022

a staple of language model inference today, but it023

is not universally beneficial (Sprague et al., 2024).024

Alternatively, language models may be prompted025

to generate programs that are executed to achieve a026

solution, a method that is particularly effective in027

tasks that involve numerical reasoning (Gao et al.,028

2023; Chen et al., 2023; Bi et al., 2023; Li et al.,029

2024). Contemporary works have further combined030

natural language and programmatic solutions either031

as fall back (Liu et al., 2023; Xiang Yue, 2023),032

an integrated snippet within the response (Wang033

et al., 2023; Wen et al., 2024), or in parallel with034

an answer finalization stage (Hu et al., 2023; Zhao035

et al., 2023; Xiong et al., 2024). These methods036

can increase performance, but at a greater cost than037

simply using natural language or programs due to038

the need to perform multiple inferences.039

In this work, we examine the possibility of so-040

lution path routing, where we decide, a priori,041

Figure 1: Two step pipeline to routing a model towards a
solution method. The model is prompted to first decide
whether a problem should be solved with either natural
language (NL) or programming language (PL). The
output of this step is used to determined which prompt
should be used that would direct the model towards the
chosen method.

whether to solve a problem using natural language 042

or programming language. Similar to work on 043

model routing (which routes between different 044

LLMs; Shen et al. (2023)), this will make it pos- 045

sible to achieve both accuracy and efficiency im- 046

provements, by choosing the best model. We find 047

that language models struggle to simultaneously 048

route to the appropriate solution path and solve the 049

problem. By using a 2-stage pipeline (Figure 1) 050

with explicit routing and then problem solving, we 051

are able to address this routing problem and achieve 052

efficiency gains with competitive performance over 053

exclusively natural language solutions. 054

Our findings show that with routing, models 055
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Task
Model

(Instruct)

Avg Correct Answer Avg Tokens
(% Instances) (# Tokens)

Neither NL PL PL+NL NL PL

GSM-Hard

Llama-3.1-8B 34.34 4.93 33.81 26.91 304.89 138.27
Llama-3.1-70B 31.92 2.96 22.97 42.15 264.25 86.30
Qwen-2.5-7B 30.25 3.64 22.82 43.29 324.24 108.68

Qwen-2.5-14B 30.86 2.65 17.44 49.05 341.57 124.36
Qwen-2.5-32B 33.36 2.88 42.08 21.68 325.94 112.00
Qwen-2.5-72B 25.47 2.35 20.09 52.08 354.56 97.92

Task Avg 31.03 3.23 26.54 39.20 319.24 111.26

MathQA

Llama-3.1-8B 34.97 16.52 11.79 36.72 346.82 153.81
Llama-3.1-70B 23.82 12.80 6.80 56.58 305.99 124.90
Qwen-2.5-7B 30.52 7.27 28.01 34.20 385.13 148.67

Qwen-2.5-14B 24.25 10.52 14.44 50.79 391.62 146.86
Qwen-2.5-32B 28.94 9.51 24.49 37.05 372.32 141.21
Qwen-2.5-72B 27.20 4.49 22.95 45.36 418.10 132.57

Task Avg 28.29 10.18 18.08 43.45 370.00 141.34

FinQA

Llama-3.1-8B 48.82 5.75 29.90 15.52 234.60 174.02
Llama-3.1-70B 35.40 2.88 33.39 28.33 182.63 87.63
Qwen-2.5-7B 38.54 4.36 30.34 26.77 292.58 124.26

Qwen-2.5-14B 33.74 3.31 37.23 25.72 293.38 111.51
Qwen-2.5-32B 32.96 0.70 62.77 3.57 278.05 102.21
Qwen-2.5-72B 30.43 3.23 32.17 34.18 319.90 101.90

Task Avg 36.65 3.37 37.63 22.35 266.86 116.92

TabMWP

Llama-3.1-8B 32.06 5.95 27.28 34.71 205.73 148.84
Llama-3.1-70B 17.17 4.91 28.04 49.88 168.38 99.15
Qwen-2.5-7B 16.50 5.37 32.29 45.84 206.92 105.35

Qwen-2.5-14B 16.51 3.03 30.04 50.42 223.62 95.59
Qwen-2.5-32B 15.18 1.03 44.51 39.28 223.55 112.59
Qwen-2.5-72B 14.56 1.08 28.69 55.67 237.84 87.33

Task Avg 18.66 3.56 31.81 45.97 211.01 108.14

Table 1: Average performance for each model based
on how much neither PL and NL solutions were right,
either NL or PL solutions are right or both were right
for every instance in the task.

can perform well on mathematical reasoning tasks056

where it may not necessarily be clear whether a057

problem should be solved by programming lan-058

guage or natural language.059

2 The Importance of Considering060

Different Solution Paths061

First, to demonstrate the value of considering dif-062

ferent solution paths, we prompt the instruction-063

tuned version of the Llama-3.1 (Grattafiori et al.,064

2024) and Qwen-2.5 (Team, 2024) models with065

two different solutions paths in a 0-shot setting;066

programming language (PL prompt style) to pro-067

duce executable programs that return the answer068

and natural language (NL prompt style) to write069

step-by-step rationalization before arriving at an070

answer. Both prompts can be found in Appendix B.071

We evaluate the models on mathematical reasoning072

tasks that describe mathematical problem in natural073

language such as GSM Hard (Gao et al., 2023) and074

MathQA (Amini et al., 2019), and reasoning tasks075

over tabular information such as FinQA (Chen076

et al., 2022), and TabMWP (Lu et al., 2023).077

In Table 1. We measure the average number of078

instances where using neither NL or PL prompts re-079

sulted in the model answering correctly, either NL080

or PL are exclusively correct, or both the NL and081

PL paths arrived at the correct answer. Compared082

Model
(Instruct)

Commonsense QA GSM8k
(% NL Response) (%PL Response)
Direct Select Direct Select

Llama-3.1-8B 32.72 84.89 27.90 62.47
Llama-3.1-70B 100.00 99.47 0.27 25.40

Qwen-2.5-7B 100.00 99.67 2.16 82.90
Qwen-2.5-14B 100.00 99.55 0.04 18.12
Qwen-2.5-32B 100.00 99.59 0.08 15.01
Qwen-2.5-72B 100.00 99.75 0.53 62.93

Model Avg 83.18 95.91 7.39 44.34

Table 2: Proportion of responses in NL for Common-
senseQA and PL in GSM8k for models prompted to
(a) provide a solution based on described choices of
PL or NL (Direct) or (b) provide a response between
"programming language" or "natural language" as the
best solution to solve a given problem (Select).

to using NL, there are substantially more instances 083

(which can be as high as 11.16x as much in FinQA) 084

where using PL resulted in the right answer. How- 085

ever, we also see that there are in fact instances 086

where using PL does not arrive at the right answer 087

and using NL instead does. Additionally we cal- 088

culate the average response length when solving 089

with NL or PL and see that PL always results in 090

less tokens being used. This suggests that being 091

able to route towards one or the other would result 092

in performance with higher accuracy overall while 093

also maintaining efficiency over just using natural 094

language. 095

3 Solution Routing 096

3.1 Models Cannot Route Consistently 097

We test how well various language models can si- 098

multaneously route and solve a given problem. For 099

a given instance, a language model is prompted 100

to solve with either thinking step-by-step (natu- 101

ral language) or writing a program (programming 102

language). Both options are given details such 103

as the format of the final answer or what the pro- 104

gram method name should be for post-processing 105

(full list of prompts in Appendix-B). were tested 106

on on GSM8k (Cobbe et al., 2021) and Common- 107

senseQA (Talmor et al., 2019). Both being distinct 108

from each other with the former likely benefiting 109

from programmatic solutions more than the latter. 110

In Table 2, the models we tested were able to 111

consistently solve CommonsenseQA with natural 112

language but struggle to accurately resolve GSM8k 113

with programming language and instead gravitate 114

towards natural language solutions as show by the 115
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Model
(Instruct)

Solve with
MATH MathQA

%Acc #Tokens %PL %Code %Acc #Tokens %PL %Code

Llama-3.1-8B
PL 23.59 344.00 100.00 83.62 48.51 153.00 100.00 96.85
NL 19.91 1225.00 0.00 0.00 53.23 346.00 0.00 0.00

Routing 24.28 770.00 51.01 84.57 51.12 245.00 51.73 96.82

Llama-3.1-70B
PL 40.97 218.00 100.00 96.21 63.38 124.00 100.00 95.89
NL 38.11 1108.00 0.00 0.00 69.38 305.00 0.00 0.00

Routing 40.04 598.00 62.04 95.60 65.06 190.00 63.65 95.87

Qwen-2.5-7B
PL 38.48 274.00 100.00 91.07 62.21 148.00 100.00 95.57
NL 28.46 802.00 0.00 0.00 41.47 385.00 0.00 0.00

Routing 36.21 620.00 41.31 71.99 58.16 194.00 80.97 95.46

Qwen-2.5-14B
PL 39.06 196.00 100.00 93.97 65.23 146.00 100.00 94.51
NL 37.33 867.00 0.00 0.00 61.31 391.00 0.00 0.00

Routing 42.10 593.00 37.32 88.85 62.48 341.00 20.50 94.19

Qwen-2.5-32B
PL 52.69 454.00 100.00 52.41 61.54 141.00 100.00 92.98
NL 52.64 690.00 0.00 0.00 46.57 372.00 0.00 0.00

Routing 51.75 660.00 54.27 26.80 51.42 298.00 31.83 92.99

Qwen-2.5-72B
PL 47.04 267.00 100.00 79.82 68.31 132.00 100.00 93.86
NL 39.29 879.00 0.00 0.00 49.85 418.00 0.00 0.00

Routing 49.57 575.00 47.06 83.96 64.12 194.00 77.79 93.87

Table 3: Aggregate performance for MATH and MathQA. Models are measured by Accuracy (%Acc) and Efficiency
(response length denoted by #Token). In addition, we track %PL that shows how many instances were routed
towards the programming language solution path and %Code that refers to the average proportion of a PL-routed
response being actually code (Responses can start with "here is the code to solve"). Bold numbers refer to best
among the 3 solution strategy (higher is better for %Acc, lower is better for #Tokens) while underlined numbers
show the second best.

percentage of responses in PL being 2% or less ex-116

cept for Llama-3.1-8B (Direct in Table 2). For the117

case of Llama-3.1-8B, we observe only 32.72% of118

problems solved with natural language which con-119

versely means that 67.28% of the responses where120

in programming. We find that qualitatively these121

answers are not informative. Often in the form of122

"def solution():\n\treturn 'A'" which we123

deem as an uninformative solution.124

Alternatively, we try the Select prompt to de-125

cide the best way to solve a given problem with126

the choices being "programming language" or127

"natural language". Models are able to substan-128

tially increase the routing rate to use programming129

language for GSM8k from on average 7.39% to130

44.34% while maintaining a high selection rate for131

natural language on CommonsenseQA.132

3.2 2-Stage Routing133

As Table 2 suggests, models struggle to route to-134

wards programming language solutions directly but135

can route at a higher success rate when only asked136

to answer which solution is the best for a given137

problem. To enable language models to better route138

to a solution path, we propose a 2-stage pipeline139

that consists of the Routing stage that utilizes the140

Select prompt to choose a solution path and the141

Solving stage that proceeds to prompt the model 142

to solve an instance with a particular method. For 143

example, as illustrated in Figure 1, after the first 144

stage where the model answers "programming lan- 145

guage", the model is then prompted to implement 146

a programmatic solution. 147

We evaluate this method on the test split of 148

MATH (Hendrycks et al., 2021) (Level 5 problems) 149

and MathQA to highlight how this method can be 150

used to solve challenging mathematical reasoning 151

tasks. Our motivation to use MATH and MathQA 152

stems their popularity in demonstrating the natural 153

language reasoning capabilities in language models. 154

The MATH benchmark also features 7 categories 155

that can provide insight to how well routing be- 156

tween NL and PL can be for each different types of 157

math problems. We use sampling parameters Tem- 158

perature of 0.6 and Top-p of 0.9 for all evaluations. 159

Experiment results (Table 3) indicate that in 11 160

out of 12 cases, solution path routing achieves ei- 161

ther the best or second-best accuracy, indicating 162

that it stably strikes a good balance between NL 163

and PL-based solutions, making it a safe choice 164

to use in situations where it is not clear a-priori 165

which of the two methods is appropriate. Further, 166

compared to solely using NL, it is more efficient, 167
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Model
(Instruct)

Solve with
Prealgebra Algebra Number Theory

Counting
& Probability

Geometry
Intermediate

Algebra
Precalculus

%PL %Code %PL %Code %PL %Code %PL %Code %PL %Code %PL %Code %PL %Code

Llama-3.1-8B
PL 100.00 85.36 100.00 82.78 100.00 81.96 100.00 72.18 100.00 90.34 100.00 87.26 100.00 85.46

Routing 47.15 84.31 52.77 82.65 66.23 86.49 76.42 70.80 53.03 89.81 31.07 90.92 30.37 86.97

Llama-3.1-70B
PL 100.00 95.72 100.00 96.22 100.00 95.12 100.00 96.70 100.00 97.15 100.00 95.40 100.00 97.12

Routing 59.59 96.11 65.47 96.80 46.10 93.91 61.79 94.13 68.18 97.38 64.29 94.96 68.89 95.89

Qwen-2.5-7B
PL 100.00 93.69 100.00 89.74 100.00 95.20 100.00 93.31 100.00 86.63 100.00 90.71 100.00 88.23

Routing 40.41 80.97 47.56 93.98 59.09 72.83 49.59 94.80 16.67 94.73 42.50 37.16 33.33 29.48

Qwen-2.5-14B
PL 100.00 95.15 100.00 94.38 100.00 93.96 100.00 90.00 100.00 95.76 100.00 93.52 100.00 95.02

Routing 17.62 94.04 34.85 87.20 61.69 90.48 50.41 85.60 12.12 84.26 46.79 84.35 37.78 96.05

Qwen-2.5-32B
PL 100.00 72.19 100.00 48.74 100.00 62.18 100.00 70.75 100.00 44.94 100.00 34.50 100.00 33.59

Routing 29.53 40.16 51.47 24.70 76.62 34.22 62.60 34.71 21.97 16.81 71.79 19.04 65.93 17.95

Qwen-2.5-72B
PL 100.00 83.62 100.00 78.40 100.00 82.20 100.00 81.04 100.00 77.91 100.00 78.32 100.00 77.30

Routing 52.33 88.94 48.86 92.80 83.77 80.52 43.90 93.37 31.06 75.29 33.93 80.01 35.56 76.82

Table 4: For each category in MATH, the number of instances that were routed to PL and percentage of the content
in among them that was code.

decreasing tokens generated from an average of168

928 to 636 tokens on MATH, and 370 to 244 to-169

kens on MathQA.170

Overall, the model-routing process chooses to171

solve the problem in PL on average around 50% of172

the time. Models also exhibit high ratios of code173

content in the responses that were routed to PL with174

the exception of 1 model. We attribute the portion175

of responses not being code to a model’s tendency176

to start with natural language such as "To solve177

this...". One outlier was Qwen-2.5-32B, which only178

had 26.80% of its average response being detected179

as code despite similar rates of routing with other180

models, which could indicate this particular model181

gravitates towards natural language. Qualitatively,182

we find that in these cases, models tend to explain183

their code which leads to low rates of code content.184

We further break down MATH into its subcat-185

egories in Table 4 to observe how well models186

route under different mathematical problems in187

the benchmark. Interestingly, we do not see con-188

sistency between the rate of which models are189

routed towards PL and any particular MATH cat-190

egory. Some models may have high routing rates191

for Counting and probability while others on Num-192

ber Theory. This suggests that while models are193

versatile in writing programs to solve a given prob-194

lem, they may not be adequately trained to identify195

which types of problems may be better solved with196

certain solution paths in a way that balances accu-197

racy and efficiency.198

4 Related Work199

Previous works have explored model inference200

that generate both PL and NL solutions simulta-201

neously (Zhao et al., 2023). After generation, the202

models are prompted to reflect on these generations203

and choose which one to commit to based on how204

the model perceives it’s correctness. Similarly, Hu 205

et al. (2023) generates both solution path and com- 206

bines them for an additional round of step-by-step 207

reasoning to arrive at the final answer. 208

In contemporaneous work, Xiong et al. (2024) 209

studied how models may solve mathematical tasks 210

by choosing from multiple methods. Our works 211

differ in scope whereas ours study the ability of 212

open models at various sizes and routing capability 213

measured by the rate the answers are code which 214

inspired our proposed 2-stage solution path routing. 215

We also identify improvements of both accuracy 216

and efficiency. 217

5 Conclusion 218

We show the benefits routing through by comparing 219

performance and efficiency between NL and PL so- 220

lution prompts. We then show how models struggle 221

to consistently route between the two choices. Fi- 222

nally, using a 2-stage solution path routing, models 223

are able to select between distinct solution imple- 224

mentations that enables them to perform as well or 225

better and more efficiently compared to only uti- 226

lizing natural language reasoning responses. We 227

find that this method is effective in steering models 228

away from gravitating towards natural language 229

responses. 230

Limitations 231

Our work is limited to evaluating open and 232

instruction-tuned models in English. The scope of 233

this work does not consider closed API-form mod- 234

els. Additionally our work only considers prompt- 235

base evaluation and does not analyze nor evaluate 236

the impacts of supervised finetuning or other post- 237

training techniques. 238

As model responses can be code, we require the 239

generated code to be executed to derive the final 240
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answer. As such, there may be risks where the241

model generates harmful and/or malicious code.242

When similar methods are used in actual deployed243

systems, reasonable precautions must be taken for244

security sandboxing.245
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A Compute Used 536

This work was done on instances of NVIDIA 537

A6000s and L40s GPU accelerators. For each 538

Model-Prompt-Benchmark, runtime varied be- 539

tween 10 minutes to 3 hours depending on the size 540

of the models. We utilize the VLLM (Kwon et al., 541

2023) library with pipeline parallelization to run 542

multiple parallel inference process. For models of 543

32 billion parameters and above, we additionally 544

utilize tensor-parallel to split the models parame- 545

ters. 546

B System Prompts 547

We list the prompts we used in to direct models for 548

every problem instance it sees in Table 5. Results 549

in Table 2 are average across variations i.e results 550

from Direct (a) and (b) and Select (a) and (b) are 551

averaged. 552
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Prompt Style Prompt Text

PL Solve the following problem by DIRECTLY and ONLY writing a PYTHON
program. The answer must be a function named solution() without
any input arguments. The function MUST return an single value.

NL Solve the following problem by thinking step-by-step. Derive
and go through the logical steps in order to arrive at the final
answer. At the end, you MUST write the answer after ’The answer
is’.

Direct (a) Choose only one way to solve the problem: by thinking
step-by-step OR writing a program as a way to solve a given task.
Do NOT use both:\n1. Thinking step-by-step: Think step-by-step.
Derive and go through the logical steps in order to arrive at
the final answer. At the end, you MUST write the answer after
’The answer is’.\n2. Writing a program: DIRECTLY and ONLY write
a program with the PYTHON programming language. The function
must be named solution() without any input arguments.\nAt the
end, you MUST return an single value.

Direct (b) Choose only one way to solve the problem: by writing a program
OR thinking step-by-step as a way to solve a given task. Do
NOT use both:\n1. Writing a program: DIRECTLY and ONLY write a
program with the PYTHON programming language. The function must
be named solution() without any input arguments. At the end, you
MUST return an single value.\n2. Thinking step-by-step: Think
step-by-step. Derive and go through the logical steps in order
to arrive at the final answer.\nAt the end, you MUST write the
answer after ’The answer is’.

Select (a) Based on a given task, choose only one way that can be used to
solve the problem: by natural language OR programming language
to solve a given task. Do NOT use both. Answer with either
"natural language" or "programming language".

Select (b) Based on a given task, choose only one way that can be used to
solve the problem: by programming language OR natural language
to solve a given task. Do NOT use both. Answer with either
"programming language" or "natural language".

Table 5: Prompts used in this work. We alter the prompts for Direct and Select by switching the order of solution
path choices.
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