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ABSTRACT

As the curation of data for machine learning becomes increasingly automated,
dataset tampering is a mounting threat. Backdoor attackers tamper with training
data to embed a vulnerability in models that are trained on that data. This vulner-
ability is then activated at inference time by placing a “trigger” into the model’s
input. Typical backdoor attacks insert the trigger directly into the training data, al-
though the presence of such an attack may be visible upon inspection. In contrast,
the Hidden Trigger Backdoor Attack achieves poisoning without placing a trigger
into the training data at all. However, this hidden trigger attack is ineffective at
poisoning neural networks trained from scratch. We develop a new hidden trig-
ger attack, Sleeper Agent, which employs gradient matching, data selection, and
target model re-training during the crafting process. Sleeper Agent is the first hid-
den trigger backdoor attack to be effective against neural networks trained from
scratch. We demonstrate its effectiveness on ImageNet and in black-box settings.

1 INTRODUCTION

High-performance deep learning systems have grown in scale at a rapid pace. As a result, practition-
ers seek larger and larger datasets with which to train their data-hungry models. Due to the surging
demand for training data along with improved accessibility via the web, the data curation process is
increasingly automated. Dataset manipulation attacks exploit vulnerabilities in the curation pipeline
to manipulate training data so that downstream machine learning models contain exploitable behav-
iors. Some attacks degrade inference across samples (Biggio et al., 2012; Fowl et al., 2021), while
targeted data poisoning attacks induce a malfunction on a specific target sample (Shafahi et al., 2018;
Geiping et al., 2020).

Backdoor attacks are a style of dataset manipulation that induces a model to execute the attacker’s
desired behavior when its input contains a backdoor trigger (Gu et al., 2017; Bagdasaryan et al.,
2020). To this end, typical backdoor attacks inject the trigger directly into training data so that mod-
els trained on this data rely on the trigger to perform inference (Gu et al., 2017; Chen et al., 2017).
Such threat models for classification problems typically incorporate label flips as well. However, im-
ages poisoned under this style of attack are often easily identifiable since they belong to the incorrect
class and contain a visible trigger. One line of work uses only small or realistic-looking triggers,
but these may still be visible and are often placed in conspicuous image regions (Chen et al., 2017;
Gu et al., 2017; Li et al., 2020). Another recent method, Hidden Trigger Backdoor Attack (HTBD),
instead crafts correctly labeled poisons which do not contain the trigger at all, but this feature colli-
sion method is not effective on models trained from scratch (Saha et al., 2019; Schwarzschild et al.,
2020). The task of crafting backdoor poisons which simultaneously hide the trigger and are also ef-
fective at compromising deep models remains an open and challenging problem. This is especially
the case in the black-box scenario, where the attacker does not know the victim’s architecture and
training routine, and in the clean-label scenario where the attacker cannot flip labels.

In this work, we develop the first hidden trigger attack that can reliably backdoor deep neural net-
works trained from scratch. Our threat model is illustrated in Figure 1. Our attack, Sleeper Agent,
contains the following essential features:
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Figure 1: High-level schematic of our attack. A small proportion of slightly perturbed data is added
to the training set which “backdoors” the model so that it misclassifies patched images at inference.

• Gradient matching: our attack is based on recent advances which replace direct solvers for
bi-level optimization problems with a gradient alignment objective (Geiping et al., 2020).
However, we will see that the following technical additions are necessary to successfully
backdoor neural networks (see Table 9).

• Data selection: we specifically poison images that have a high impact on training in order
to maximize the attack’s effect.

• Adaptive retraining: while crafting poisons, we periodically retrain the surrogate models to
better reflect how models respond to our poisoned data during training.

• Ensembles: Sleeper Agent incorporates an ensemble of distinct surrogate architectures in
order to achieve transferability across models.

• Black-box: our method succeeds in crafting poisons on a surrogate network or ensemble,
knowing nothing about the victim’s architecture and training hyperparameters.

We demonstrate empirically that Sleeper Agent is effective against a variety of architectures and
in the black-box scenario where the attacker does not know the victim’s architecture. The latter
scenario has proved very difficult for existing methods (Schwarzschild et al., 2020), although it is
more realistic. An added benefit of the gradient matching strategy is that it scales to large tasks. We
demonstrate this property by backdooring models on ImageNet (Russakovsky et al., 2015). Some
random clean and poisoned samples from the ImageNet dataset are shown in Figure 2.

2 RELATED WORK

Data poisoning attacks come in many shapes and sizes. For a detailed taxonomy of data poisoning
attacks, refer to Goldblum et al. (2020). Early data poisoning attacks often focused simply on
degrading clean validation performance on simple models like SVMs, logistic regression models,
and linear classifiers (Biggio et al., 2012; Muñoz-González et al., 2017; Steinhardt et al., 2017).
These methods often relied upon the learning problems being convex in order to exactly anticipate
the impact of perturbations to training data. Following these early works, attacks quickly became
more specialized in their scope and approach. Modern availability attacks on deep networks degrade
overall performance via gradient minimization (Shen et al., 2019), easily learnable patterns (Huang
et al., 2021), or adversarial noise generated by autoencoders (Feng et al., 2019). However, these
works often perturb the entire training set - an unrealistic assumption for many poisoning settings.

Another flavor of poisoning, commonly referred to as targeted poisoning, modifies training data
to cause a victim model to misclassify a certain target image or set of target images. Early work
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Figure 2: Sample clean source (first column), patched source (second column), clean target (third
column), and poisoned target (fourth column) from the ImageNet dataset. The last column is slightly
perturbed, but the perturbed and corresponding clean images are hardly distinguishable by the hu-
man eye. More visualizations can be found in the Appendix B.

in this domain operates in the setting of transfer learning by causing feature collisions (Shafahi
et al., 2018). Subsequent work improved results by surrounding a target image in feature space
with poisoned features (Zhu et al., 2019). Follow up works further improved targeted poisoning
by proposing methods that are effective against from-scratch training regimes (Huang et al., 2020;
Geiping et al., 2020). These attacks remain limited in scope, however, and often fail to induce
misclassification on more than one target image (Geiping et al., 2020).

Adjacent to targeted data poisoning are backdoor attacks. Generally speaking, backdoor attacks,
sometimes called Trojan attacks, modify training data in order to embed a trigger vulnerability that
can then be activated at test time. Crucially, this attack requires the attacker to modify data at
inference time. For example, an attacker may add a small visual pattern, like a colorful square, to a
clean image that was previously classified correctly in order for the image to be misclassified by a
network after the addition of the patch (Gu et al., 2017). However, these works can require training
labels to be flipped, and/or a conspicuous patch to be added to training data.

Of particular relevance to this work is a subset of backdoor attacks that are clean label, meaning that
modifications to training data must not change the semantic label of that data. This is especially im-
portant because an attacker may not control the labeling method of the victim and therefore cannot
rely upon techniques like label flipping in order to induce poisoning. One previous work enforces
this criterion by applying patches to adversarial examples, but the patches are clearly visible, even
when they are not fully opaque, and the attack fails when patches are transparent enough to be unno-
ticeable (Turner et al., 2019; Schwarzschild et al., 2020). Another work, “Hidden Trigger Backdoor
Attacks” enforces an `∞ constraint on the entire perturbation (as is common in the adversarial attack
literature), but this method is only effective on hand selected class pairs and only works in transfer
learning scenarios where the pretrained victim model is both fixed and known to the attacker (Saha
et al., 2019; Schwarzschild et al., 2020). Another clean label backdoor attack hides the trigger in
training data via steganography (Li et al., 2019), however this attack also assumes access to the pre-
trained model that a victim will use to fine tune on poisoned data. Moreover, the latter attack uses
triggers that cover the entire image, and these triggers cannot be chosen by the user.
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In contrast to these existing methods, Sleeper Agent does not require knowledge of the victim model,
the perturbations are not visible in poisoned training data, and poisons can be adapted to any patch.

3 METHOD

3.1 THREAT MODEL

We follow commonly used threat models used in the backdoor literature (Gu et al., 2017; Saha et al.,
2019). We define two parties, the attacker and the victim. We assume that the attacker perturbs
and disseminates data. As in Saha et al. (2019); Geiping et al. (2020), we assume the training data
modifications are bounded in `∞ norm. The victim then trains a model on data - a portion of which
has been perturbed by the attacker. Once the victim’s model is trained and deployed, we also assume
that the attacker can then apply a patch to select images at test time to trigger the backdoor attack.

However, we diverge from Gu et al. (2017); Saha et al. (2019) in our assumptions about the knowl-
edge of the victim. We assume a far more strict threat model wherein the attacker does not have
access to the parameters, architecture, or learning procedure of the victim. This represents a realistic
scenario wherein a victim trains a randomly initialized deep network from scratch on scraped data.

3.2 PROBLEM SETUP

Formally, we aim to craft perturbations δ = {δi}Ni=1 to training data T = {(xi, yi)}Ni=1 for a loss
function, L, and a surrogate network, F , with parameters θ that solve the following bilevel problem:

min
δ∈C

E(x,y)∼D

[
L (F (x+ p; θ(δ)), yt)

]
(1)

s.t. θ(δ) ∈ argmin
θ

∑
(xi,yi)∈T

L(F (xi + δi; θ), yi), (2)

where p denotes the trigger, yt denotes the intended target label of the attacker, and C denotes a
set of constraints on the perturbations. Naive backdoor attacks often solve this bilevel problem by
inserting p directly into training data (belonging to class yt) so that the network learns to associate
the trigger pattern with the desired class label. However, our threat model is more strict, which is
reflected in our constraints on δ. We require that δ is bounded in `∞ norm and that δi = 0 for all but
a small fraction of indices, i. WLOG, assume that the first M ≤ N perturbations are allowed to be
nonzero. In the black-box scenario, the surrogate model, F , may not resemble the victim, in terms
of either architecture or training hyperparameters, and yet the attack is effective nonetheless.

We stress that unlike Saha et al. (2019), our primary area of interest is not transfer learning, but
rather from-scratch training. This threat model results in a more complex optimization procedure -
one where simpler objectives, like feature collision, have failed (Schwarzschild et al., 2020). Due
to the inner optimization problem posed in Equation 2, directly computing optimal perturbations is
intractable for deep networks as it would require differentiating through the training procedure of
F . Thus, heuristics must be used to optimize the poisons.

3.3 OUR APPROACH

Recently, several works have proposed solving bilevel problems for deep networks by utilizing gra-
dient alignment. Gradient alignment modifies training data to align the training gradient with the
gradient of some desired objective. It has proven useful for dataset condensation (Zhao et al., 2020),
as well as integrity and availability poisoning attacks (Geiping et al., 2020; Fowl et al., 2021). Unlike
other heuristics like partial unrolling of the computation graph or feature collision, gradient align-
ment has proven to be a stable way to solve a bilevel problem that involves training a deep network
in the inner objective. However, poisoning approaches utilizing gradient alignment have often come
with limitations, such as poor performance on multiple target images (Geiping et al., 2020), or strict
requirements about poisoning an entire dataset (Fowl et al., 2021).
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In contrast, we study the behaviour of a class of attacks capable of causing misclassification of a
large proportion of unseen patched images of a selected class, all while modifying only a small
fraction of training data. We first define the adversarial objective:

Ladv = E(x,y)∼Ds

[
L
(
F (x+ p; θ), yt

)]
, (3)

where Ds denotes the source class distribution, p is a patch that the attacker uses to trigger misclas-
sification at test-time, and yt is the intended target label. This objective is minimized when an image
becomes misclassified into a desired class after the attacker’s patch is added to it. For example, an
attacker may aim for a network to classify images of dogs correctly but to misclassify the same dog
images as cats when a patch is added to the dog images.

To achieve this behavior, we perturb training data by optimizing the following alignment objective:

A = 1− ∇θLtrain · ∇θLadv
||∇θLtrain|| · ||∇θLadv||

, (4)

∇θLtrain =
1

M

M∑
i=1

∇θL
(
F (xi + δi; θ), yi

)
is the training gradient involving the nonzero perturbations. We then estimate the expectation in
Equation 3 by calculating the average adversarial loss over K training points from the source class:

∇θLadv =
1

K

∑
(x,ys)∈T

∇θ
(
L
(
F (x+ p; θ), yt

))
In our most basic attack, we begin optimizing the objective in Equation 4 by fixing a parameter
vector θ∗ in order to calculate A. This parameter vector is trained on clean data and is used to
calculate the training and adversarial gradients. We then optimize using 250 steps of signed Adam.
Note that while this is not a general constraint for our method, we follow the setup in Saha et al.
(2019) where all poisons are drawn from a single target class. That is to say, the M poisons the
attacker is allowed to perturb have the form {(xi, yt)}Mi=1.

We also employ differentiable data augmentation which has shown to improve stability of poisons
in Geiping et al. (2020). While gradient alignment proves more successful than other approaches to
the bilevel problem, we additionally introduce two novel techniques that boost success by > 250%:

Poison Selection: Our threat model assumes the attacker disseminates perturbed images online
through avenues such as social media. With this in mind, the attacker can choose which images
to perturb. For example, the attacker could choose images of dogs in which to “hide” the trigger.
While random selection with our objective does successfully poison victims trained from scratch,
we experiment with selection by gradient norm. Because we aim to align the training gradient with
our adversarial objective, source images which have larger gradients could prove to be more potent
poisons. We find that choosing source poison images by taking images with the maximum training
gradient norm at the parameter vector θ∗ noticeably improves poison performance (see Tables 3, 9).

Model Retraining: In the most straightforward version of our attack, the attacker optimizes the
perturbations using fixed model parameters for a number of steps (usually 250). However, this may
lead to perturbations overfitting to a clean-trained model; during a real attack a model is trained on
poisoned data, but we optimize the poisons on a model that trained only with clean data. To close
the gap, we introduce model retraining during the poison crafting procedure. After retraining our
model on the perturbed data, we again take optimization steps on the perturbations, but this time
evaluating the training and adversarial losses at the new parameter vector. We repeat this process of
retraining/optimizing several times and find that this noticeably improves the success of the poisons
- often boosting success by more than 20% (see Tables 3, 9).

4 EXPERIMENTS

In this section, we empirically test the proposed Sleeper Agent backdoor attack on multiple datasets,
against black-box settings, using a benchmark, and against popular defenses.
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Table 1: Baseline evaluations on CIFAR-10. Perturbations have `∞-norm bounded above by
16/255, and poison budget is 1% of training images. Each number denotes an average (and std.
error) over 24 crafting and training runs along with randomly sampled source/target class pairs.

Architecture ResNet-18 MobileNetV2 VGG11

Clean validation accuracy(%) 92.31 (±0.08) 88.19 (±0.05) 89.00 (±0.03)
Poison validation accuracy(%) 92.16 (±0.05) 88.03 (±0.05) 88.70 (±0.04)
Clean source accuracy(%) 92.36 (±0.93) 88.55 (±1.64) 90.62 (±1.23)
Poison source accuracy(%) 91.50 (±0.88) 87.79 (±1.60) 89.45 (±1.19)
Triggered source accuracy(%) 12.96 (±5.40) 21.09 (±5.41) 17.97 (±4.00)
Attack Success Rate(%) 85.27 (±5.90) 72.92 (±6.09) 75.15 (±5.40)

Table 2: The effect of poison budget. Experiments on CIFAR-10 with ResNet-18 models (He
et al., 2016). Perturbations have `∞-norm ≤ 16/255. Each number denotes an average (and std.
error) over 32 crafting and training runs along with randomly sampled source/target class pairs.

Poison Budget 50 (0.1%) 100 (0.2%) 250 (0.5%) 400 (0.6%) 500 (1%)
Clean validation accuracy(%) 92.34 (±0.05) 92.36 (±0.04) 92.31 (±0.04) 92.15 (±0.08) 92.26 (±0.06)
Poison validation accuracy(%) 92.33 (±0.04) 92.34 (±0.05) 92.25 (±0.04) 92.12 (±0.06) 92.17 (±0.04)
Clean source accuracy(%) 93.01 (±0.69) 91.08 (±0.85) 92.43 (±0.74) 92.42 (±0.80) 92.14 (±0.78)
Poison source accuracy(%) 93.03 (±0.67) 90.61 (±0.86) 91.83 (±0.75) 91.88 (±0.79) 91.56 (±0.77)
Triggered source accuracy(%) 61.04 (±4.27) 40.07 (±5.72) 22.77 (±4.77) 15.88 (±4.91) 13.07 (±4.57)
Attack Success Rate(%) 24.71 (±4.10) 49.76 (±6.21) 72.48 (±5.24) 81.44 (±5.25) 85.11 (±5.04)

4.1 BASELINE EVALUATIONS

Typically, backdoor attacks are considered successful if poisoned models do not suffer from a sig-
nificant drop in validation accuracy on images without triggers, but they reliably misclassify images
from the source class into the target class when a trigger is applied. We begin by testing our method
in the gray-box setting. In the gray-box setting, we use the same architecture but different random
initialization for crafting poisons and testing. Table 1 depicts the performance of Sleeper Agent on
CIFAR-10 when perturbing 1% of images in the training set with each perturbation constrained in an
`∞-norm ball of radius 16/255. During poison crafting, the surrogate model undergoes four evenly
spaced retraining periods (T = 4), and we test the effectiveness of each surrogate model architecture
at generating poisons for victim models of the same architecture. In subsequent sections, we will ex-
tend these experiments to the black-box setting and to an ensemblized attacker. We observe in these
experiments that the poisoned models indeed achieve very similar validation accuracy to their clean
counterparts, yet the application of triggers to source class images causes them to be misclassified
into the target class as desired. In Table 2, we observe that Sleeper Agent can even be effective when
the attacker is only able to poison a very small percentage of the training set. Note that the success
of backdoor attacks depends greatly on the choice of source and target classes, especially since some
classes contain very large objects which may dominate the image, even when a trigger is inserted.
As a result, the variance of attack performance is high since we sample class pairs randomly. The
poisoning and victim hyperparameters we use for our experiments can be found in Appendix A.

The benefits of ensembling: One simple way we can improve the transferability of our backdoor
attack across initializations of the same architecture is to craft our poisons on an ensemble of mul-
tiple copies of the same architecture but trained using different initializations and different batch
sampling during their training procedures. In Table 3, we observe that this ensembling strategy
indeed can offer major performance boosts, both with and without retraining.

The black-box setting: Now that we have established the transferability of Sleeper Agent across
models of the same architecture, we test on the hard black-box scenario where the victim’s archi-
tecture is completely unknown to the attacker. This setting has proven extremely challenging for
existing methods (Schwarzschild et al., 2020). Table 4 contains four settings. In the first row, we
simply craft the poisons on a single ResNet-18 and transfer these to other models. Second, we
craft poisons on an ensemble consisting of two MobileNet-V2 and two ResNet-34 architectures and
transfer to the remaining models. Third, for each architecture, we craft poisons with an ensemble
consisting of the other two architectures and test on the remaining one. The second and third scenar-
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Table 3: Ensembles consisting of copies of the same architecture (ResNet-18). S denotes the size
of the ensemble, and T denotes the retraining factor. Experiments are conducted on CIFAR-10,
perturbations have `∞-norm bounded by 16/255, and the attacker can poison 1% of training images.

Attack Clean validation (%) Poison validation (%) Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 92.36 (±0.05) 92.08 (±0.08) 63.49 (±6.13)
Sleeper Agent (S = 2, T = 0) 92.10 (±0.04) 92.12 (±0.06) 64.70 (±5.65)
Sleeper Agent (S = 4, T = 0) 92.14 (±0.03) 91.98(±0.05) 74.81 (±4.10)
Sleeper Agent (S = 2, T = 4) 92.11 (±0.07) 92.08 (±0.13) 87.40 (±6.23)
Sleeper Agent (S = 4, T = 4) 92.17 (±0.03) 91.81 (±0.06) 88.45 (±6.00)

Table 4: Black-box attacks: First row: Attacks crafted on a single ResNet-18 and transferred.
Second row: attacks crafted on MobileNet-V2 and ResNet-34 and transfered. Third row: attacks
crafted on the remaining architectures excluding the victim. The ensemble used in the last row
includes the victim architecture. Experiments are conducted on CIFAR-10 and perturbations have
`∞-norm bounded above by 16/255, and the attacker can poison 1% of training images.

Attack ResNet-18 MobileNet-V2 VGG11 Average
Sleeper Agent (S = 1, T = 4, ResNet-18) − 29.10% 31.96% 29.86%
Sleeper Agent (S = 4, T = 0, MobileNet-V2, ResNet-34) 70.30% − 46.48% 58.44%
Sleeper Agent (S = 4, T = 0, victim excluded) 63.11% 42.40% 55.28% 53.60%
Sleeper Agent (S = 6, T = 0, victim included) 68.46% 67.28% 85.37% 73.30%

ios are ensemblized black-box attacks, and we see that Sleeper Agent is effective. In the last row, we
perform the same experiment but with the testing model included in the ensemble, and we observe
that a single ensemble can craft poisons that are extremely effective on a range of architectures. We
choose ResNet-18, MobileNet-V2, and VGG11 as these are common and contain a wide array of
structural diversity (He et al., 2016; Sandler et al., 2018; Simonyan & Zisserman, 2014).

ImageNet evaluations: In addition to CIFAR-10, we perform experiments on ImageNet. Table 5
contains the performance of Sleeper Agent on ImageNet where attacks are crafted and tested on
randomly initialized ResNet-18 models. Perturbations are constrained in an `∞-norm ball of radius
16/255 - a bound seen in prior poisoning works on ImageNet (Fowl et al., 2021; Geiping et al., 2020;
Saha et al., 2019). We first study the effect of re-training during poison crafting. Even performing
only two equally spaced re-training periods improves the success rate significantly. Additionally, we
observe that our data selection technique allows Sleeper Agent to maintain a high success rate even
with a lower poison budget. Figure 2 contains visualizations of the patched sources and the crafted
targets. The poisoning and victim hyperparameters from experiments can be found in Appendix A.
Further visualizations and additional experiments are presented in Appendices B and C.

4.2 COMPARISON TO OTHER METHODS

There are several existing clean-label hidden-trigger backdoor attacks that claim success in settings
different than ours. In order to further demonstrate the success of our method, we compare our
poisons to ones generated from these methods in our more strict threat model of from-scratch train-
ing. In these experiments, poisons are generated from our attack, clean label backdoor, and hidden
trigger backdoor. All poison trials have the same randomly selected source-target class pairs, the

Table 5: ImageNet evaluations. Attacks are conducted on ResNet-18 models and perturbations
have `∞-norm bounded above by 16/255. The high standard errors are due to the high variance of
the sampling of source/target pairs, and limited number of runs to maintain computational feasibility.

Attack Poison budget Clean validation (%) Poison validation (%) Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 0.05% 69.27 (±0.03) 67.87 (±0.03) 22.00 (±5.65)
Sleeper Agent (S = 1, T = 0) 0.10% 69.23 (±0.03) 67.80 (±0.04) 23.25 (±5.50)
Sleeper Agent (S = 1, T = 2) 0.05% 69.21 (±0.04) 67.84 (±0.10) 44.00 (±6.73)
Sleeper Agent (S = 1, T = 2) 0.10% 69.14 (±0.03) 67.75 (±0.08) 41.00 (±14.45)
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Table 6: Benchmark results on CIFAR-10. Comparison of our method to popular “clean-label”
attacks. Results averaged over the same source/target pairs with ε = 16/255 and poison budget 1%.

Attack ResNet-18 MobileNetV2 VGG11 Average

Hidden-Trigger Backdoor (Saha et al., 2019) 3.50% 3.76% 5.02% 4.09%
Clean-Label Backdoor (Turner et al., 2019) 2.78% 3.50% 4.70% 3.66%

Sleeper Agent (Ours) 50.72% 58.21% 57.86% 55.59%

same budget, and the same ε-bound (Note: clean-label backdoor originally did not use `∞ bounds,
so we adjust the opacity of their perturbations to ensure the constraint is satisfied). We then train a
randomly initialized network from scratch on these poisons and evaluate success over 1000 patched
target images. We test three popular network architectures and find that our attack significantly
outperforms both methods and is the only backdoor method to exceed single digit success rates,
confirming the findings of Schwarzschild et al. (2020) on the fragility of these existing methods.
See Table 6 for full results. Note that the difference in results between Table 1 and these results may
arise from saving the poisoned images and loading them into this benchmark setup.

4.3 DEFENSES

A selling point for hidden trigger backdoor attacks is that the trigger that is used to induce mis-
classification at test-time is not present in any training data, thus making inspection based defenses,
or automated pattern matching more difficult. However, there exist numerous defenses, aside from
visual inspection, that have been proposed to mitigate the effects of poisoning - both backdoor and
other attacks. We test our method against a number of popular defenses.

Spectral Signatures: This defense, proposed in Tran et al. (2018), aims to filter a pre-selected
amount of training data based upon correlations with singular vectors of the feature covariance ma-
trix. This defense was originally intended to detect triggers used in backdoor attacks.
Activation Clustering: Chen et al. (2018) cluster activation patterns to detect anomalous inputs.
Unlike the spectral signatures defense, this defense does not filter a pre-selected volume of data.
DPSGD: Poison defenses based on differentially private SGD (Abadi et al., 2016) have also been
proposed (Hong et al., 2020). Differentially private learning inures models to small changes in train-
ing data, which provably imbues robustness to poisoned data.
Data Augmentations: Recent work has suggested that strong data augmentations, such as mixup,
break data poisoning (Borgnia et al., 2021). This has been confirmed in recent benchmark tests
which demonstrate many poisoning techniques are brittle to slight changes in victim training routine
(Schwarzschild et al., 2020). We test against mixup augmentation (Zhang et al., 2017).
STRIP: Gao et al. (2019) propose to add strong perturbations by superimposing input images at test
time to detect the backdoored inputs based on the entropy of the predicted class distribution. If the
entropy is lower than a predefined threshold, the input is considered backdoored and is rejected.
NeuralCleanse: Wang et al. (2019) propose a defense designed for traditional backdoor attacks
by reconstructing the maximally adversarial trigger used to backdoor a model. While this defense
was not designed for hidden trigger backdoor attacks, we experiment with this as a detection de-
fense wherein we test whether NeuralCleanse can detect the backdoored class. This modification
is denoted by NeuralCleanse*. In our trials, NeuralCleanse* does not detect any of the backdoored
classes - as determined by taking the maximum mask MAD (see Wang et al. (2019)).

We find that across the board, all of these defenses exhibit a robustness-accuracy trade-off. Many
of these defenses do not reliably nullify the attack, and defenses that do degrade attack success also
induce such a large drop in validation accuracy that they are unattractive options for practitioners.
For example, to lower the attack success to an average of 13.14%, training with DPSGD degrades
natural accuracy on CIFAR-10 to 70%. See Table 7 for the complete results of these experiments.

4.4 SLEEPER AGENT CAN POISON IMAGES IN ANY CLASS

Typical backdoor attacks which rely on label flips or feature collisions can only function when
poisons come from the source and/or target classes (Saha et al., 2019; Turner et al., 2019). This
restriction may be a serious limitation in practice. In contrast, we show that Sleeper Agent can be
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Table 7: Defenses. Experiments are conducted on CIFAR-10 with ResNet-18 models, perturbations
have `∞-norm bounded above by 16/255, and poison budget is 1% of training images.

Defense Attack Success Rate (%) Clean Validation Accuracy (%)

Spectral Signatures 37.17 (±10.10) 89.94 (±0.19)
Activation Clustering 15.17 (±5.38) 72.38 (±0.48)

DPSGD 13.14 (±4.49) 70.00 (±0.17)
Data Augmentation 69.75 (±10.77) 91.32 (±0.12)

STRIP 62.68 (±4.90) 92.23 (±0.05)
NeuralCleanse* 53.20 (±10.49) 91.92 (±0.12)

effective even when we poison images drawn from all classes. To take advantage of our data selec-
tion strategy, we select poisons with maximum gradient norm across all classes. Table 8 contains
the performance of Sleeper Agent in the aforementioned setting.

Table 8: Random poisons. Experiments are conducted on CIFAR-10 with ResNet-18 models.
Perturbations have `∞-norm bounded above by 16/255 and poisons are drawn from all classes.
Each number denotes an average (and standard error) over 16 independent crafting and training
runs along with randomly sampled source/target class pairs.

Attack Poison budget Attack Success Rate (%)

Sleeper Agent (S = 1, T = 4) 1% 41.90 (±7.16)
Sleeper Agent (S = 1, T = 4) 3% 66.51 (±6.90)

4.5 ABLATION STUDIES

Here we analyze the importance of each technique in our algorithm via ablation studies. We focus
on three aspects of our method: 1) patch location, 2) retraining during poison crafting, 3) poison
selection. Table 9 details several combinations and their effects on poison success. We find that
randomizing patch location improves poisoning success, and both retraining and data selection based
on maximum gradient significantly improve poison performance. Combining all three boosts poison
success more than four-fold. See Section 3.3 for a description of these techniques. Additional
experiments and more ablation studies can be found in the Appendix C.

Table 9: Ablation studies. Investigation the effects of random patch-location, retraining, and data
selection. Experiments are conducted on CIFAR-10 with ResNet-18 models, perturbations have
`∞-norm bounded above by 16/255, and poison budget is 1% of training images.

Attack Setup Attack Success Rate (%)

Fix patch-location (bottom-right corner) 19.25 (±3.01)
Random patch-location 33.95 (±4.57)
Random patch-location + retraining 59.42 (±5.78)
Random patch-location + data selection 63.49 (±6.13)
Random patch-location + retraining + data selection 85.27 (±5.90)

5 CONCLUSION

In this work, we develop the first hidden-trigger backdoor attack that is effective against deep net-
works trained from scratch. This is a challenging setting for backdoor attacks, and existing attacks
typically operate in less strict settings. Nonetheless, we choose the strict setting because practition-
ers often train networks from scratch in real-world applications, and patched poisons may be easily
visible upon human inspection. In order to accomplish the above goal, we use a gradient matching
objective as a surrogate for the bilevel optimization problem, and we add features such as re-training
and data selection in order to significantly enhance the performance of our method, Sleeper Agent.
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REPRODUCIBILITY STATEMENT

Our full implementation and instructions needed to reproduce the experimental results are included
in the supplementary materials, and we explain the training details, models, hyperparameters, and
computational resources in Appendix A.

ETHICS STATEMENT

In this work, we illuminate a new scalable backdoor attack that could be used to stealthily compro-
mise security-critical systems. We hope that by highlighting the potential danger of this nefarious
threat model, our work will give rise to stronger defenses and will encourage caution on the part of
practitioners.
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APPENDIX

A IMPLEMENTATION DETAILS

The most challenging setting for evaluating a backdoor attack involves training a model from scratch.
It is crucial to compute the average attack success rate on all patched source images in the validation
set to evaluate effectiveness reliably. Following the discussion above, for all experiments, we select
random source-target pairs. During training, we add our patch to all images from the source class in
the training set. To compute the attack success rate, followed by Geiping et al. (2020), we measure
the average rate at which patched source images are successfully classified as the target class. To be
consistent and to provide a fair comparison to Saha et al. (2019), we use a random patch selected
from Saha et al. (2019). Our choice of patch size in the baseline experiments is the same as Saha
et al. (2019), which is, 8 × 8 for CIFAR-10 (6.25% of the pixels) and 30 × 30 for the ImageNet
(1.79% of the pixels). Figure 3 (right) shows the patch we utilize in all of our experiments. Note
that the choice of the patch in our implementation is not essential. To show this, we conduct the same
baseline evaluation discussed in 4.1 using a random patch generated using a Bernoulli distribution.
From table 10, we observe that the choice of the patch does not affect Sleeper Agent’s success rate.

Figure 3: Sample random patch (left) and HTBD patch (right)

Table 10: Baseline evaluations using random patches on CIFAR-10. Perturbations have `∞-norm
bounded above by 16/255, and poison budget is 1% of training images. Each number denotes an
average (and standard error) over 24 independent crafting and training runs along with randomly
sampled source/target class pairs. Each run has a unique patch generated randomly. Figure 3 (left)
shows a sample random patch we use for the experiments presented in this table.

Architecture ResNet-18

Clean validation accuracy(%) 92.16 (±0.08)
Poison validation accuracy(%) 92.00 (±0.07)
Clean source accuracy(%) 92.55 (±0.98)
Poison source accuracy(%) 91.77 (±1.09)
Triggered source accuracy(%) 14.86 (±5.06)
Attack Success Rate(%) 82.05 (±5.80)

A.1 MODELS AND HYPERPARAMETERS

For our evaluations we use ResNet-18, ResNet-34, MobileNet-v2, and VGG11 (He et al., 2016;
Sandler et al., 2018; Simonyan & Zisserman, 2014). For training ResNet-18 and ResNet-34, we use
initial learning rate 0.1, and for MobileNet-v2 and VGG11, we use initial learning rate 0.01. We
schedule learning rate drops at epochs 14, 24, and 35 by a factor of 0.1. For all models, we employ
SGD with Nesterov momentum, and we set the momentum coefficient to 0.9. We use batches of 128
images and weight decay with a coefficient of 4 × 10−4. For all CIFAR-10 experiments, we train
and retrain for 40 epochs, and for validation, we train the re-initialized model for 80 epochs. For
the ImageNet experiments, we employ pre-trained models from torchvision to start crafting,
and for retraining and validation, we apply a similar procedure explained: training for 80 epochs
for both retraining and validation while we schedule learning rate drops at epochs 30, 50, and 70
by a factor of 0.1. To incorporate data augmentation, for CIFAR-10, we apply horizontal flips with
probability 0.5 and random crops of size 32 × 32 with zero-padding of 4. And for the ImageNet,
we use the following data augmentations: 1) resize to 256× 256, 2) central crop of size 224× 224,
3) horizontal flip with probability 0.5, 4) random crops of size 224 × 224 with zero-padding of 28.
Our complete implementation code is attached.
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Figure 4: Average poisoning time for various Sleeper Agent setups. All experiments are conducted
on CIFAR-10 with ResNet-18 models. Perturbations have `∞-norm bounded above by 16/255, and
the poison budget is 1% of training images.

A.2 RUNTIME COST

We use two NVIDIA GEFORCE RTX 2080 Ti GPUs for baseline evaluations on CIFAR-10 and
four of the aforementioned GPUs for ImageNet baseline evaluations. Figure 4 shows the time cost
of the Sleeper Agent with different settings.

B VISUALIZATIONS

In this section, we present more triggered source and poisoned targets drawn from the ImageNet
dataset. Figures 5 and 6 show patched sources and poisoned targets generated by Sleeper Agent.
We observe that the generated perturbed images and their corresponding clean images are hardly
distinguishable by the human eye.

C ADDITIONAL EXPERIMENTS

In this section, we present additional experiments.

C.1 PATCH SIZE

To further investigate the effect of patch size on the attack success rate, we perform the baseline
evaluation discussed in 4.1 using different patch sizes. From Table 11, we observe that by poison-
ing only 0.05% of the training set and using a larger patch, we can effectively poison ImageNet.
Furthermore, by using a proper amount of perturbation, Sleeper Agent works well with the smaller
patches. Visualizations of patched sources using patch size of 45× 45 are shown in Figure 6.

C.2 ARCHITECTURE

Our experiments show that Sleeper Agent works well on other architectures. To explore this, we
conduct our ImageNet baseline experiments on MobileNet-v2. Table 12 depicts the performance of
Sleeper Agent on MobileNet-v2 when perturbing 0.05% of images in the ImageNet training set with
each perturbation constrained in an `∞-norm ball of radius 16/255.
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Figure 5: Sample clean source (first column), patched source (second column), clean target (third
column), and poisoned target (fourth column) from the ImageNet dataset. Perturbations have `∞-
norm bounded above by 16/255, and the patch size is 30× 30.

Figure 6: Sample clean source (first column), patched source (second column), clean target (third
column), and poisoned target (fourth column) from the ImageNet dataset. Perturbations have `∞-
norm bounded above by 16/255, and the patch size is 45× 45.

Table 11: The effect of patch size. Experiments are conducted on CIFAR-10 and ImageNet
datasets with ResNet-18 models.

Attack Dataset Poison budget Patch size `∞-norm Attack Success Rate (%)

Sleeper Agent (S = 1, T = 4) CIFAR-10 1% 6× 6 20/255 64.78
Sleeper Agent (S = 1, T = 4) CIFAR-10 1% 8× 8 16/255 85.27
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 25× 25 16/255 38.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 25× 25 24/255 52.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 30× 30 16/255 44.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 45× 45 16/255 50.50
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Table 12: ImageNet evaluations on MobileNet-v2. Perturbations have `∞-norm bounded above
by 16/255, and the patch size is 30× 30.

Attack Poison budget Patch size Attack Success Rate (%)

Sleeper Agent (S=1, T=2) 0.05% 30 41.00

C.3 RETRAINING FACTOR

Table 13 shows the effect of the retraining factor on the attack success rate on the CIFAR-10 dataset.
As can be observed from the table, for T larger than 4, we do not see a considerable improvement
in the attack success rate. Since increasing T is costly, we choose T = 4 as it simultaneously gives
us a high success rate and is also significantly faster than T = 6 and T = 8. We observe that even
with T = 4, the attack success rate is above 95% in most trials.

Table 13: Ablation studies. Investigation of the effects of retraining factor T . Experiments are
conducted on CIFAR-10 with ResNet-18 models, perturbations have `∞-norm bounded above by
16/255, and the poison budget is 1% of the training images.

Retraining factor T = 2 T = 4 T = 6 T = 8
Attack Success Rate (%) 70.66 (±6.66) 84.64 (±6.64) 84.95 (±6.42) 86.48 (±6.26)
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