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a b s t r a c t

A strongly convex function naturally induces a gradient flow that is contractive. This paper is a short
investigation on when the converse to the previous statement holds. That is, given a differential
equation that is contractive, does there exist a strongly convex function that induces the differential
equation? We show that, if sufficient smoothness of the vector field is assumed, then the contractivity
of such a differential equation with a symmetric Jacobian is equivalent to the existence of a strongly
convex function which induces the differential equation as its gradient flow.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Contraction theory (Lohmiller & Slotine, 1998) characterizes
tability of nonlinear systems in terms of how any two tra-
ectories converge to each other. It is shown in Lohmiller and
lotine (1998) that contraction analysis leads to a necessary
nd sufficient characterization of exponential convergence of
ny pairs of trajectories. Contraction analysis, as well as closely
elated notions of incremental stability (Angeli, 2002) and con-
ergent dynamics (Pavlov, Van De Wouw, & Nijmeijer, 2007),
as found applications in systems and control theory for ob-
erver design (Le Ny, 2020) and controller design (Lohmiller
Slotine, 2000), as well as in the analysis of biological sys-

ems (Coogan, 2019; Wang & Slotine, 2005), networked sys-
ems (Wang & Slotine, 2006), and the design of robotic sys-
ems (chaandar Ravichandar & Dani, 2019).

Recent works (Singh, Majumdar, Slotine, & Pavone, 2017;
ensing & Slotine, 2020) have shown some interesting connec-

ions between contraction theory and the analysis of continuous-
ime gradient-based algorithms for convex optimization. Indeed,
µ-strongly convex function V : Rd

→ R naturally induces a
differential equation by

φ̇ = −∇ V(φ), φ(0, x) = x, (1)
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which can be shown to be µ-contractive, i.e., satisfying ∥φ(t, x)−
φ(t, y)∥ ≤ e−µt

∥x − y∥, for all x, y ∈ Rd and t ∈ R (cf. Nes-
terov, 2003, Theorem 2.1.9). This paper is a short investigation on
when the converse to the previous sentence holds. That is, given
a differential equation that is µ-contractive, does there always
exist a µ-strongly convex function that induces the differential
equation? We show that, if sufficient smoothness of the vector
field is assumed outright, then µ-contractivity of the differential
equation with a symmetric Jacobian is equivalent to the existence
of a µ-strongly convex function which induces the differential
equation.

2. Contractive differential equations and strongly convex
functions

Consider the differential equation (DE):

φ̇ = f(φ), φ(0, x) = x. (2)

Henceforth assume that f : Rd
→ Rd is L-Lipschitz on Rd and

f has continuous partial derivatives. We say (2) is contractive if
there is a µ > 0 such that

(x − y) · (f(x) − f(y)) ≤ −µ∥x − y∥2,

for all x, y ∈ Rd and ∥ · ∥ is the Euclidean norm. We say (2)
is µ-contractive if the above holds for some specific µ > 0.
For convenience we present a number of useful known facts
concerning contractive systems.

Proposition 1. If the DE (2) is µ-contractive, then the following

hold:
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(1) There is a unique equilibrium point x∗.
(2) ∥φ(t, x)−φ(t, y)∥ ≤ e−µt

∥x−y∥, for all x, y ∈ Rd and t ∈ R.
(3) If the unique equilibrium point x∗

= 0, then ∥φ(t, x)∥ ≤

e−µt
∥x∥, for all x ∈ Rd and t ∈ R.

Furthermore, item (2) of the above is equivalent to the DE (2) being
µ-contractive.

Proof. The proof of this proposition can be largely found through-
out (Lohmiller & Slotine, 1998) (see also Singh et al., 2017) in a
more general setting. For completeness, we provide direct proofs
below.

To prove item (1), notice that, for L2 ≥ max{L, µ}, the function
g(x) = x +

µ

L22
f(x) is a contraction map from Rd to itself. This fol-

ows from a direct algebraic manipulation and the µ-contractivity
condition. Further, observe that some x̄ is a fixed point of g if and
only if x̄ is an equilibrium point of Eq. (2).

To prove item (2), let ∆φ = φ(t, x) − φ(t, y) and consider
d
dt

∥φ(t, x) − φ(t, y)∥2
= 2(∆φ) · (f(φ(t, x)) − f(φ(t, y)))

≤ −2µ∥φ(t, x) − φ(t, y)∥2.

pplying Grönwall’s inequality and taking square roots yields the
esult.

Item (3) is an application of item (2) with y = x∗
= 0.

To prove the ‘‘furthermore’’ part, notice that ∥φ(t, x)−φ(t, y)∥2

= ∥x − y∥2
+

∫ t
0

d
dt ∥φ(t, x) − φ(t, y)∥2ds and similarly e−2µt

=

1 +
∫ t
0 −2µe−2µsds. Thus,

∥φ(t, x) − φ(t, y)∥2
≤ ∥x − y∥2e−2µt ,

∥x − y∥2
+

∫ t

0

d
dt

∥∆φ∥
2ds ≤ ∥x − y∥2

+

∫ t

0
−2µe−2µsds∥x − y∥2,

nd we get for all t ≥ 0∫ t

0
2(∆φ) · (∆ fφ) + 2µe−2µs

∥x − y∥2ds ≤ 0,

here ∆ fφ = f(φ(s, x)) − f(φ(s, y)). Thus the integrand of the
bove cannot be strictly positive for all small s > 0. Since the
ntegrand is also continuous, it must be non-positive at s = 0.
valuating the integrand at s = 0 and dividing by two yields
x − y) · (f(x) − f(y)) ≤ −µ∥x − y∥2. □

A function, V : Rd
→ R is said to be strongly convex if there

s a parameter µ > 0 with

x − y) · (∇ V(x) − ∇ V(y)) ≥ µ∥x − y∥2.

f the previous equation holds for a particular parameter µ, then
e say V is µ-strongly convex.
Strongly convex functions are desirable to work with for min-

mization problems (i.e., minx∈Rd V(x)), since they have a global
inimum. Gradient-based algorithms for minimizing strongly
onvex functions often lead to a linear (geometric) convergence
ate (Nesterov, 2003). If we cast the gradient descent algorithm
(ℓ+1)

= x(ℓ) − h∇ V(x(ℓ))

s a sequence of Euler steps of a continuous-time DE, we obtain
1). It is easy to show that, if V is µ-strongly convex, then the DE
1) is µ-contractive (see, e.g., Nesterov, 2003, Theorem 2.1.9). The
emainder of this paper is devoted to proving that the converse
o this statement holds. That is, if the DE (2) is µ-contractive,
hen there exists some µ-strongly convex function V such that
V = − f.
2

. Finding the potential V

We begin by making some observations on the functions V and
provided ∇ V = − f.

Proposition 2 (Necessary Conditions on V and f). If a function V
such that ∇ V = − f exists, then the following hold:

(a) V is µ-strongly convex if and only if (2) is µ-contractive.
(b) The Jacobian of f is symmetric.
(c) If V(0) = 0, (2) is µ-contractive and f(0) = 0 then, V = U

where

U(x) :=

∫
∞

0
∥ f(φ(s, x))∥2ds

for all x ∈ Rd.

Proof. To show (a) we can see that

(x − y) · (∇ V(x) − ∇ V(y)) = −(x − y) · (f(x) − f(y))

≥ µ∥x − y∥2

olds for all x, y ∈ Rd, in the case of V being µ-strongly convex
r (2) being µ-contractive.
For (b), consider the Hessian of V, which is equal to the Jaco-

ian of the gradient of V and also equal to the negative Jacobian
f f(i.e., H(V) = −

∂f
∂x ). Because we assumed that f has continuous

partial derivatives, this Hessian matrix must be symmetric by
Clairaut’s Theorem. Hence, the Jacobian of f must be symmetric if
the function V exists with ∇ V = − f.

Lastly, for (c) notice∫ t

0
−∥ f(φ(s, x))∥2ds =

∫ t

0
∇ V(φ(s, x)) · φ̇(s, x)ds

= V(φ(t, x)) − V(x).

So∫ t

0
∥ f(φ(s, x))∥2ds = −V(φ(t, x)) + V(x).

Now assume that the DE (2) is µ-contractive then, the DE has a
unique asymptotically stable equilibrium point in Rd. By assump-
tion, f(0) = 0 and so limt→∞ φ(t, x) = 0 for all x ∈ Rd. Thus we
can see that

V(x) =

∫
∞

0
∥ f(φ(s, x))∥2ds + V(0).

where we have already assumed that the additive constant V(0) =

0. So V = U. □

Given that (2) is µ-contractive then, the DE has a unique
asymptotically stable equilibrium point in Rd. Without loss of
generality, we assume for the reminder of the paper that f(0) = 0.

We see that Proposition 2 item (c) gives us a candidate func-
tion for the potential, V. However, there is an even better known
construction for the potential—given that f has symmetric Jaco-
bian.

Proposition 3. Suppose that, f has continuous partial derivatives
and has symmetric Jacobian then, the function

W(x) := −

∫ 1

0
f(tx) · xdt

is a potential for f, ie. ∇ W = − f.

Proof. The Poincaré Lemma (Lang, 1999, Theorem 4.1) from

differential geometry gives us ∇ W = − f. Differential geometry
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an seem cryptic to the uninitiated, so we provide an elementary
irect proof of the desired result.
Given a function g(x), let gxk =

∂g
∂xk

, where xk is the kth

component of x. Assuming that we can take partial derivatives
inside the integral (we can here, see Bartle, 2001, Theorem 12.14),
we end up with

∂ W
∂xk

= −

∫ 1

0

∂

∂xk
f(tx) · xdt =

∫ 1

0

∂ f(tx)
∂xk

· tx + fk(tx)dt,

where fk is the kth component of f and ∂ f
∂xk

= (f1xk , f2xk , . . . , fdxk )
T

s the component wise partial derivative with respect to xk. Note
hat ∂ f

∂xk
is the kth column of the Jacobian of f and that the

bove holds for all k = 1, 2, . . . , d. By definition of matrix
ultiplication, ( ∂ f

∂x1
· tx, ∂ f

∂x2
· tx, . . . , ∂ f

∂xd
· tx)T =

∂ f
∂x

⏐⏐T
txtx. But the

acobian of f is assumed to be symmetric, this allows us to write

W(x) = −

∫ 1

0

∂ f
∂x

⏐⏐⏐⏐
tx
tx + f(tx)dt

= −

∫ 1

0

d
dt

(t f(tx))dt

= −(t f(tx)|10)
= − f(x). □

We note, that in the context of the above proposition, W can
be thought of as the potential of the conservative force field f.
Under this viewpoint, the defining integral can be written as
−

∫ x
0 f(r) · dr . Because the force field is conservative, we can

compute the aforementioned integral by integrating over the
straight line from 0 to x; doing this will yield the definition for
W.

We can now state and prove the main result.

Theorem 4. Suppose that f has continuous partial derivatives. Then
the following are equivalent:

(1) The DE (2) is µ-contractive and ∂ f
∂x

⏐⏐
x =

(
∂ f
∂x

⏐⏐
x

)T
for all x ∈ Rd.

(2) The function W(x) = −
∫ 1
0 f(tx) ·xdt is µ-strongly convex and

∇ W = − f.

urthermore, any µ-strongly convex function, V : Rd
→ R, with

V = − f is equal to both W and U up to an additive constant.
astly, if (1) and therefore (2) holds then, W(x) is a Lyapunov
unction for the DE (2) which shows global exponential stability of
he origin.

roof. (2) H⇒ (1): By items (a) and (b) of Proposition 2.
Assume now that (1) holds. By Proposition 3 we have that
W = − f. By item (a) of Proposition 2 we have that W is
-strongly convex.
To prove the ‘‘furthermore’’, if we are given a µ-strongly

onvex function V with ∇ V = − f then, (1) holds by the same
rgument as in the (2) H⇒ (1) proof above. Since (1) and (2) are
quivalent we know that ∇ W = − f. Thus, ∇ W = ∇ V and, by

standard calculus results, differ by a constant. Lastly, W(x) = U(x)
by item (c) of Proposition 2.

To show that W is a Lyapunov function for the DE (2) which
proves global exponential stability of the origin, we must show
that (see Khalil, 1992, Theorem 4.10) k1∥x∥2

≤ W(x) ≤ k2∥x∥2

and d
dt W ◦φ(t, x) ≤ −k3∥φ(t, x)∥2 for some constants k1, k2, k3 >

0. Since f is µ-contractive we have,

(x − y) · (f(x) − f(y)) ≤ −µ∥x − y∥2

set y = 0 (assuming that f(0) = 0 as always) and multiply both
ides by −1,

− x · f(x) ≥ µ∥x∥2. (3)
3

From here we can tell

W(x) =

∫ 1

0
− f(tx) · xdt

=

∫ 1

0

− f(tx) · tx
t

dt

≥

∫ 1

0
µ∥tx∥2t−1dt =

µ∥x∥2

2
.

Since f is L Lipschitz and f(0) = 0,

− f(tx) · x ≤ |f(tx) · x| ≤ Lt∥x∥2.

So W(x) ≤
∫ 1
0 Lt∥x∥2dt =

1
2 L∥x∥

2. Lastly, consider

d
dt

W ◦φ(t, x) = ∇ W(φ(t, x)) · φ̇(t, x) = −∥ f(φ(t, x))∥2

Notice that by Cauchy–Schwartz inequality and Eq. (3), µ∥x∥2
≤

−x · f(x) ≤ ∥x∥∥ f(x)∥, dividing this by ∥x∥ and squaring both sides
gives us µ2

∥x∥2
≤ ∥ f(x)∥2. Using this,

d
dt

W ◦φ(t, x) = −∥ f(φ(t, x))∥2
≤ −µ2

∥φ(t, x)∥2.

This completes the proof. □

It is possible to directly show that the integral function U(x) =
∞

0 ∥ f(φ(s, x))∥2ds is a potential for f.

emark 5. As stated, the main result is clearly related to
yapunov theory. It is somewhat rare for a general Lyapunov
unction, like W(x), to not explicitly depend on solutions to the
E. In fact, it is more typical for Lyapunov functions to involve
ntegrating solutions, like in U(x). Such Lyapunov functions are
alled non-constructive and are primarily of theoretical signifi-
ance in the context of converse Lyapunov theorems. However,
ometimes a non-constructive Lyapunov function can be approx-
mated constructively via linear programming in a way which
roduces a practically usable Lyapunov function, see Hafstein
2004).

In the very specific scenario of this paper, we have shown that
he non-constructive U(x) is equal to the constructive W(x). This
uggests modifications to W(x) may provide inspiration for an-
ther algorithm which provides constructive Lyapunov functions.
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