
Workshop track - ICLR 2018

DIFFERENTIABLE NEURAL NETWORK
ARCHITECTURE SEARCH

Richard Shin∗& Charles Packer∗& Dawn Song
University of California, Berkeley
{ricshin,cpacker,dawnsong}@berkeley.edu

ABSTRACT

The successes of deep learning in recent years has been fueled by the development
of innovative new neural network architectures. However, the design of a neural
network architecture remains a difficult problem, requiring significant human ex-
pertise as well as computational resources. In this paper, we propose a method
for transforming a discrete neural network architecture space into a continuous
and differentiable form, which enables the use of standard gradient-based opti-
mization techniques for this problem, and allows us to learn the architecture and
the parameters simultaneously. We evaluate our methods on the Udacity steer-
ing angle prediction dataset, and show that our method can discover architectures
with similar or better predictive accuracy but significantly fewer parameters and
smaller computational cost.

1 INTRODUCTION

Deep neural networks have seen great success at solving problems in difficult application domains
(speech recognition, machine translation, object recognition, motor control), and the design of new
neural network architectures better suited to the problem at hand has served as a crucial source
for these advancements. Several recent works have treated neural network architecture design as a
reinforcement learning problem (Zoph & Le, 2016; Baker et al., 2016; Zoph et al., 2017). While
these approaches have successfully found interesting architectures for highly-studied benchmark
problems, these methods require training (tens of) thousands of models from scratch and testing
them on a validation set.

In this paper, we treat network architecture search as a “fully differentiable” problem, and attempt to
simultaneously find the architecture and the concrete parameters for the architecture that best solve a
given problem. Unlike random, grid search, and reinforcement learning based search, we can obtain
this result by training a single model which is roughly the same size as this maximal architecture,
rather than needing to train a potentially very large number of different models to achieve a similar
level of performance. By learning the architecture and the parameters simultaneously, we obtain a
new design point with different trade-offs in the solution space of neural network architecture space.

Our approach has deep connections to network compression, where the goal is to take an existing
neural network and reduce the number of parameters and the computational cost with minimal im-
pact on the models’ prediction accuracy. LeCun et al. (1989) and Hassibi et al. (1993) remove single
weights from the network by examining second-order derivatives of the loss function, while Han
et al. (2015) simply removed small weights and retrained the remaining weights. Setting logically
contiguous blocks in the weight matrix to 0 allows for more significant speedups, and several meth-
ods use group lasso regularization to obtain this effect: Wen et al. (2016), Lebedev & Lempitsky
(2016), Zhou et al. (2016) and Alvarez & Salzmann (2016). Li et al. (2016) remove feature maps
from the weights of a convolutional kernel to achieve structured sparsity instead of group lasso.
Liu et al. (2017) apply L1 regularization to the channel-wise scaling parameter in batch normaliza-
tion for convolutional layers, and remove channels with corresponding parameters close to 0. The
core regularization methods used in the paper build upon the prior work mentioned, but we have
combined them in various ways, especially for learning grouped convolutions.

∗Equal contribution.

1



Workshop track - ICLR 2018

2 OVERVIEW OF APPROACH FOR CONVOLUTIONAL NETS

While our overall approach is more general, for concreteness we only describe our approach for
convolutional nets. For each convolutional layer, we would like to search over filter sizes, number
of channels, and grouped convolutions. To handle the first two choices, we can replace each con-
volution with

∑n,m
i,j=1 αiβj(W

(i,j) ∗ x), where ∗ is the convolution operator, n,m are numbers of
possible filter sizes and channel counts, and αi, βj are scalars that represent the strength of choice i,
and j (grouped convolutions are handled later). When only one of the αi and βj are nonzero, then
we have selected a filter size and number of channels for the layer.

As nm may be very large, it is impractical to actually perform nm convolutions and compute a
weighted sum. Instead, we use the linearity of convolution: α(W ∗x)+β(V ∗x) = (αW +βV )∗x,
when W and V are of the same size. We now explain how to create W (i,j) for each filter size and
number of channels so that they are all the same size and we can exploit linearity of convolution.

Filter sizes. Let us consider a set of possible filter sizes h1 × w1, · · · , hn × wn that we wish
to apply to an input. In order to ensure that the size of the output remains constant no matter
the size of the filter, we note that we need to pad the input image by hi − 1 pixels vertically and
wi − 1 pixels horizontally. Furthermore, convolution with filters of size hi × wi is identical to
the same convolution when these filters are padded with zeros on the sides so that they are of size
hmax = max(h1, · · · , hn) times wmax = max(w1, · · · , wn). Therefore, we can fix all filters to
size hmax and wmax with appropriate padding.

Number of channels. Instead of adjusting the number of output channels, we will instead vary
which subset of the input channels the convolutional layer acts upon. Imagine that we would like to
convolve a kernel W ∈ Rh×w×c×cout on c channels of an input image with cm channels. We can
transform this into a convolution with kernel W ′ ∈ Rh×w×cm×cout where W ′·,·,ki,· = W·,·,i,· for all
0 ≤ i < c and 0 ≤ ki < cm, where none of the ki overlap, and all other parts of W ′ are zero. Since
convolution with W ′ multiplies only c channels in the image with the parts of W ′ that are non-zero,
the remaining cm − c channels have no effect on the ouptut.

Merging parameters. We can now have one convolution with a kernel of size hmax × wmax ×
cm × cout, but this kernel is computed from (

∑n
i=1

∑m
j=1 hi × wi × cj) × cout parameters. We

add a further parameter sharing constraint across W (i,j) to reduce the number of parameters down
to exactly hmax × wmax × cm × cout. More specifically, we require W ′(i,j)a,b,c,d = W

′(i′,j′)
a,b,c,d for all

1 ≤ i ≤ n and 1 ≤ j 6= m unless W ′(i,j)a,b,c,d = 0 due to padding being placed at that particular
location. We can then use a single parameter tensor of size hmax × wmax × cm × cout, and scale
each element with the sum of the relevant αi to obtain the effective kernel.

Grouped convolutions. In a grouped convolution, unlike a regular convolution, each output chan-
nel is connected to a subset of the input channels, to reduce the number of parameters and save
computation compared to a full connectivity pattern. Grouped convolutions are used by architec-
tures such as ResNeXt (He et al., 2017), Inception (Szegedy et al., 2016), and Xception (Chollet,
2016). To allow learning of grouped convolutions, we add the following architecture parameters to
each convolutional layer: P ∈ Rcm×p and S ∈ Rp×cout . We will then scale the combined W·,·,i,j
with (P · S)i,j , for 0 ≤ i < cm and 0 ≤ j < cout. Intuitively, each column of P specifies a connec-
tivity pattern: if a value in the column is 0, that means the corresponding input channel is ignored.
p is a hyper-parameter specifying the maximum number of connectivity patterns. Each row of S
specifies the assignment of patterns to an output channel; if the kth value in a row of S is non-zero
and the others are zero, the corresponding output channel is influenced only by the input channels
prescribed in the kth column of P .

Obtaining a discrete architecture. We cannot obtain a discrete architecture unless αi, βj are
sparse; otherwise, representing the resulting network will require an architecture equivalent to the
largest possible architecture in the space. To ensure this, we use L1 regularization over αi and βj so
that they become sparse; we also used the sparsemax function (Martins & Astudillo, 2016) on βj .

2



Workshop track - ICLR 2018

Model FLOPs Params. Train Err. Test Err.

Baseline 840M 1.03M 0.0247 0.0945

Indiv. channels
DAS (t = 10−3, γ = 10−8) 692M 1.01M 0.0124 0.0889
DAS (t = 10−2, γ = 10−6) 402M 0.43M 0.0194 0.0912
DAS (t = 10−1, γ = 10−8) 210M 0.54M 0.0682 0.0955

Grouped convs. γ = 10−6

DAS (t = 10−4, η = 3 · 10−6) 480M 0.11M 0.0318 0.0978
DAS (t = 10−3, η = 3 · 10−6) 508M 0.19M 0.0318 0.0980
DAS (t = 10−2, η = 3 · 10−5) 409M 0.04M 0.0691 0.0996

Table 1: Performance of differentiable architecture search on the Udacity dataset. The lowest errors
(RMSE), FLOPs and parameters are in boldface. For individual channels, regularization was applied
to incoming channels individually. For grouped convolutions, we applied the method described in
section 2. t indicates the pruning threshold, γ indicates the strength of the L1 regularization, η
indicates the strength of the grouped convolution regularization applied to P and S.

For the grouped convolution parameters P and S, we used the L1,2 and L2,1 norms, also referred
to as group lasso (Yuan & Lin, 2006) and exclusive lasso (Zhou et al., 2010), separately over the
rows and columns, to promote that: 1) the columns of P differ from each other in the locations
of their non-zero entries, so that they are not redundant with each other; 2) the columns of P are
sparse, so that each connectivity pattern refers only to a few incoming channels; 3) each row of S is
sparse (ideally, contains only one non-zero entry), so that each outgoing channel only refers to one
connectivity pattern; and 4) S only refers to a small number of connectivity patterns.

Finally, we clamp all architecture parameters smaller than a threshold t to 0. To recover any slight
performance declines caused by the loss of a small number of parameters, we can optionally resume
training of the network for a short period of time.

3 EXPERIMENTAL VALIDATION AND FUTURE WORK

Our experiments focused on convolutional neural networks that we discussed heavily in the previous
section, using each of the mechanisms from section 2. We evaluate our approach on an end-to-end
steering angle prediction task, using over 100,000 labelled video frames (from car-mounted cameras
positioned at three different angles) released by Udacity1 . The self-driving vehicle domain is par-
ticularly suited to studying the accuracy/size trade-off on CNNs due to computational requirements
for cost-effective onboard GPUs.

We based our architecture space on a network recently introduced by Bojarski et al. (2016) for
end-to-end steering prediction, which was shown to have good performance on real-world driving
tasks. We allow the network to search over a variety of filter sizes and input channels: the first
three layers can select from filter height/width {1, 2, 3, 4, 5}, the next two from {1, 2, 3}, while the
fully-connected layers can only select the number of input channels. We also tried searching over
grouped convolutions instead of simply selecting the input channels to use.

Table 1 shows the subsequent size and performance of the learned model extracted from the com-
posite model (which is the same size as the baseline). We were able to see significant reductions in
the number of parameters by learning grouped convolutions, at the cost of some increase in the test
error. In particular, we can decrease the number of parameters by over tenfold compared to when
we simply remove some of the incoming channels. The architectures learned contain a variety of
filter shapes, in addition to having much smaller connectivity patterns. For example, the first bold
entry (DAS (t = 10−3, γ = 10−8)) is a network with two 3× 3 filters, one 4× 5, one 5× 4, and one
5× 5. The second bold entry (DAS (t = 10−1, γ = 10−8)) is a network with two 2× 2 filters, one
3× 3, one 3× 5, and one 5× 4. Unlike existing methods, this approach does not rely upon training
many different separate models to perform the search, since it can be integrated with learning of the
regular model parameters. For future work, we plan to expanding the search space considered in our
approach to include deeper networks and additional hand-designed architecture and cell types.

1Open Source Self-Driving Car project: https://www.udacity.com/self-driving-car

3

https://www.udacity.com/self-driving-car


Workshop track - ICLR 2018

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In Neural Networks, 1993., IEEE International Conference on, pp. 293–299. IEEE,
1993.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. arXiv preprint arXiv:1707.06168, 2017.

Vadim Lebedev and Victor Lempitsky. Fast ConvNets using group-wise brain damage. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2554–2564,
2016.

Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In Neural Information Processing Systems, volume 2, pp. 598–605, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. arXiv preprint
arXiv:1708.06519, 2017.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International Conference on Machine Learning, pp. 1614–1623,
2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact CNNs. In European
Conference on Computer Vision, pp. 662–677. Springer, 2016.

Yang Zhou, Rong Jin, and Steven Hoi. Exclusive lasso for multi-task feature selection. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 988–995, 2010.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

4


	Introduction
	Overview of Approach for Convolutional Nets
	Experimental validation and future work

