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ABSTRACT

Stochastic gradient descent (SGD) is able to find regions that generalize well, even
in drastically over-parametrized models such as deep neural networks. We observe
that noise in SGD controls the spectral norm and conditioning of the Hessian
throughout the training. We hypothesize the cause of this phenomenon is due to
the dynamics of neurons saturating their non-linearity along the largest curvature
directions, thus leading to improved conditioning.

1 INTRODUCTION

Deep neural networks (DNNs) are massively overparameterized models (Zhang et al., 2016), yet they
show state-of-art generalization performance on a wide variety of tasks when trained with stochastic
gradient descent (SGD). While understanding the generalization capability of DNNs remains an open
challenge, it has been hypothesized that SGD acts as an implicit regularizer, limiting the complexity
of the found solution (Advani & Saxe, 2017; Jastrzębski et al., 2017; Poggio et al., 2017; Wilson
et al., 2017). The dynamics of how this occurs remain unclear.

It is a shared intuition that high noise in SGD smoothes out the loss surface (Bottou, 1991). Modifica-
tions to SGD aimed at achieving a smoother loss have been proposed in, for example, (Chaudhari
et al., 2016; Gülçehre et al., 2016). Our main observation is that SGD implicitly smooths out the loss
surface, by escaping sharp regions of the loss surface.

2 SGD SMOOTHING EFFECT IN NEURAL NETWORKS

Our goal is to empirically study the impact of high noise in SGD on the geometry of the DNN
loss surface explored by SGD. We perform experiments on multilayer perceptrons (MLP) and
convolutional neural networks. MLP experiments are run on a teacher-student task of (Advani &
Saxe, 2017), where a teacher network implements a noisy mapping from inputs to labels with weights
sampled from a Gaussian of unit variance, and noise sampled from a Gaussian of variance 0.2. The
input data has dimension d = 300 and is sampled from a Gaussian of variance 1/300. The student
network tries to learn the teacher weights. MLP have two layers of hidden size 100, and use the
rectifier linear non-linearity.

CNN experiments are run on CIFAR10 and CIFAR100 (Krizhevsky et al.) datasets using the
VGG11 (Simonyan & Zisserman, 2014) and residual network (He et al., 2015) models. Unless
specified otherwise, models are trained using SGD with S = 128, η = 0.1 and momentum 0.9.
Computing the full spectrum in such a model is computationally infeasible. We approximate the top
K eigenvalues (in absolute) using the Lanczos algorithm (Lanczos, 1950; Dauphin et al., 2014), an
extension of the power method, on approximately 5% of the training data. We do not distinguish in
the CNN experiments between negative and positive eigenvalues. The spectrum is computed with
regularization (dropout and batch normalization) switched off. We use L2 = 5 · 10−4 weight decay
for both models, and dropout 0.5 in the classifier of VGG11. Experiments are performed using
Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015).
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(b) Validation loss.
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(c) Distribution of pos-
itive eigensvalues.
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(d) Distribution of neg-
atives eigenvalues.

Figure 1: Two-layers MLP trained on the teacher-student task.
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Figure 2: The top 30 eigenvalues of the Hessian (colored red to blue) of Resnet32 on CIFAR10 and
loss on the training set (thick blue line). We observe an oscillation in the top eigenvalues and in
the loss curve. Additionally, for same loss value lower η or higher S steers to Hessian with higher
spectrum. Top row compares η = 0.1 with η = 0.01. Bottom row compares S = 32 with S = 256.

We first explore the impact of high learning rate by looking at the spectrum of the Hessian of our
model, through training. To ease the computational burden associated with the Hessian spectrum
computation, we consider a small two-layer MLP model and the teacher-student task. We train several
MLPs using SGD for 50 epochs with different learning rates.

We report the Hessian condition number κ(H) throughout training in Fig. 1(a). The model trained
with higher learning rate, reaches lower κ(H). Next, we look at the full Hessian spectrum for a MLP
trained with high learning rate and low learning rate in Fig. 1(c) and (d). We confirm the finding
of Sagun et al. (2016; 2017) observing that the the Hessian is ill-conditioned for both high-noise
and low-noise model. Further, we see that the high learning rate reduces the magnitude of the large
eigenvalues (in absolute). We also report that low κ(H) correlates with better performance on unseen
data in Fig. 1 (b).

Next, we confirm that noise in SGD has similar effects in deeper convolutional models. We track the
top 30 (in absolute value) eigenvalues of the Hessian using the Lanczos approximation algorithm for
Resnet32 trained using different learning rates and batch-sizes on CIFAR10. In Fig. 2, top, we report
how the eigenvalues evolve through the training epochs, for different learning rates. Higher learning
rate leads to generally lower spectral norm, even for the same loss value. We also notice that this is
especially prominent early in the training.

To ensure robustness of our results, for Resnet32 and VGG11 on CIFAR10 we run a grid of 11 values
of η in the range [10−4, 10−1]. Each model is trained for 200 epochs and we measure the average
(over the course of training) of the top k eigenvalues spectrum and of the spectral norm. Fig. 3 (left)
reports a summary of the considered grid. We observe an approximately linear relation between 1

η
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Figure 3: Hyperparameters of SGD control the
spectrum of Hessian. The larger 1/η (left), or S
(right) in SGD the larger the average of the top
10 eigenvalues (dotted line), and spectral norm
(solid line).
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Figure 4: Zoom on the first epoch of training
Resnet32 (left) and VGG (right) shows high fre-
quency (batch scale) oscillatory evolution of the
top eigenvalues of the Hessian.
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Figure 5: Evolution of average percentage of
dead neurons (left) compared with evolution
of the spectral norm (right) for different η for
Resnet32. Learning rate from highest to lowest
in red to blue.
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Figure 6: Momentum reduces spectral norm of
the Hessian. Training at η = 0.1 and S = 128
on VGG11 and CIFAR10 (left) and CIFAR100
(right).
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Figure 7: Slice of the loss surface along eigenvectors (columns) for Resnet32 with η = 0.1 in the
first 100 epochs. Each subplot represents time evolution of the loss surface along one eigenvector (y
axis is loss, x axis is distance) over the first 100 batches of Resnet32 training (blue to red).

and each of spectral norm and average of the top 10 eigenvalues. Next, we run a similar experiment
changing S in range [32, 1024], and observe a similar linear relation, see Fig. 3 (right).

Next, we zoom onto first epoch of training Resnet32. We observe that high noise in SGD leads to
high frequency oscillations in the spectral norm, see Fig. 4. To further examine the phenomena, in
Fig. 7, for each eigendirection, we plot how the loss surface changes in this first epoch along the
eigendirections. We use a constant step along the eigenvectors scaled by η.

Finally, we explore the impact of momentum, observing that large momentum also leads to a a drastic
reduction of spectral norm of the Hessian, see Fig. 6 for results on the VGG11 network on CIFAR10
and CIFAR100.

2.1 WHY HIGH NOISE REDUCES THE SPECTRAL NORM

In linear regression, the behaviour along a given eigenvector depends on the product of η and its
eigenvalue λ. If the product is too high then, this direction will diverge. However, when training
DNNs, SGD is able to escape regions that lead to such divergence. Figs. 2, 4 and 7 report that the
magnitude of the largest eigenvalues oscillate through training of Resnet32 with η = 0.1, and hence
ρ(H) oscillates. To explain the cause of this phenomena, we hypothesize that SGD takes too large
a step along the largest curvature directions which leads to an increase in the percentage of dead
neurons due to saturation, which in turn leads to decrease of the eigenvalue associated with the largest
curvature directions.

We consider that a neuron is saturated or dead if the mean absolute activation over a batch of examples
is less than 10−3. In Fig. 5 we report the number of dead neurons through training of Resnet32 on
CIFAR10 as well as the Hessian spectral norm. Higher learning rate corresponds both to a higher
percentage of dead neurons and lower Hessian spectral norm.

3 CONCLUSIONS

We investigated how noise in SGD dynamically impacts the loss geometry throughout training. We
observe that noise in SGD controls the magnitude of the top eigenvalues (in absolute) of the Hessian
throughout training. We observe that SGD with larger noise reduces the top eigenvalues. This
behaviour acts as an implicit regularizer as it leads to a better conditioning of the Hessian which is
known to correlate with better generalization performances.
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