SGD Smooths the Sharpest Directions

Stanisław Jastrzębski1,2, Zachary Kenton2, Nicolas Ballas3, Asja Fischer4, Yoshua Bengio2 & Amos Storkey5

1Jagiellonian University, Cracow, Poland
2MILA, Université de Montréal, Canada
3Facebook, Montreal, Canada
4University of Bonn, Bonn, Germany
5The University of Edinburgh, United Kingdom

\section*{Abstract}

Stochastic gradient descent (SGD) is able to find regions that generalize well, even in drastically over-parametrized models such as deep neural networks. We observe that noise in SGD controls the spectral norm and conditioning of the Hessian throughout the training. We hypothesize the cause of this phenomenon is due to the dynamics of neurons saturating their non-linearity along the largest curvature directions, thus leading to improved conditioning.

\section{Introduction}

Deep neural networks (DNNs) are massively overparameterized models (Zhang et al., 2016), yet they show state-of-art generalization performance on a wide variety of tasks when trained with stochastic gradient descent (SGD). While understanding the generalization capability of DNNs remains an open challenge, it has been hypothesized that SGD acts as an implicit regularizer, limiting the complexity of the found solution (Advani & Saxe, 2017; Jastrzębski et al., 2017; Poggio et al., 2017; Wilson et al., 2017). The dynamics of how this occurs remain unclear.

It is a shared intuition that high noise in SGD smoothes out the loss surface (Bottou, 1991). Modifications to SGD aimed at achieving a smoother loss have been proposed in, for example, (Chaudhari et al., 2016; Gülçehre et al., 2016). Our main observation is that SGD implicitly smoothes out the loss surface, by escaping sharp regions of the loss surface.

\section{SGD Smoothing Effect in Neural Networks}

Our goal is to empirically study the impact of high noise in SGD on the geometry of the DNN loss surface explored by SGD. We perform experiments on multilayer perceptrons (MLP) and convolutional neural networks. MLP experiments are run on a teacher-student task of (Advani & Saxe, 2017), where a teacher network implements a noisy mapping from inputs to labels with weights sampled from a Gaussian of unit variance, and noise sampled from a Gaussian of variance 0.2. The input data has dimension \(d = 300\) and is sampled from a Gaussian of variance \(1/300\). The student network tries to learn the teacher weights. MLP have two layers of hidden size 100, and use the rectifier linear non-linearity.

CNN experiments are run on CIFAR10 and CIFAR100 (Krizhevsky et al.) datasets using the VGG11 (Simonyan & Zisserman, 2014) and residual network (He et al., 2015) models. Unless specified otherwise, models are trained using SGD with \(S = 128\), \(\eta = 0.1\) and momentum 0.9. Computing the full spectrum in such a model is computationally infeasible. We approximate the top \(K\) eigenvalues (in absolute) using the Lanczos algorithm (Lanczos, 1950; Dauphin et al., 2014), an extension of the power method, on approximately 5\% of the training data. We do not distinguish in the CNN experiments between negative and positive eigenvalues. The spectrum is computed with regularization (dropout and batch normalization) switched off. We use \(L_2 = 5 \cdot 10^{-4}\) weight decay for both models, and dropout 0.5 in the classifier of VGG11. Experiments are performed using Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015).
We first explore the impact of high learning rate by looking at the spectrum of the Hessian of our model, through training. To ease the computational burden associated with the Hessian spectrum computation, we consider a small two-layer MLP model and the teacher-student task. We train several MLPs using SGD for 50 epochs with different learning rates.

We report the Hessian condition number $\kappa(H)$ throughout training in Fig. 1(a). The model trained with higher learning rate, reaches lower $\kappa(H)$. Next, we look at the full Hessian spectrum for a MLP trained with high learning rate and low learning rate in Fig. 1(c) and (d). We confirm the finding of Sagun et al. (2016; 2017) observing that the Hessian is ill-conditioned for both high-noise and low-noise model. Further, we see that the high learning rate reduces the magnitude of the large eigenvalues (in absolute). We also report that low $\kappa(H)$ correlates with better performance on unseen data in Fig. 1(b).

Next, we confirm that noise in SGD has similar effects in deeper convolutional models. We track the top 30 (in absolute value) eigenvalues of the Hessian using the Lanczos approximation algorithm for Resnet32 trained using different learning rates and batch-sizes on CIFAR10. In Fig. 2, top, we report how the eigenvalues evolve through the training epochs, for different learning rates. Higher learning rate leads to generally lower spectral norm, even for the same loss value. We also notice that this is especially prominent early in the training.

To ensure robustness of our results, for Resnet32 and VGG11 on CIFAR10 we run a grid of 11 values of η in the range $[10^{-4}, 10^{-1}]$. Each model is trained for 200 epochs and we measure the average (over the course of training) of the top k eigenvalues spectrum and of the spectral norm. Fig. 3(left) reports a summary of the considered grid. We observe an approximately linear relation between η^{-1}.
We investigated how noise in SGD dynamically impacts the loss geometry throughout training. We consider that a neuron is saturated or dead if the mean absolute activation over a batch of examples is less than 10^{-3}. In Fig. 5, we report the number of dead neurons through training of Resnet32 on CIFAR10 as well as the Hessian spectral norm. Higher learning rate corresponds both to a higher percentage of dead neurons and lower Hessian spectral norm.

2.1 Why high noise reduces the spectral norm

In linear regression, the behaviour along a given eigenvector depends on the product of η and its eigenvalue λ. If the product is too high then, this direction will diverge. However, when training DNNs, SGD is able to escape regions that lead to such divergence. Figs. 2, 4, and 7 report that the magnitude of the largest eigenvalues oscillates through training of Resnet32 with $\eta = 0.1$, and hence $\rho(H)$ oscillates. To explain the cause of this phenomena, we hypothesize that SGD takes too large a step along the largest curvature directions which leads to an increase in the percentage of dead neurons due to saturation, which in turn leads to decrease of the eigenvalue associated with the largest curvature directions.

Finally, we explore the impact of momentum, observing that large momentum also leads to a drastic reduction of spectral norm of the Hessian, see Fig. 6 for results on the VGG11 network on CIFAR10 and CIFAR100.

2 Conclusions

We investigated how noise in SGD dynamically impacts the loss geometry throughout training. We observe that noise in SGD controls the magnitude of the top eigenvalues (in absolute) of the Hessian throughout training. We observe that SGD with larger noise reduces the top eigenvalues. This behaviour acts as an implicit regularizer as it leads to a better conditioning of the Hessian which is known to correlate with better generalization performances.
REFERENCES

François Chollet et al. Keras. https://github.com/keras-team/keras 2015.

