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ABSTRACT

A new model for video captioning is developed, using a deep three-dimensional
Convolutional Neural Network (C3D) as an encoder for videos and a Recurrent
Neural Network (RNN) as a decoder for captions. A novel attention mechanism
with spatiotemporal alignment is employed to adaptively and sequentially focus
on different layers of CNN features (levels of feature “abstraction”), as well as
local spatiotemporal regions of the feature maps at each layer. The proposed
approach is evaluated on the YouTube2Text benchmark. Experimental results
demonstrate quantitatively the effectiveness of our proposed adaptive spatiotem-
poral feature abstraction for translating videos to sentences with rich semantic
structures.

1 INTRODUCTION

Accurately understanding the fast-growing number of videos poses a significant challenge for com-
puter vision and machine learning. An important component of video analyasis involves generating
natural-language video descriptions, i.e., video captioning. Inspired by the successful deployment
of the encoder-decoder framework used in machine translation (Cho et al.,2014) and image caption
generation (Vinyals et al.l |2015; |Pu et al.l 2016} |Gan et al., 2017), most recent work on video cap-
tioning (Venugopalan et al.| [2015; |Yu et al.,[2016) employs a 2-dimentional (2D) or 3-dimentional
(3D) Convolutional Neural Network (CNN) as an encoder, mapping an input video to a compact fea-
ture vector representation; a Recurrent Neural Network (RNN) is typically employed as a decoder,
unrolling this feature vector to generate a sequence of words of arbitrary length.

Despite achieving encouraging successes in video captioning, previous models suffer from impor-
tant limitations. First, the rich contents in an input video is often compressed to a single compact
feature vector for caption generation; this approach is prone to miss detailed spatiotemporal infor-
mation. Secondly, the video feature representations are typically extracted from the output of a
CNN at a manually-selected fixed layer, which is incapable of modeling rich context-aware seman-
tics that requires focusing on different abstraction levels of features. As investigated in [Zeiler &
Fergus| (2014)); [Simonyan et al.| (2014), the features from layers at or near the top of a CNN tends
to focus on global semantic discriminative visual percepts, while low-layer feature provides more
local, fine-grained information. It is desirable to select/weight features from different CNN layers
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adaptively when decoding a caption, selecting different levels of feature abstraction by sequentially
emphasizing features from different CNN layers. In addition to focusing on features from differ-
ent CNN layers, it is also desirable to emphasize local spatiotemporal regions in feature maps at
particular layers.

To realize these desiderata, our proposed decoding process for generating a sequence of words dy-
namically emphasizes different levels (CNN layers) of 3D convolutional features, to model impor-
tant coarse or fine-grained spatiotemporal structure. Additionally, the model employs different con-
texts and adaptively attends to different spatiotemporal locations of an input video. While some pre-
vious models use 2D CNN features to generate video representations, our model adopts the features
from a pre-trained deep 3D convolutional neural network (C3D); such features have been shown to
be natural and effective for video representations, action recognition and scene understanding (Tran
et al |2015) by learning the spatiotemporal features that can provide better appearance and motion
information. In addition, the proposed model is inspired by the recent success of attention-based
models that mimic human perception (Mnih et al., 2014} Xu et al., [2015)).

The principal contributions of this paper are as follows: (i) A new video-caption-generation model
is developed by dynamically modeling context-dependent feature abstractions; (if) New attention
mechanisms to adaptively and sequentially emphasize different levels of feature abstraction (CNN
layers), while also imposing attention within local spatiotemporal regions of the feature maps at each
layer are employed; (iii) 3D convolutional transformations are introduced to achieve spatiotemporal
and semantic feature consistency across different layers; (iv) The proposed model achieves state-of-
the-art performance on Youtube2Text benchmark. We call the proposed algorithm Adaptive Spa-
tioTemporal representation with dynAmic abstRaction (ASTAR).

2 METHOD

Consider N training videos, the nth of which is denoted X("), with associated caption Y (™), The

length-T, caption is represented Y (") = (ygn), ey y%ﬁ)) with yﬁ”) a 1-of-V (“one hot”) encoding

vector, with V' the size of the vocabulary.

For each video, the C3D feature extractor (Tran et al., 2015) produces a set of features A =
{a(ln), e a(L"), a(L"le , where {a(ln), e a(L")} are feature maps extracted from L convolutional

layers, and the fully connected layer at the top, responsible for a(L”}_l, assumes that the input video

is of the same size for all videos. To account for variable-length videos, we employ mean pooling
to the video clips, based on a window of length 16 (as in (Tran et al., 2015)) with an overlap of 8
frames.

2.1 CAPTION MODEL

For notational simplicity, henceforth we omit superscript nn. The ¢-th word in a caption, vy, is
mapped to an M-dimensional vector w; = W,y,, where W, € RMx*V ig a learned word-
embedding matrix, i.e., w; is a column of W, chosen by the one-hot y,. The probability of caption
Y = {y,}it=1,r is defined as

P(YIA) = p(ys | AT p(Wily<i A)- M
Specifically, the first word y; is drawn from p(y;|A) = softmax(Vh;), where h; =
tanh(Car41). Bias terms are omitted for simplicity throughout the paper. All the other words
in the caption are then sequentially generated using an RNN, until the end-sentence symbol is gen-
erated. Conditional distribution p(y, |y .., A) is specified as softmax(Vh,), where h; is recursively
updated as hy = H(w;—_1,hi—1,2¢). V is a matrix connecting the RNN hidden state to a softmax,
for computing a distribution over words. z; = ¢(h;—1,a1,...,ar) is the context vector used in
the attention mechanism, capturing the relevant visual features associated with the spatiotemporal
attention (also weighting level of feature abstraction), as detailed in Sec. [2.2] The transition function
H(-) is implemented with Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, |1997).

Given the video X (with features A) and associated caption Y, the objective function is the sum of
the log-likelihood of the caption conditioned on the video representation:

log p(Y|A) = log p(y,|A) + 3/, log p(y, |y, A) (2)
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Equation (2Z)) is a function of all model parameters to be learned; they are not explicitly depicted
in for notational simplicity. Further, corresponds to a single video-caption pair, and when
training we sum over all such training pairs.

2.2 ATTENTION MECHANISM

We introduce two attention mechanisms when predicting word y,: (z) spatiotemporal-localization
attention, and (i¢) abstraction-level attention; these, respectively, measure the relative importance of
a particular spatiotemporal location and a particular CNN layer (feature abstraction) for producing
Y;, based on the word-history information y ;.

To achieve this, we seek to map a; — a;, where 4D tensors a; all have the same dimensions,
are embedded into same semantic spaces, and are aligned spatialtemporally. Specifically, a;, [ =
1,..., L—1 are aligned in the above ways with a,. To achieve this, we filtereacha;,l =1,..., L—
1, and then apply max-pooling; the filters seek semantic alignment of the features (including feature
dimension), and the pooling is used to spatiotemporally align the features with a. Specifically,
consider

n l
ar = f(35kLy au(k) + Upy), 3)
for! = 1,...,L — 1, and with a; = ar. a;(k) is the 3D feature map (tensor) for dictionary
k € {1,...,n%} atlayer [, and Uy, is a 4D tensor. The convolution * in (3) operates in the three

shift dimensions, and a,; (k) * U}, ; manifests a 4D tensor. Function f(-) is an element-wise nonlinear
activation function, followed by max pooling, with the pooling dimensions meant to realize final

. . . . R L.
dimensions consistent with ar,. Consequently, a;; € R"F is a feature vector.

With {a; };=1 1, semantically and spatiotemporally aligned, we now seek to jointly quantify the value
of a particular spatiotemporal region and a particular feature layer (“abstraction”) for prediction of
the next word. For each a,;, the attention mechanism generates two positive weights, «y; and
By, which measure the relative importance of location 4 and layer ! for producing y, based y_,.
Attention weights «y; and Sy and context vector z; are computed as

ey = wl tanh(Waaa; + Whahi 1), ay; = softmax({e;}), s: = Zlel o, ())
by = wg tanh(wsﬁstl + Whﬁht71)> Bu = softmax({btl}), Zt = Zlel Busu, (5)

where @; is a vector composed by stacking {@;; };=1,1, (all features at position ). e;; and by are
scalars reflecting the importance of spatiotemporal region ¢ and layer ¢ to predicting y,, while ay;
and f3;; are relative weights of this importance, reflected by the softmax output. In (4) we provide
attention in the spatiotemporal dimensions, with that spatiotemporal attention shared across all L
(now aligned) CNN layers. In (3)) the attention is further refined, focusing attention in the layer
dimension.

3 EXPERIMENTS

We present results on Microsoft Research Video Description Corpus (YouTube2Text) (Chen &
Dolan, 2011). The Youtube2Text contains 1970 Youtube clips, and each video is annotated with
around 40 sentences. For fair comparison, we used the same splits as provided in |Yu et al.|(2016)),
with 1200 videos for training, 100 videos for validation, and 670 videos for testing. We convert
all captions to lower case and remove the punctuation, yielding vocabulary sizes V' = 12594.
We consider the RGB frames of videos as

input, and all videos are resizedto 112x 112 Table 1: Results on BLEU-4, METEOR and CIDEr met-
spatially, with 2 frames per second. The rics compared to state-of-the-art results (Yu et al.,|2016) on
C3D (Tran et all, 2013) is pretrained on Youtube2Text. respectively.

Sports-1M dataset Karpathy et al| (2014), Methods ‘ BLEU-4 METEOR CIDEr
consisting of 1.1 million sports videos be-

longing to 487 categories. We extract the h-RNN [4] 49.9 32.6 65.8
features from four convolutional layers and ASTAR SL74 36.39 72.18
one fully connected layer, named as pool2,
pool3, poold, pool5 and fc-7 in the C3D (Tran et al.| 2015), respectively.
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The widely used BLEU (Papineni et al.| 2002), METEOR (Banerjee & Lavie|, |2005) and CIDEr
(Vedantam et al.l [2015) metrics are employed to quantitatively evaluate the performance of our
video caption generation model, and other models in the literature.

Results are summarized in Tables [T} and we outperform the previous state-of-the-art result on
Youtube2Text. This demonstrates the importance of leveraging intermediate convolutional layer
features. In addition, we achieve these results using a single model, without averaging over an
ensemble of such models.

4 CONCLUSION AND FUTURE WORK

We have proposed a novel video captioning model, that adaptively selects/weights the feature ab-
straction (CNN layer), as well as the location within a layer-dependent feature map. Our model
achieves state-of-the-art video caption generation performance on Youtube2Text benchmark.
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