Recommender Systems with Generative Retrieval

Shashank Rajput* Nikhil Mehta* Anima Singh
University of Wisconsin-Madison Google DeepMind Google DeepMind
Raghunandan Keshavan Trung Vu Lukasz Heldt Lichan Hong

Google Google Google Google DeepMind

Yi Tay Vinh Q. Tran Jonah Samost Maciej Kula
Google DeepMind Google Google Google DeepMind

Ed H. Chi Maheswaran Sathiamoorthy
Google DeepMind Google DeepMind

Abstract

Modern recommender systems perform large-scale retrieval by embedding queries
and item candidates in the same unified space, followed by approximate nearest
neighbor search to select top candidates given a query embedding. In this paper,
we propose a novel generative retrieval approach, where the retrieval model au-
toregressively decodes the identifiers of the target candidates. To that end, we
create semantically meaningful tuple of codewords to serve as a Semantic ID for
each item. Given Semantic IDs for items in a user session, a Transformer-based
sequence-to-sequence model is trained to predict the Semantic ID of the next
item that the user will interact with. We show that recommender systems trained
with the proposed paradigm significantly outperform the current SOTA models on
various datasets. In addition, we show that incorporating Semantic IDs into the
sequence-to-sequence model enhances its ability to generalize, as evidenced by
the improved retrieval performance observed for items with no prior interaction

history.

1 Introduction

Recommender systems help users discover
content of interest and are ubiquitous in
various recommendation domains such as
videos [4} 43, 9], apps [3], products [6} 8],
and music [18,[19]. Modern recommender
systems adopt a retrieve-and-rank strategy,
where a set of viable candidates are se-
lected in the retrieval stage, which are then
ranked using a ranker model. Since the
ranker model works only on the candidates
it receives, it is desired that the retrieval
stage emits highly relevant candidates.

R
e
User History Next item
Orange shoes, Brand X} Red shoes, Brand Y Orange shoes, Brand Y
Atomic Item ID: 233 | Atomic Item ID: 515 Atomic Item ID: 64

Semantic ID Item
Generator Lookup

(5,23, 55) (5,25,78) | Generative (5, 25, 55)
Retrieval

Figure 1: Overview of the Transformer Index for GEnerative
Recommenders (TIGER) framework. With TIGER, sequential
recommendation is expressed as a generative retrieval task by
representing each item as a tuple of discrete semantic tokens.

* Equal contribution. Work done when SR was at Google.
Correspondence to rajput.shashank11@ gmail.com, nikhilmehta@google.com, nlogn @ google.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

There are standard and well-established methods for building retrieval models. Matrix factoriza-
tion [[19] learns query and candidate embeddings in the same space. In order to better capture the
non-linearities in the data, dual-encoder architectures [39] (i.e., one tower for the query and another
for the candidate) employing inner-product to embed the query and candidate embeddings in the same
space have become popular in recent years. To use these models during inference, an index that stores
the embeddings for all items is created using the candidate tower. For a given query, its embedding is
obtained using the query tower, and an Approximate Nearest Neighbors (ANN) algorithm is used
for retrieval. In recent years, the dual encoders architectures have also been extended for sequential
recommendations [[11, 124,41} 117, 32,16, 44]] that explicitly take into account the order of user-item
interactions.

We propose a new paradigm of building generative retrieval models for sequential recommendation.
Instead of traditional query-candidate matching approaches, our method uses an end-to-end generative
model that predicts the candidate IDs directly. We propose to leverage the Transformer [36] memory
(parameters) as an end-to-end index for retrieval in recommendation systems, reminiscent of Tay et al.
[34] that used Transformer memory for document retrieval. We refer to our method as Transformer
Index for GEnerative Recommenders (TIGER). A high-level overview of TIGER is shown in Figure/[l}
TIGER is uniquely characterized by a novel semantic representation of items called "Semantic ID"
— a sequence of tokens derived from each item’s content information. Concretely, given an item’s
text features, we use a pre-trained text encoder (e.g., SentenceT5 [27]) to generate dense content
embeddings. A quantization scheme is then applied on the embedding of an item to form a set
of ordered tokens/codewords, which we refer to as the Semantic ID of the item. Ultimately, these
Semantic IDs are used to train the Transformer model on the sequential recommendation task.

Representing items as a sequence of semantic tokens has many advantages. Training the transformer
memory on semantically meaningful data allows knowledge sharing across similar items. This allows
us to dispense away with the atomic and random item Ids that have been previously used [33}142} 11 S]]
as item features in recommendation models. With semantic token representations for items, the
model is less prone to the inherent feedback loop [/1} 26} 39] in recommendation systems, allowing
the model to generalize to newly added items to the corpus. Furthermore, using a sequence of tokens
for item representation helps alleviate the challenges associated with the scale of the item corpus; the
number of items that can be represented using tokens is the product of the cardinality of each token
in the sequence. Typically, the item corpus size can be in the order of billions and learning a unique
embedding for each item can be memory-intensive. While random hashing-based techniques [[16]]
can be adopted to reduce the item representation space, in this work, we show that using semantically
meaningful tokens for item representation is an appealing alternative. The main contributions of this
work are summarized below:

1. We propose TIGER, a novel generative retrieval-based recommendation framework that assigns
Semantic IDs to each item, and trains a retrieval model to predict the Semantic ID of an item that
a given user may engage with.

2. We show that TIGER outperforms existing SOTA recommender systems on multiple datasets as
measured by recall and NDCG metrics.

3. We find that this new paradigm of generative retrieval leads to two additional capabilities in
sequential recommender systems: 1. Ability to recommend new and infrequent items, thus
improving cold-start recommendations, and 2. Ability to generate diverse recommendations
using a tunable parameter.

Paper Overview. In Section 2] we provide a brief literature survey of recommender systems,
generative retrieval, and the Semantic ID generation techniques we use in this paper. In Section 3}
we explain our proposed framework, and outline the various techniques we use for Semantic ID
generation. We present the result of our experiments in Section4] and conclude the paper in Section[3]

2 Related Work

Sequential Recommenders. Using deep sequential models in recommender systems has devel-
oped into a rich literature. GRU4REC [11] was the first to use GRU based RNNs for sequential
recommendations. Li et al. [24] proposed Neural Attentive Session-based Recommendation (NARM),
where an attention mechanism along with a GRU layer is used to track long term intent of the user.

Next ltem
A

Item 64
Sem. IDe= (5, 25, 55)
. ot
P ncoded -
6 g Context

ItemID Title Description Categories Brand Semantic ID Bidirectional Transformer Encoder 1:> Transformer Decoder
N J N J

I | 1 o1 Pt N

Tokens [us]

Content
Encoder

Item Content
Information

Item 233 Item 515
/-~ Quantization \fem. ID = (5, 23, 55) Sem. ID = (5, 25, 787)/‘

~
Item Interaction History of User 5

Embedding

(a) Semantic ID generation for items using (b) Transformer based encoder-decoder setup for building the
quantization of content embeddings. sequence-to-sequence model used for generative retrieval.

Figure 2: An overview of the modeling approach used in TIGER.

AttRec [41] proposed by Zhang et al. used self-attention mechanism to model the user’s intent
in the current session, and personalization is ensured by modeling user-item affinity with metric
learning. Concurrently, Kang et al. also proposed SASRec [17]], which used self-attention similar to
decoder-only transformer models. Inspired by the success of masked language modeling in language
tasks, BERT4Rec [32] and Transformers4Rec [6] utilize transformer models with masking strate-
gies for sequential recommendation tasks. S>-Rec [44] goes beyond just masking by pre-training
on four self-supervised tasks to improve data representation. The models described above learn a
high-dimensional embedding for each item and perform an ANN in a Maximum Inner Product Search
(MIPS) space to predict the next item. In contrast, our proposed technique, TIGER, uses Generative
Retrieval to directly predict the Semantic ID of the next item.

P5 [8]] fine-tunes a pre-trained large language models for multi-task recommender systems. The P5
model relies on the LLM tokenizer (SentencePiece tokenizer [29]]) to generate tokens from randomly-
assigned item IDs. Whereas, we use Semantic ID representation of items thay are learned based on the
content information of the items. In our experiments (Table [2), we demonstrate that recommendation
systems based on Semantic ID representation of items yield much better results than using random
codes.

Semantic IDs. Hou et al. proposed VQ-Rec [[12] to generate “codes” (analogous to Semantic IDs)
using content information for item representation. However, their focus is on building transferable
recommender systems, and do not use the codes in a generative manner for retrieval. While they
also use product quantization [15] to generate the codes, we use RQ-VAE to generate Semantic IDs,
which leads to hierarchical representation of items (Section[4.2)). In a concurrent work to us, Singh et
al. [31]] show that hierarchical Semantic IDs can be used to replace item IDs for ranking models in
large scale recommender systems improves model generalization.

Generative Retrieval. While techniques for learning search indices have been proposed in the past
[20], generative retrieval is a recently developed approach for document retrieval, where the task is to
return a set of relevant documents from a database. Some examples include GENRE [5], DSI [34],
NCI [37]], and CGR [22]. A more detailed coverage of the related work is in Appendix @ To the best
of our knowledge, we are the first to propose generative retrieval for recommendation systems using
Semantic ID representation of items.

3 Proposed Framework
Our proposed framework consists of two stages:

1. Semantic ID generation using content features. This involves encoding the item content features
to embedding vectors and quantizing the embedding into a tuple of semantic codewords. The
resulting tuple of codewords is referred to as the item’s Semantic ID.

2. Training a generative recommender system on Semantic IDs. A Transformer model is trained on
the sequential recommendation task using sequences of Semantic IDs.

DNN

codebook 1

Residual Quantization

codebook 2

DNN

Encoder Decoder

Embedding

I
]
:
[
=
‘g
]
0

Embedding

Quantized representation
Semantic codes

Figure 3: RQ-VAE: In the figure, the vector output by the DNN Encoder, say 7o (represented by the blue
bar), is fed to the quantizer, which works iteratively. First, the closest vector to 7 is found in the first level
codebook. Let this closest vector be e, (represented by the red bar). Then, the residual error is computed as
T1 1= T — ec,. This is fed into the second level of the quantizer, and the process is repeated: The closest vector
to 71 is found in the second level, say e., (represented by the green bar), and then the second level residual
error is computed as 72 = r1 — e, . Then, the process is repeated for a third time on r2. The semantic codes
are computed as the indices of e, e, , and e, in their respective codebooks. In the example shown in the
figure, this results in the code (7, 1,4).

3.1 Semantic ID Generation

In this section, we describe the Semantic ID generation process for the items in the recommendation
corpus. We assume that each item has associated content features that capture useful semantic
information (e.g. titles or descriptions or images). Moreover, we assume that we have access to a
pre-trained content encoder to generate a semantic embedding & € R<. For example, general-purpose
pre-trained text encoders such as Sentence-T5 [27] and BERT [7] can be used to convert an item’s text
features to obtain a semantic embedding. The semantic embeddings are then quantized to generate a
Semantic ID for each item. Figure [2a gives a high-level overview of the process.

We define a Semantic ID to be a tuple of codewords of length m. Each codeword in the tuple comes
from a different codebook. The number of items that the Semantic IDs can represent uniquely is
thus equal to the product of the codebook sizes. While different techniques to generate Semantic IDs
result in the IDs having different semantic properties, we want them to at least have the following
property: Similar items (items with similar content features or whose semantic embeddings are close)
should have overlapping Semantic IDs. For example, an item with Semantic ID (10, 21, 35) should
be more similar to one with Semantic ID (10, 21, 40), than an item with ID (10, 23, 32). Next, we
discuss the quantization schemes which we use for Semantic ID generation.

RQ-VAE for Semantic IDs. Residual-Quantized Variational AutoEncoder (RQ-VAE) [40] is a
multi-level vector quantizer that applies quantization on residuals to generate a tuple of codewords
(aka Semantic IDs). The Autoencoder is jointly trained by updating the quantization codebook and
the DNN encoder-decoder parameters. Fig. [3]illustrates the process of generating Semantic IDs
through residual quantization.

RQ-VAE first encodes the input & via an encoder £ to learn a latent representation z := E(x). At the
zero-th level (d = 0), the initial residual is simply defined as ry := z. At each level d, we have a
codebook Cy := {ek}szl, where K is the codebook size. Then, 7 is quantized by mapping it to the
nearest embedding from that level’s codebook. The index of the closest embedding e., at d = 0, i.e.,
cop = arg min, |79 — e||, represents the zero-th codeword. For the next level d = 1, the residual is
defined as r; := r¢ — e,,. Then, similar to the zero-th level, the code for the first level is computed
by finding the embedding in the codebook for the first level which is nearest to r;. This process is
repeated recursively m times to get a tuple of m codewords that represent the Semantic ID. This
recursive approach approximates the input from a coarse-to-fine granularity. Note that we chose to
use a separate codebook of size K for each of the m levels, instead of using a single, m K -sized
codebook. This was done because the norm of residuals tends to decrease with increasing levels,
hence allowing for different granularities for different levels.

Once we have the Semantic ID (co, ..., cm—1), a quantized representation of z is computed as

z = ZZZ} e.,. Then Z is passed to the decoder, which tries to recreate the input x using
z. The RQ-VAE loss is defined as £(x) := Lriecon + Lrqvaes Where Liecon = || — Z[|?, and

Leguae = Som s Iseri] — ec,||? + Bllri — sgle,]||?. Here & is the output of the decoder, and sg is
the stop-gradient operation [35]]. This loss jointly trains the encoder, decoder, and the codebook.

As proposed in [40], to prevent RQ-VAE from a codebook collapse, where most of the input gets
mapped to only a few codebook vectors, we use k-means clustering-based initialization for the
codebook. Specifically, we apply the k-means algorithm on the first training batch and use the
centroids as initialization.

Other alternatives for quantization. A simple alternative to generating Semantic IDs is to use
Locality Sensitive Hashing (LSH). We perform an ablation study in Subsection[4.2] where we find that
RQ-VAE indeed works better than LSH. Another option is to use k-means clustering hierarchically
[34]], but it loses semantic meaning between different clusters [37]. We also tried VQ-VAE, and
while it performs similarly to RQ-VAE for generating the candidates during retrieval, it loses the
hierarchical nature of the IDs which confers many new capabilities that are discussed in Section[4.3]

Handling Collisions. Depending on the distribution of semantic embeddings, the choice of codebook
size, and the length of codewords, semantic collisions can occur (i.e., multiple items can map to the
same Semantic ID). To remove the collisions, we append an extra token at the end of the ordered
semantic codes to make them unique. For example, if two items share the Semantic ID (12, 24, 52),
we append additional tokens to differentiate them, representing the two items as (12,24,52,0)
and (12,24,52,1). To detect collisions, we maintain a lookup table that maps Semantic IDs to
corresponding items. Note that collision detection and fixing is done only once after the RQ-VAE
model is trained. Furthermore, since Semantic IDs are integer tuples, the lookup table is efficient in
terms of storage in comparison to high dimensional embeddings.

3.2 Generative Retrieval with Semantic IDs

We construct item sequences for every user by sorting chronologically the items they have interacted
with. Then, given a sequence of the form (itemy, . . . , item,,), the recommender system’s task is to pre-
dict the next item item,, ;. We propose a generative approach that directly predicts the Semantic ID of
the next item. Formally, let (¢; 0, ..., ¢;m—1) be the m-length Semantic ID for item;. Then, we con-
vert the item sequence to the sequence (0170, e Clm—15C2,05-++5C2m—1y---rCn,0s+++> Cn,m—1)-
The sequence-to-sequence model is then trained to predict the Semantic ID of item,, 1, which is
(Cnt1,05- - - Cnt1,m—1). Given the generative nature of our framework, it is possible that a generated
Semantic ID from the decoder does not match an item in the recommendation corpus. However, as
we show in appendix (Fig.[6) the probability of such an event occurring is low. We further discuss
how such events can be handled in appendix

4 Experiments

Datasets. We evaluate the proposed framework on three public real-world benchmarks from the
Amazon Product Reviews dataset [10]], containing user reviews and item metadata from May 1996
to July 2014. In particular, we use three categories of the Amazon Product Reviews dataset for the

sequential recommendation task: “Beauty”, “Sports and Outdoors”, and “Toys and Games”. We
discuss the dataset statistics and pre-processing in Appendix [C]

Evaluation Metrics. We use top-k Recall (Recall@K) and Normalized Discounted Cumulative Gain
(NDCG@K) with K = 5, 10 to evaluate the recommendation performance.

RQ-VAE Implementation Details. As discussed in section RQ-VAE is used to quantize the
semantic embedding of an item. We use the pre-trained Sentence-T5 [27] model to obtain the
semantic embedding of each item in the dataset. In particular, we use item’s content features such
as title, price, brand, and category to construct a sentence, which is then passed to the pre-trained
Sentence-T5 model to obtain the item’s semantic embedding of 768 dimension.

The RQ-VAE model consists of three components: a DNN encoder that encodes the input semantic
embedding into a latent representation, residual quantizer which outputs a quantized representation,
and a DNN decoder that decodes the quantized representation back to the semantic input embedding

Hair Tools

Hair Products
Hair Shampoos.
Hair Conditione
Hair Treatments Hair & scalp Treatme]

ity procuct N

Bath Bathing Accesso

Hair Styling Tools

Category

e
Hair
Bath Accessorie
Skin Body |
Bath Treatments |
Skin Face
Makeup Face |
Skin Nails
Tools &
Bath Cleansers
Tools Cases
Makeup Eyes
Bath

Hair Shampoo & Condi

Category

Makeup Lips
Skin Eyes
Skin
Skin Sun
Fragrance Women
Fragrance Men's
0.00 0.02

Category
Category

=

0.04 0.06 0.08 i
Probability Probability Probability

(b) The category distributions for items having the Semantic ID
as (c1,*, %), where ¢; € {1,2,3,4}. The categories are color-
coded based on the second semantic token cs.

(a) The ground-truth category distribution for
all the items in the dataset colored by the
value of the first codeword c;.

Figure 4: Qualitative study of RQ-VAE Semantic IDs (c1, ¢2, ¢3, ¢4) on the Amazon Beauty dataset. We show
that the ground-truth categories are distributed across different Semantic tokens. Moreover, the RQVAE semantic
IDs form a hierarchy of items, where the first semantic token (c;) corresponds to coarse-level category, while
second/third semantic token (c2/c3) correspond to fine-grained categories.

space. The encoder has three intermediate layers of size 512, 256 and 128 with ReLLU activation,
with a final latent representation dimension of 32. To quantize this representation, three levels of
residual quantization is done. For each level, a codebook of cardinality 256 is maintained, where
each vector in the codebook has a dimension of 32. When computing the total loss, we use 3 = 0.25.
The RQ-VAE model is trained for 20k epochs to ensure high codebook usage (> 80%). We use
Adagrad optimizer with a learning rate of 0.4 and a batch size of 1024. Upon training, we use the
learned encoder and the quantization component to generate a 3-tuple Semantic ID for each item. To
avoid multiple items being mapped to the same Semantic ID, we add a unique 4*" code for items that
share the same first three codewords, i.e. two items associated with a tuple (7, 1, 4) are assigned (7, 1,
4,0) and (7, 1, 4, 1) respectively (if there are no collisions, we still assign 0 as the fourth codeword).
This results in a unique Semantic ID of length 4 for each item in the recommendation corpus.

Sequence-to-Sequence Model Implementation Details. We use the open-sourced T5X frame-
work [28]] to implement our transformer based encoder-decoder architecture. To allow the model to
process the input for the sequential recommendation task, the vocabulary of the sequence-to-sequence
model contains the tokens for each semantic codeword. In particular, the vocabulary contains 1024
(256 x 4) tokens to represent items in the corpus. In addition to the semantic codewords for items,
we add user-specific tokens to the vocabulary. To keep the vocabulary size limited, we only add 2000
tokens for user IDs. We use the Hashing Trick [38]] to map the raw user ID to one of the 2000 user ID
tokens. We construct the input sequence as the user Id token followed by the sequence of Semantic
ID tokens corresponding to a given user’s item interaction history. We found that adding user ID to
the input, allows the model to personalize the items retrieved.

We use 4 layers each for the transformer-based encoder and decoder models with 6 self-attention
heads of dimension 64 in each layer. We used the ReL.U activation function for all the layers. The
MLP and the input dimension was set as 1024 and 128, respectively. We used a dropout of 0.1.
Overall, the model has around 13 million parameters. We train this model for 200k steps for the
“Beauty” and “Sports and Outdoors” dataset. Due to the smaller size of the “Toys and Games” dataset,
it is trained only for 100k steps. We use a batch size of 256. The learning rate is 0.01 for the first 10k
steps and then follows an inverse square root decay schedule.

4.1 Performance on Sequential Recommendation

In this section, we compare our proposed framework for generative retrieval with the following
sequential recommendation methods (which are described briefly in Appendix [B): GRU4Rec [11],
Caser [33]], HGN [23], SASRec [17], BERT4Rec [32], FDSA [42], S3-Rec [44], and P5 [8]. Notably

Table 1: Performance comparison on sequential recommendation. The last row depicts % improvement with
TIGER relative to the best baseline. Bold (underline) are used to denote the best (second-best) metric.

Method Sports and Outdoors Beauty Toys and Games
cthods Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
@5 @5 @10 @10 @5 @5 @10 @10 @5 @5 @10 @10
P5 [8] 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
Caser [33] 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
HGN [25] 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
GRU4Rec [11] 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084

BERT4Rec [32] 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099
FDSA [42] 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
SASRec [17] 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374
S3-Rec [44] 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376

TIGER [Ours] 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432
+5.22% +12.55% +3.90% +10.29% +17.31% +29.04% +0.15% +17.43% +12.53% +21.24% +1.71% +14.97%

all the baselines (except P5), learn a high-dimensional vector space using dual encoder, where the
user’s past item interactions and the candidate items are encoded as a high-dimensional representation
and Maximum Inner Product Search (MIPS) is used to retrieve the next candidate item that the user
will potentially interact with. In contrast, our novel generative retrieval framework directly predicts
the item’s Semantic ID token-by-token using a sequence-to-sequence model.

Recommendation Performance. We perform an extensive analysis of our proposed TIGER on
the sequential recommendation task and compare against the baselines above. The results for all
baselines, except P5, are taken from the publicly accessible result made available by Zhou et al.
[44]). For PS5, we use the source code made available by the authors. However, for a fair comparison,
we updated the data pre-processing method to be consistent with the other baselines and our method.
We provide further details related to our changes in Appendix [D}

The results are shown in Table[I] We observe that TIGER consistently outperforms the existing
baseline We see significant improvement across all the three benchmarks that we considered. In
particular, TIGER performs considerably better on the Beauty benchmark compared to the second-best
baseline with up to 29% improvement in NDCG@5 compared to SASRec and 17.3% improvement
in Recall@5 compared to S3-Rec. Similarly on the Toys and Games dataset, TIGER is 21% and 15%
better in NDCG@5 and NDCG@ 10, respectively.

4.2 Item Representation

In this section, we analyze several important characteristics of RQ-VAE Semantic IDs. In particular,
we first perform a qualitative analysis to observe the hierarchical nature of Semantic IDs. Next, we
evaluate the importance of our design choice of using RQ-VAE for quantization by contrasting the
performance with an alternative hashing-based quantization method. Finally, we perform an ablation
to study the importance of using Semantic IDs by comparing TIGER with a sequence-to-sequence
model that uses Random ID for item representation.

Qualitative Analysis. We analyze the RQ-VAE Semantic IDs learned for the Amazon Beauty dataset
in Figure] For exposition, we set the number of RQ-VAE levels as 3 with a codebook size of 4, 16,
and 256 respectively, i.e. for a given Semantic ID (¢, ¢2,¢c3) of anitem, 0 < ¢; < 3,0 < ¢y <15
and 0 < c¢3 < 255. In Figure[da] we annotate each item’s category using c¢; to visualize ¢;-specific
categories in the overall category distribution of the dataset. As shown in Figure[da] c; captures the
high-level category of the item. For instance, c¢; = 3 contains most of the products related to “Hair”.
Similarly, majority of items with ¢; = 1 are “Makeup” and “Skin” products for face, lips and eyes.

We also visualize the hierarchical nature of RQ-VAE Semantic IDs by fixing c; and visualizing the
category distribution for all possible values of ¢, in Fig. [ib] We again found that the second codeword
cs further categorizes the high-level semantics captured with ¢; into fine-grained categories. The
hierarchical nature of Semantic IDs learned by RQ-VAE opens a wide-array of new capabilities
which are discussed in Section #.3] As opposed to existing recommendation systems that learn item
embeddings based on random atomic IDs, TIGER uses Semantic IDs where semantically similar

3https://github.com/aHuiWang/CIKM2020-S3Rec
“We show in Table E] that the standard error in the metrics for TIGER is insignificant.

Table 2: Ablation study for different ID generation techniques for generative retrieval. We show that RQ-VAE
Semantic ID (SID) perform significantly better compared to hashing SIDs and Random IDs.

Sports and Outdoors Beauty Toys and Games

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
@5 @5 @10 @10 @5 @5 @10 @10 @5 @5 @10 @10

Random ID 0.007 0.005 0.0116 0.0063 0.0296 0.0205 0.0434 0.0250 0.0362 0.0270 0.0448 0.0298
LSH SID 0.0215 0.0146 0.0321 0.0180 0.0379 0.0259 0.0533 0.0309 0.0412 0.0299 0.0566 0.0349
RQ-VAESID 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432

Methods

'
0.12 - Model O et
s o1 M ’,x-"‘
0.10 ___—-—-7"£'——l 012 Semantic_KNN %
» e Item Split x/
-
w7 0,08 —r* g ol - DufraH -
] - ® —#- Unseen
9 pr . @ o008 o
T 006 . = —
9 g Model g 006 _:54--—_.___.5____
o - — Qurs o P —
0.04 - — %" A ..
B semantic_KNN 0.04 » ~a—an
Item Split K
0.0z —— overall 0.02 ’
—®- Unseen 0.00 —4
0.00
0 10 20 30 40 50 0.0 0.2 04 0.6 08 10
K Epsilon (g)
(a) Recall@K vs. K, (e = 0.1). (b) Recall@10 vs. e.

Figure 5: Performance in the cold-start retrieval setting.

items have overlapping codewords, which allows the model to effectively share knowledge from
semantically similar items in the dataset.

Hashing vs. RQ-VAE Semantic IDs. We study the importance of RQ-VAE in our framework by
comparing RQ-VAE against Locality Sensitive Hashing (LSH) [14} [13} 2] for Semantic ID generation.
LSH is a popular hashing technique that can be easily adapted to work for our setting. To generate
LSH Semantic IDs, we use h random hyperplanes wy, . . ., wy, to perform a random projection of the

embedding vector « and compute the following binary vector: (1,750 -, ltha:>O)' This vector

. . . h
is converted into an integer code as co = Y, 271,74~ . This process is repeated m times using

an independent set of random hyperplanes, resulting in m codewords (cg, ¢1, . . ., Cm—1), which we
refer to as the LSH Semantic ID.

In Table 2} we compare the performance of LSH Semantic ID with our proposed RQ-VAE Semantic
ID. In this experiment, for LSH Semantic IDs, we used /& = 8 random hyperplanes and set m = 4 to
ensure comparable cardinality with the RQ-VAE. The parameters for the hyperplanes are randomly
sampled from a standard normal distribution, which ensures that the hyperplanes are spherically
symmetric. Our results show that RQ-VAE consistently outperforms LSH. This illustrates that
learning Semantic IDs via a non-linear, Deep Neural Network (DNN) architecture yields better
quantization than using random projections, given the same content-based semantic embedding.

Random ID vs. Semantic ID. We also compare the importance of Semantic IDs in our generative
retrieval recommender system. In particular, we compare randomly generated IDs with the Semantic
IDs. To generate the Random ID baseline, we assign m random codewords to each item. A Random
ID of length m for an item is simply (c1, . . ., ¢), Where ¢; is sampled uniformly at random from
{1,2,...,K}. Weset m = 4, and K = 255 for the Random ID baseline to make the cardinality
similar to RQ-VAE Semantic IDs. A comparison of Random ID against RQ-VAE and LSH Semantic
IDs is shown in Table 2] We see that Semantic IDs consistently outperform Random ID baseline,
highlighting the importance of leveraging content-based semantic information.

4.3 New Capabilities

We describe two new capabilities that directly follow from our proposed generative retrieval frame-
work, namely cold-start recommendations and recommendation diversity. We refer to these capabil-
ities as “new” since existing sequential recommendation models (See the baselines in section[4.T))
cannot be directly used to satisfy these real-world use cases. These capabilities result from a synergy
between RQ-VAE based Semantic IDs and the generative retrieval approach of our framework. We
discuss how TIGER is used in these settings in the following sections.

Cold-Start Recommendation. In this section, we study the cold-start recommendation capability of
our proposed framework. Due to the fast-changing nature of the real-world recommendation corpus,
new items are constantly introduced. Since newly added items lack user impressions in the training
corpus, existing recommendation models that use a random atomic ID for item representation fail
to retrieve new items as potential candidates. In contrast, the TIGER framework can easily perform
cold-start recommendations since it leverages item semantics when predicting the next item.

For this analysis, we consider the Beauty dataset from Amazon Reviews. To simulate newly added
items, we remove 5% of test items from the training data split. We refer to these removed items as
unseen items. Removing the items from the training split ensures there is no data leakage with respect
to the unseen items. As before, we use Semantic ID of length 4 to represent the items, where the first
3 tokens are generated using RQ-VAE and the 4!" token is used to ensure a unique ID exists for all
the seen items. We train the RQ-VAE quantizer and the sequence-to-sequence model on the training
split. Once trained, we use the RQ-VAE model to generate the Semantic IDs for all the items in the
dataset, including any unseen items in the item corpus.

Given a Semantic ID (cy, ¢a, ¢3, ¢4) predicted by the model, we retrieve the seen item having the same
corresponding ID. Note that by definition, each Semantic ID predicted by the model can match at
most one item in the training dataset. Additionally, unseen items having the same first three semantic
tokens, i.e. (¢1, ¢2, ¢3) are included to the list of retrieved candidates. Finally, when retrieving a set
of top-K candidates, we introduce a hyperparameter ¢ which specifies the maximum proportion of
unseen items chosen by our framework.

We compare the performance of TIGER with the k-Nearest Neighbors (KNN) approach on the
cold-start recommendation setting in Fig.[5] For KNN, we use the semantic representation space
to perform the nearest-neighbor search. We refer to the KNN-based baseline as Semantic_ KNN.
Fig. [5a] shows that our framework with e = 0.1 consistently outperforms Semantic_KNN for
all Recall@K metrics. In Fig. [5b] we provide a comparison between our method and Seman-
tic_KNN for various values of e. For all settings of ¢ > 0.1, our method outperforms the baseline.

Recommendation diversity. While Recall Table 3: The entropy of the category distribution predicted
and NDCG are the primary metrics used to by the model for the Beauty dataset. A higher entropy
evaluate a recommendation system, diversity corresponds more diverse items predicted by the model.

of predictions is another critical objective of
interest. A recommender system with poor

Temperature Entropy@10 Entropy@20 Entropy @50

. . . T=1.0 0.76 1.14 1.70
diversity can be detrimental to thq long-term T=15 114 152 206
engagement of users. Here, we discuss how T=20 1.38 1.76 2.28

our generative retrieval framework can be used
to predict diverse items. We show that temperature-based sampling during the decoding process can
be effectively used to control the diversity of model predictions. While temperature-based sampling
can be applied to any existing recommendation model, TIGER allows sampling across various levels
of hierarchy owing to the properties of RQ-VAE Semantic IDs. For instance, sampling the first token
of the Semantic ID allows retrieving items from coarse-level categories, while sampling a token from
second/third token allows sampling items within a category.

Table 4: Recommendation diversity with temperature-based decoding.

Target Category | Most-common Categories for top-10 predicted items
| T=10 T=20
Hair Styling Products | Hair Styling Products Hair Styling Products, Hair Styling Tools, Skin Face
Tools Nail Tools Nail Tools Nail, Makeup Nails
Makeup Nails Makeup Nails Makeup Nails, Skin Hands & Nails, Tools Nail
Skin Eyes Skin Eyes Hair Relaxers, Skin Face, Hair Styling Products, Skin Eyes
Makeup Face Tools Makeup Brushes,Makeup Face Tools Makeup Brushes, Makeup Face,Skin Face, Makeup Sets, Hair Styling Tools

Hair Loss Products Hair Loss Products,Skin Face, Skin Body | Skin Face, Hair Loss Products, Hair Shampoos,Hair & Scalp Treatments, Hair Conditioners

We quantitatively measure the diversity of predictions using Entropy @K metric, where the entropy
is calculated for the distribution of the ground-truth categories of the top-K items predicted by
the model. We report the Entropy @K for various temperature values in Table [3]| We observe that
temperature-sampling in the decoding stage can be effectively used to increase the diversity in the
ground-truth categories of the items. We also perform a qualitative analysis in Table

Table 5: Recall and NDCG metrics for different number layers.
Number of Layers Recall@5 NDCG@5 Recall@1l0 NDCG@10

3 0.04499 0.03062 0.06699 0.03768
4 0.0454 0.0321 0.0648 0.0384
5 0.04633 0.03206 0.06596 0.03834

4.4 Ablation Study

We measure the effect of varying the number of layers in the sequence-to-sequence model in Table 5]
We see that the metrics improve slightly as we make the network bigger. We also measure the effect
of providing user information, the results for which are provided in Table[§]in the Appendix.

4.5 Invalid IDs

Since the model decodes the codewords of the target Semantic ID autoregressively, it is possible
that the model may predict invalid IDs (i.e., IDs that do not map to any item in the recommendation
dataset). In our experiments, we used semantic IDs of length 4 with each codeword having a
cardinality of 256 (i.e., codebook size = 256 for each level). The number of possible IDs spanned
by this combination = 256, which is approximately 4 trillion. On the other hand, the number of
items in the datasets we consider is 10K-20K (See Table[6). Even though the number of valid IDs is
only a fraction of all complete ID space, we observe that the model almost always predicts valid IDs.
We visualize the fraction of invalid IDs produced by TIGER as a function of the number of retrieved
items K in Figure[6] For top-10 predictions, the fraction of invalid IDs varies from ~ 0.1% — 1.6%
for the three datasets. To counter the effect of invalid IDs and to always get top-10 valid IDs, we can
increase the beam size and filter the invalid IDs.

It is important to note that, despite generating invalid IDs, TIGER achieves state-of-the-art perfor-
mance when compared to other popular methods used for sequential recommendations. One extension
to handle invalid tokens could be to do prefix matching when invalid tokens are generated by the
model. Prefix matching of Semantic IDs would allow retrieving items that have similar semantic
meaning as the tokens generated by the model. Given the hierarchical nature of our RQ-VAE tokens,
prefix matching can be thought of as model predicting item category as opposed to the item index.
Note that such an extension could improve the recal/NDCG metrics even further. We leave such an
extension as a future work.

5 Conclusion

This paper proposes a novel paradigm, called TIGER, to retrieve candidates in recommender systems
using a generative model. Underpinning this method is a novel semantic ID representation for items,
which uses a hierarchical quantizer (RQ-VAE) on content embeddings to generate tokens that form
the semantic IDs. Our framework provides results in a model that can be used to train and serve
without creating an index — the transformer memory acts as a semantic index for items. We note
that the cardinality of our embedding table does not grow linearly with the cardinality of item space,
which works in our favor compared to systems that need to create large embedding tables during
training or generate an index for every single item. Through experiments on three datasets, we show
that our model can achieve SOTA retrieval performance, while generalizing to new and unseen items.

References

[1] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. The unfair-
ness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286, 2019.

[2] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380-388, 2002.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for

10

recommender systems. In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 7-10, 2016.

[4] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM conference on recommender systems, pages 191-198,
2016.

[5] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. arXiv preprint arXiv:2010.00904, 2020.

[6] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation.
In Fifteenth ACM Conference on Recommender Systems, pages 143—153, 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[8] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5).
arXiv preprint arXiv:2203.13366, 2022.

[9] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):1-
19, 2015.

[10] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In proceedings of the 25th international conference
on world wide web, pages 507-517, 2016.

[11] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[12] Yupeng Hou, Zhankui He, Julian McAuley, and Wayne Xin Zhao. Learning vector-quantized
item representation for transferable sequential recommenders. arXiv preprint arXiv:2210.12316,
2022.

[13] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604—-613, 1998.

[14] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-preserving
hashing in multidimensional spaces. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 618-625, 1997.

[15] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.

[16] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan
Hong, and Ed H Chi. Learning to embed categorical features without embedding tables for
recommendation. arXiv preprint arXiv:2010.10784, 2020.

[17] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018
IEEE international conference on data mining (ICDM), pages 197-206. IEEE, 2018.

[18] Dongmoon Kim, Kun-su Kim, Kyo-Hyun Park, Jee-Hyong Lee, and Keon Myung Lee. A music
recommendation system with a dynamic k-means clustering algorithm. In Sixth international
conference on machine learning and applications (ICMLA 2007), pages 399-403. IEEE, 2007.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 2009.

[20] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 international conference on management of data,
pages 489-504, 2018.

11

[21] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1152311532, 2022.

[22] Hyunji Lee, Jaecyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vlad Karpukhin, Yi Lu,
and Minjoon Seo. Contextualized generative retrieval. arXiv preprint arXiv:2210.02068, 2022.

[23] Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon Seo. Generative retrieval for long sequences.
arXiv preprint arXiv:2204.13596, 2022.

[24] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive
session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pages 1419-1428, 2017.

[25] Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommen-
dation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 825-833, 2019.

[26] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin
Burke. Feedback loop and bias amplification in recommender systems, 2020.

[27] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and
Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models.
In Findings of the Association for Computational Linguistics: ACL 2022, pages 1864—1874,
Dublin, Ireland, May 2022. Association for Computational Linguistics.

[28] Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis
Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan
Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling
up models and data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022.

[29] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909, 2015.

[30] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[31] Anima Singh, Trung Vu, Raghunandan Keshavan, Nikhil Mehta, Xinyang Yi, Lichan Hong,
Lukasz Heldt, Li Wei, Ed Chi, and Maheswaran Sathiamoorthy. Better generalization with
semantic ids: A case study in ranking for recommendations. arXiv preprint arXiv:2306.08121,
2023.

[32] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on information and knowledge management,
pages 1441-1450, 2019.

[33] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the eleventh ACM international conference on web
search and data mining, pages 565-573, 2018.

[34] Yi Tay, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai
Hui, Zhe Zhao, Jai Gupta, et al. Transformer memory as a differentiable search index. arXiv
preprint arXiv:2202.06991, 2022.

[35] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

12

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen,
Yuqing Xia, Chengmin Chi, Guoshuai Zhao, et al. A neural corpus indexer for document
retrieval. arXiv preprint arXiv:2206.02743,2022.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th annual international
conference on machine learning, pages 1113-1120, 2009.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar,
Zhe Zhao, Li Wei, and Ed Chi. Sampling-bias-corrected neural modeling for large corpus item
recommendations. In Proceedings of the 13th ACM Conference on Recommender Systems,
pages 269-277, 2019.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi.
Soundstream: An end-to-end neural audio codec. CoRR, abs/2107.03312, 2021.

Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. Next item recommendation with self-attention.
arXiv preprint arXiv:1808.06414, 2018.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Deqing Wang, Guan-
feng Liu, and Xiaofang Zhou. Feature-level deeper self-attention network for sequential
recommendation. In IJCAI, pages 43204326, 2019.

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar,
Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. Recommending what video to watch
next: a multitask ranking system. In Proceedings of the 13th ACM Conference on Recommender
Systems, pages 4351, 2019.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages 1893-1902, 2020.

13

A Related Work (cont.)

Generative Retrieval Document retrieval traditionally involved training a 2-tower model which
mapped both queries and documents to the same high-dimensional vector space, followed by perform-
ing an ANN or MIPS for the query over all the documents to return the closest ones. This technique
presents some disadvantages like having a large embedding table [22| 23]]. Generative retrieval is
a recently proposed technique that aims to fix some of the issues of the traditional approach by
producing token by token either the title, name, or the document id string of the document. Cao et
al. [3]] proposed GENRE for entity retrieval, which used a transformer-based architecture to return,
token-by-token, the name of the entity referenced to in a given query. Tay et al. [34] proposed DSI
for document retrieval, which was the first system to assign structured semantic DocIDs to each
document. Then given a query, the model autoregressively returned the DocID of the document
token-by-token. The DSI work marks a paradigm shift in IR to generative retrieval approaches and is
the first successful application of an end-to-end Transformer for retrieval applications. Subsequently,
Lee et al. [23] show that generative document retrieval is useful even in the multi-hop setting, where
a complex query cannot be answered directly by a single document, and hence their model generates
intermediate queries, in a chain-of-thought manner, to ultimately generate the output for the complex
query. Wang et al. [37] supplement the hierarchical k-means clustering based semantic DocIDs
of Tay et al. [34] by proposing a new decoder architecture that specifically takes into account the
prefixes in semantic DocIDs. In CGR [22], the authors propose a way to take advantage of both
the bi-encoder technique and the generative retrieval technique, by allowing the decoder, of their
encoder-decoder-based model, to learn separate contextualized embeddings which store information
about documents intrinsically. To the best of our knowledge, we are the first to use generative
Semantic IDs created using an auto-encoder (RQ-VAE [40, 21]]) for retrieval models.

Vector Quantization. We refer to Vector Quantization as the process of converting a high-
dimensional vector into a low-dimensional tuple of codewords. One of the most straightforward
techniques uses hierarchical clustering, such as the one used in [34], where clusters created in a
particular iteration are further partitioned into sub-clusters in the next iteration. An alternative popular
approach is Vector-Quantized Variational AutoEncoder (VQ-VAE), which was introduced in [335]] as
a way to encode natural images into a sequence of codes. The technique works by first passing the
input vector (or image) through an encoder that reduces the dimensionality. The smaller dimensional
vector is partitioned and each partition is quantized separately, thus resulting in a sequence of codes:
one code per partition. These codes are then used by a decoder to recreate the original vector (or
image).

RQ-VAE [40| 21]] applies residual quantization to the output of the encoder of VQ-VAE to achieve
a lower reconstruction error. We discuss this technique in more detail in Subsection [3.1] Locality
Sensitive Hashing (LSH) [[14.[13]] is a popular technique used for clustering and approximate nearest
neighbor search. The particular version that we use in this paper for clustering is SimHash [2], which
uses random hyperplanes to create binary vectors which serve as hashes of the items. Because it has
low computational complexity and is scalable [[13]], we use this as a baseline technique for vector
quantization.

B Baselines

Below we briefly describe each of the baselines with which we compare TIGER

e GRU4Rec [11] is the first RNN-based approach that uses a customized GRU for the sequential
recommendation task.

o Caser [33]] uses a CNN architecture for capturing high-order Markov Chains by applying horizon-
tal and vertical convolutional operations for sequential recommendation.

e HGN [25]: Hierarchical Gating Network captures the long-term and short-term user interests via
a new gating architecture.

o SASRec [17]: Self-Attentive Sequential Recommendation uses a causal mask Transformer to
model a user’s sequential interactions.

e BERT4Rec [32]: BERT4Rec addresses the limitations of uni-directional architectures by using a
bi-directional self-attention Transformer for the recommendation task.

14

e FDSA [42]]: Feature-level Deeper Self-Attention Network incorporates item features in addition
to the item embeddings as part of the input sequence in the Transformers.

o S3-Rec [44]): Self-Supervised Learning for Sequential Recommendation proposes pre-training a
bi-directional Transformer on self-supervision tasks to improve the sequential recommendation.

e P5 [8]: P5 is a recent method that uses a pretrained Large Language Model (LLM) to unify
different recommendation tasks in a single model.

C Dataset Statistics

Table 6: Dataset statistics for the three real-world benchmarks.

Dataset # Users #Items Sequence Length
Mean Median
Beauty 22,363 12,101 8.87 6
Sports and Outdoors 35,598 18,357 8.32 6
Toys and Games 19,412 11,924 8.63 6

We use three public benchmarks from the Amazon Product Reviews dataset [10], containing user
reviews and item metadata from May 1996 to July 2014. We use three categories of the Amazon
Product Reviews dataset for the sequential recommendation task: “Beauty”, “Sports and Outdoors”,
and “Toys and Games”. Table[6]summarizes the statistics of the datasets. We use users’ review history
to create item sequences sorted by timestamp and filter out users with less than 5 reviews. Following
the standard evaluation protocol [17, 8], we use the leave-one-out strategy for evaluation. For each
item sequence, the last item is used for testing, the item before the last is used for validation, and the

rest is used for training. During training, we limit the number of items in a user’s history to 20.

D Modifications to the PS data preprocessing

Table 7: Results for P5[8]] with the standard pre-processing.

Method Sports and Outdoors Beauty Toys and Games

thods

1% Recall@s NDCG@5 Recall@l0 NDCG@I0 Recall@5 NDCG@5 Recall@l0 NDCG@10 Recall@s NDCG@S Recall@l0 NDCG@10
P5 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
P5-ours 0.0107 0.0076 0.01458 0.0088 0.035 0.025 0.048 0.0298 0.018 0.013 0.0235 0.015

The P5 source codeE]pre—processes the Amazon dataset to first create sessions for each user, containing
chronologically ordered list of items that the user reviewed. After creating these sessions, the original
item IDs from the dataset are remapped to integers 1,2, 3, ... ﬂ Hence, the first item in the first
session gets an id of ‘1’, the second item, if not seen before, gets an id of ‘2’, and so on. Notably,
this pre-processing scheme is applied before creating training and testing splits. This results in the
creation of a sequential dataset where many sequences are of the form a,a + 1,a + 2,.... Given
that P5 uses Sentence Piece tokenizer [[30] (See Section 4.1 in [8]]), the test and train items in a user
session may share the sub-word and can lead to information leakage during inference.

To resolve the leakage issue, instead of assigning sequentially increasing integer ids to items, we
assigned random integer IDs, and then created splits for training and evaluation. The rest of the code
for P5 was kept identical to the source code provided in the paper. The results for this dataset are
reported in Table[/|as the row ‘P5’. We also implemented a version of P5 ourselves from scratch,
and train the model on only sequential recommendation task. The results for our implementation are
depicted as ‘P5-ours’. We were also able to verify in our PS implementation that using consecutive
integer sequences for the item IDs helped us get equivalent or better metrics than those reported in
P5.

15

Table 8: The effect of providing user information to the recommender system

Recall@5 NDCG@5 Recall@10 NDCG@10
No user information 0.04458 0.0302 0.06479 0.0367
With user id (reported in the paper) 0.0454 0.0321 0.0648 0.0384

Table 9: The mean and stand error of the metrics for different dataset (computed using 3 runs with
different random seeds)

Datasets Recall@5 NDCG@5 Recall@10 NDCG@10

Beauty 0.0441 £ 0.00069 0.0309 4+ 0.00062 0.0642 4 0.00092 0.0374 £ 0.00061
Sports and Outdoors 0.0278 4+ 0.00069 0.0189 4+ 0.00043 0.0419 4+ 0.0010 0.0234 + 0.00048
Toys and Games 0.0518 + 0.00064 0.0375 4+ 0.00039 0.0698 4 0.0013 0.0433 4+ 0.00047

Invalid IDs (%)
Invalid IDs (%)

Invalid IDs (%)

2

1
0.05 025 II
0.00 I 0
12345678 91011121314151617181920 123456 78 91011121314151617181920 12345678 091011121314151617181920

K K

(a) Sports and Outdoors (b) Beauty (c) Toys and Games

Figure 6: Percentage of invalid IDs when generating Semantic IDs using Beam search for various
values of K. As shown, ~ 0.3% — 6% of the IDs are invalid when retrieving the top-20 items.

E Discussion

Effects of Semantic ID length and codebook size. We tried varying the Semantic ID length and
codebook size, such as having an ID consisting of 6 codewords each from a codebook of size 64.
We noticed that the recommendation metrics for TIGER were robust to these changes. However,
note that the input sequence length increases with longer IDs (i.e., more codewords per item ID),
which makes the computation more expensive for our transformer-based sequence-to-sequence model.

Scalability. To test the scalability of Semantic IDs, we ran the following experiment: We combined
all the three datasets and generated Semantic IDs for the entire set of items from the three datasets.
Then, we used these Semantic IDs for the recommendation task on the Beauty dataset. We compare
the results from this experiment with the original experiment where the Semantic IDs are generated
only from the Beauty dataset. The results are provided in Table[I0] We see that there is only a small
decrease in performance here.

Inference cost. Despite the remarkable success of our model on the sequential recommendation
task, we note that our model can be more computationally expensive than ANN-based models during
inference due to the use of beam search for autoregressive decoding. We emphasize that optimizing
the computational efficiency of TIGER was not the main objective of this work. Instead, our work
opens up a new area of research: Recommender Systems based on Generative Retrieval. As part of
future work, we will consider ways to make the model smaller or explore other ways of improving
the inference efficiency.

Memory cost of lookup tables. We maintain two lookup hash tables for TIGER: an Item ID to
Semantic ID table and a Semantic ID to Item ID table. Note that both of these tables are generated
only once and then frozen: they are generated after the training of the RQ-VAE-based Semantic
ID generation model, and after that, they are frozen for the training of the sequence-to-sequence

Shttps://github.com/jeykigung/P5
Shttps://github.com/jeykigung/P5/blob/Oaaa3fd8366bb6e708c8b70708291f2b0ae90c82/preprocess/data_preprocess_amazon.ipynb

16

Table 10: Testing scalability by generating the Semantic IDs on the combined dataset vs generating
the Semantic IDs on only the Beauty dataset.

Recall@5 NDCG@5 Recall@l0 NDCG@10

Semantic ID [Combined datasets] 0.04355 0.3047 0.06314 0.03676
Semantic ID [Amazon Beauty] 0.0454 0.0321 0.0648 0.0384

transformer model. Each Semantic ID consists of a tuple of 4 integers, each of which are stored in 8
bits, hence totalling to 32 bits per item. Each item is represented by an Item ID, stored as a 32 bit
integer. Thus, the size of each lookup table will be of the order of 64N bits, where NV is the number
of items in the dataset.

Memory cost of embedding tables. TIGER uses much smaller embedding tables compared to
traditional recommender systems. This is because where traditional recommender systems store an
embedding for each item, TIGER only stores an embedding for each semantic codeword. In our
experiments, we used 4 codewords each of cardinality 256 for Semantic ID representation, resulting
in 1024 (256 x4) embeddings. For traditional recommender systems, the number of embeddings is
N, where N is the number of items in the dataset. In our experiments, N ranged from 10K to 20K
depending on the dataset. Hence, the memory cost of TIGER’s embedding table is 1024d, where d is
the dimension of the embedding, whereas the memory cost for embedding lookup tables in traditional
recommendation systems is /Nd.

17

	Introduction
	Related Work
	Proposed Framework
	Semantic ID Generation
	Generative Retrieval with Semantic IDs

	Experiments
	Performance on Sequential Recommendation
	Item Representation
	New Capabilities
	Ablation Study
	Invalid IDs

	Conclusion
	Related Work (cont.)
	Baselines
	Dataset Statistics
	Modifications to the P5 data preprocessing
	Discussion

