
Workshop track - ICLR 2017

SONG FROM PI: A MUSICALLY PLAUSIBLE NETWORK
FOR POP MUSIC GENERATION

Hang Chu, Raquel Urtasun, Sanja Fidler
Department of Computer Science
University of Toronto
Ontario, ON M5S 3G4, Canada
{chuhang1122,urtasun,fidler}@cs.toronto.edu

ABSTRACT

We present a novel framework for generating pop music. Our model is a hierarchi-
cal Recurrent Neural Network, where the layers and the structure of the hierarchy
encode our prior knowledge about how pop music is composed. In particular, the
bottom layers generate the melody, while the higher levels produce the drums and
chords. We conduct several human studies that show strong preference of our gen-
erated music over that produced by the recent method by Google. We additionally
show two applications of our framework: neural dancing and karaoke, as well as
neural story singing.

1 INTRODUCTION

Neural networks have revolutionized many fields. They have not only proven to be powerful in
performing perception tasks such as image classification and language understanding, but have also
shown to be surprisingly good “artists”. In Gatys et al. (2015), photos were turned into paintings by
exploiting particular drawing styles such as Van Gogh’s, Kiros et al. (2015) produced stories about
images biased by writing style (e.g., romance books), Karpathy et al. (2016) wrote Shakespeare
inspired novels, and Simo-Serra et al. (2015) gave fashion advice.

Music composition is another artistic domain where neural based approaches have been proposed.
Early approaches exploiting Recurrent Neural Networks (Bharucha & Todd (1989); Mozer (1996);
Chen & Miikkulainen (2001); Eck & Schmidhuber (2002)) date back to the 80’s. The main varia-
tions between the different models is the representation of the notes and the outputs they produced,
which typically encode melody and chord. Most of these approaches were single track, in that they
produced only one note per time step. The exception is Boulanger-lewandowski et al. (2012) which
generated polyphonic music, i.e., simultaneous independent melodies.

In this paper, we aim to generate pop music, where the melody but also chords and other instruments
make up what is typically called a song. We draw inspiration from the Song from π by Macdonald 1,
a piano video on Youtube, where the pleasing music is created from a sequence of digits of π. This
video shows both the randomness and the regularity of music. On one hand, since any possible digit
sequence is a subset of the π digit sequence, this implies that pleasing music can be created even
from a totally random base signal. On the other hand, the composer uses specific rules such as A
Harmonic Minor scale and harmonies to convert the digit sequence into a music sheet. It is these
rules that play the key role in converting randomness into music.

Following the ideas of Songs from π, we aim to generate both the melody as well as accompanying
effects such as chords and drums. Arguably, these turn even a not particularly pleasing melody into
a well sounding song. We propose a hierarchical approach, where each level is a Recurrent Neural
Network producing a key aspect of the song. The bottom layers generate the melody, while the
higher levels produce drums and chords. This enables the drum and chord layers to compensate
for the melody in order to produce appleasing music. Adopting the key idea from Songs from π,
we condition our model on the scale type allowing the melody generator to learn the notes that are
typically played in a particular scale.

1https://youtu.be/OMq9he-5HUU

1

https://youtu.be/OMq9he-5HUU


Workshop track - ICLR 2017

We train our model on 100 hours of midi music containing user-composed pop songs and video
game music. We conduct human studies with music generated with our approach and compare it
against a recent approach by Google, showing that our songs are strongly preferred over the baseline.
In our human study we also perform an ablation analysis of our model. We additionally show two
new applications: neural dancing and karaoke as well as neural music singing. As part of the first
application we generate a stickman dancing to our music and lyrics that can be sung with, while in
the second application we condition on the output of Kiros et al. (2015) which writes a story about an
image and convert it into a pop song. We refer the reader to http://www.cs.toronto.edu/songfrompi/
for our demos and results.

2 RELATED WORK

Generating music has been an active research area for decades. It brings together machines learn-
ing researchers that aim to capture the complex structure of music (Eck & Schmidhuber (2002);
Boulanger-lewandowski et al. (2012)), as well as music professionals (Chan et al. (2006)) and en-
thusiasts (Johnson; Sun) that want to see how far a computer can get to be a real composer. Real-time
music generation is also explored for gaming (Engels et al. (2015)).

Early approaches mostly instilled knowledge from music theory into generation, by using rules of
how music segments can be stitched together in a plausible way, e.g., Chan et al. (2006). On the
other hand, neural networks have been used for music generation since the 80’s (Bharucha & Todd
(1989); Mozer (1996); Chen & Miikkulainen (2001); Eck & Schmidhuber (2002)). Mozer (1996)
used a Recurrent Neural Network that produced pitch, duration and chord at each time step. Unlike
most other neural network approaches, this work encodes music knowledge into the representation.
Eck & Schmidhuber (2002) was first to use LSTMs to generate both melody and chord. Compared
to Mozer (1996), the LSTM captured more global music structure across the song.

Like us, Kang et al. (2012) built upon the randomness of melody by trying to accompany it with
drums. However, in their model the scale type is enforced. No details about the model are given, and
thus it is virtually impossible to compare to. Boulanger-lewandowski et al. (2012) propose to learn
complex polyphonic musical structure which has multiple notes playing in parallel through the song.
The model is single-track in that it only produces melody, whereas in our work we aim to produce
multi-track songs. Just recently, Huang & Wu (2016) proposed a 2-layer LSTM that, like Boulanger-
lewandowski et al. (2012), produces music that is more complex than a single note sequence, and
is able to produce chords. The main novelty of our work over existing approaches is a hierarchical
model that incorporates knowledge from music theory to build the neural architecture, and produces
multi-track pop music (melody, chord, drum). We also present two novel fun applications.

3 CONCEPTS FROM MUSIC THEORY

We start by introducing the basic notation and definitions from music theory. A note defines the
basic unit that music is composed of. Music follows the 12-tone system, i.e., 12 is the cycle length
of all notes. The 12 tones are: C, C♯/D♭, D, D♯/E♭, E, F , F ♯/G♭, G, G♯/A♭, A, A♯/B♭, B. A
bar is a short segment of time that corresponds to a specific number of beats (notes). The boundaries
of the bar are indicated by vertical bar lines.

Scale is a subset of notes. There are four types of scales most commonly used: Major (Minor), Har-
monic Minor, Melodic Minor and Blues. Each scale type specifies a sequence of relative intervals
(or shifts) which act relative to the starting note. For example, the sequence for the scale type Major
is 2 → 2 → 1 → 2 → 2 → 2 → 1. Thus, C Major specifies the starting note to be C, and applying
the relative sequence of shifts yields: C 2−→ D

2−→ E
1−→ F

2−→ G
2−→ A

2−→ B
1−→ C. The subset of

notes specified by C Major is thus C, D, E, F, G, A, and B (a subset of seven notes). All scales types
have a subset of seven notes except for Blues which has six. In total we have 48 unique scales, i.e.
4 scale types and 12 possible starting notes. We treat Major and Minor as one type as for a Major
scale there is always a Minor that has exactly the same set of notes. In music theory, this is referred
to as Relative Minor.

2



Workshop track - ICLR 2017

xt
prf

yt
key

yt
prs

yt
chd

yt
drm

xt−1
prf

yt−1
key

yt−1
prs

xt−2
prf

yt−2
key

yt−2
prs

xt−3
prf

yt−3
key

yt−3
prs

xt−4
prf

yt−4
key

yt−4
prs

yt−4
chd

yt−4
drm

...

...

...

...

...

xt−8
prf

yt−8
key

yt−8
prs

yt−8
chd

yt−8
drm

xt−9
prf

yt−9
key

yt−9
prs

...

...

...

...

...

...

...

...

...

xt−16
prf

yt−16
key

yt−16
prs

yt−16
chd

yt−16
drm

xt−17
prf

yt−17
key

yt−17
prs

Key Layer|s

Press Layer

Chord Layer

Drum Layer

Figure 1: Overview of our framework. Only skip connections for the current time step t are plotted.

Chord is a group of notes that sound good together. Similarly to scale, a chord has a start note and
a type defining a set of intervals. There are mainly 6 types in triads chords: Major Chord, Minor
Chord, Augmented Chord, Diminished Chord, Suspended 2nd Chord, and Suspended 4th Chord.

The Circle of Fifths is often used to produce a chord progression. It maps 12 chord starting notes
to a circle. When changing from one chord to another chord, moving to a nearby chord on the circle
is often preferred as this forms a strong chord progression that produces the sense of harmony.

4 HIERARCHICAL RECURRENT NETWORKS FOR POP MUSIC GENERATION

We follow the high level idea behind the Song from π to define our model. In particular, we gen-
erate music with a hierarchical Recurrent Neural Network where the layers and the structure of the
hierarchy encode our prior knowledge about how pop music is composed. We first outline the model
and describe the details and justifications for our choices in the subsections that follow.

We condition our generation on the scale type, as this helps the model to pick up the regularities in
pop songs. We encode melody with two random variables at each time step, representing which key
is being played (the key layer) and the duration that the key will be pressed (the press layer). The
melody is generated conditioned on the scale, which does not vary across the song as is typically the
case in pop music. We assume the drums and the chords are independent given the melody. Thus
conditioned on the melody, at each time step we generate the chord (the chord layer) as well as the
drums (the drum layer). The output at all layers yields the final song. We refer the reader to Fig. 1
for an illustration of our hierarchical model.

4.1 THE ROLE OF SCALE

It is known from music theory that while in principle each song has 12 tones to choose from, most of
the notes are in fact only using the six (for Blues) or seven (for other scales) tone subsets specified
by the scale rule. We found that by conditioning the music generator on scale it captures these
regularities more easily. However, we do not enforce the notes to be generated from the subset and
allow our model to generate notes outside the scale.

We confirm the above musical fact by analysing over 100 hours of pop song music from
the midi man dataset. Since scale is defined relative to a starting note, we first try to factor out
its influence and normalize all songs to have identical start note. To identify the scale of a song, we
compute the histogram over the 12 tones and match it with the 48 tone subsets of 4 scale types with
12 different start notes. We then normalize all songs to have start note C by applying a constant shift
on all notes. This allows us to categorize any song into 4 scale types. Since this shift affects all notes
at once, it does not affect how the song sounds (its harmony). Our analysis shows that for all notes
in all Major scale songs, 94.66% are within the tone subset. For Harmonic Minor, Melodic Minor,

3



Workshop track - ICLR 2017

(a) (b) (c) (d)
Figure 2: Distribution of within-scale note ratio for four scale types. x-axis: percentage of tones within the
scale type’s tone set, y-axis: percentage of songs of the scale type. (a)-(d) shows Major(Minor), Harmonic
Minor, Melodic Minor, and Blues, respectively.

and Blues the percentage of notes that belong to the main tone set is 87.16%, 85.11%, and 90.93%,
respectively. We refer the reader to Fig. 2, where the x-axis denotes the percentage of within-scale
notes of a song, and the y-axis indicates how many songs in the dataset have that percentage. Note
that the majority of the notes follow the scale rule. Furthermore, different scale types have different
inlier distribution. We thus represent scale with a single random variable s ∈ {1, · · · , 4} which is
fixed for the whole song, and condition the model on it. 2

4.2 TWO-LAYER RNN FOR MELODY GENERATION

We represent the melody with two random variables per time step: which key is pressed, and the
duration of the press. We use a RNN to generate the keys conditioned on the scale. Then conditioned
on the output of the key layer, a second RNN generates the duration of the press at each time step.

In particular, we model the key layer with a two-layer LSTM (Hochreiter & Schmidhuber (1997))
with a 512-dimensional hidden state, which outputs a note (key) at each time step. Note that we
condition on scale s, thus we have a different set of weights for each scale. We only allow notes
between C3 to C6 as notes outside this range are usually too low or too high to sound good. We
remind the reader that given a scale, seven (or six for blues) out of the twelve notes (per octave) are
statistically more plausible, however we allow the model to choose from all 12. This results in a
37-dimensional output, as there are 36 possible notes corresponding to 3 octaves with 12 notes per
octave, plus silence. Let ht

key be the hidden state of the second key decoder layer at time t. We
compute the probability of each key using the softmax:

P (yt
key) ∝ exp(vyt

key
ht
key) (1)

where vyt
key

is the row of V (the output embedding matrix of notes), corresponding to note yt
key.

As input to the LSTM we use a vector that concatenates multiple features: a one-hot encoding of the
previous generated note yt−1

key , Lookback features, and the melody profile. The Lookback features
were proposed by Google Magenta (Waite et al.) to make it easier for the model to memorize
recently produced notes and potentially repeat them. They include skip connections from two and
one bar ago (a bar is 8 consecutively played notes), i.e., yt−16

key and yt−8
key . They also contain two

additional features, indicating whether the last generated key has been copied from one or two bars
ago, i.e. 1(yt−1

key ,y
t−1−8
key ) and 1(yt−1

key ,y
t−1−16
key ). They also add a 5-dimensional feature indicating

a binary encoding of the current time t. This helps the model keep track where in a 4−bar range it
is, and thus produce music accordingly.

In addition, we introduce a new feature which we refer to as the melody profile. Intuitively, the
profile represents the high-level music flow. To get the profile for each song, we compute the local
note histogram at each time step with width of two bars, and cluster all local histograms within the
song into 10 clusters via k-means. We order the 10 clusters with mean note ordered from low to
high as cluster 1 to 10, and apply moving averages on the cluster id sequence to encourage local
smoothness. This results in a 10-dimensional one-hot vector representation of the cluster id for each
time step. This additional information allows the user to set the melody’s ups and downs of the song.

The keys alone are not sufficient to describe how the melody is performed. Additionally we also need
to know the duration that each key needs to be pressed for. Towards this goal, conditioned on the

2For readers with musical background, the Twelve-Tone Serialism technique Schoenberg & Newlin (1951)
prevents emphasis of any one tone. However, our data analysis indicates that pop music is not influenced by it.

4



Workshop track - ICLR 2017

(a) (b) (c) (d)
Figure 3: Co-occurrence of tones in melody (y-axis) and chord (x-axis). (a)-(d) shows Major(Minor), Har-
monic Minor, Melodic Minor, and Blues, respectively.

melody, we generate the duration of each key with a two-layer LSTM with a 512-dimensional hidden
state. We represent the duration of pressing as a forward counting sequence that is conditioned on
the generated melody. The press outputs 1 when a new key is pressed, and sequentially outputs 2,
3, 4 and so on as the key is held on. When the current key is released, the press counter is reset to
1. Compared to the event on-off representation of Waite et al., our representation learns the melody
flow and how to press separately. This is important, as Waite et al. has extremely unbalanced output
distributions dominated by the repeat-of-holding event. We represent press yt

prs as a 8-dimensional
one-hot vector. The input to our LSTM is yt−1

prs , concatenated with the 37-dimensional one-hot
encoding of the melody key yt

key.

4.3 CHORD AND DRUM RNN LAYERS

We studied all existing chords in our 100 hours of pop music. Although in principle a chord can be
any arbitrary combination of multiple notes, we observed that in the actual music data 99.19% of
the chords belong to one of 72 chord classes (6 types × 12 start notes). Fig. 3 shows the correlation
between the melody’s tone and the starting note of the chord playing at the same time. It can be
seen that chord is strongly correlated with melody. These two findings inspire our design. We thus
represent chord yt

chd as a one-hot encoding with 72 classes, and predict it using a two-layer LSTM
with a 512-dimensional hidden state. We generate one chord at each time step. The input is yt−4

chd

concatenated with yt−3:t
key .

We look at our music dataset and find all unique drum patterns with duration of a half bar. We then
compute the histogram of all the patterns. This forms a long tail distribution, where 94.60% comes
from the top 100 common patterns. We generate drum conditioned on the key layer using a two-
layer LSTM with 512 dimensional hidden states. Drum yt

drm is represented as one-hot encoding
with of the 100 unique one-bar-long drum patterns. The input is yt−4

drm concatenated with the notes
from the previous three times steps yt−3:t

key .

4.4 LEARNING

We use cross-entropy as our loss function to train each layer. We follow the typical training strategy
where we make predictions at each layer and time step but feed in ground-truth information to the
next. This effectively decomposes training, and allows to train all layers in parallel. We use the
Adam optimizer, a learning rate of 2e-3 and a learning rate decay of 0.99 after each epoch for 10
epochs.

4.5 MUSIC SYNTHESIS: PUTTING ALL THE OUTPUTS TOGETHER

To synthesize music we first randomly choose a scale and a profile xprf . For generating xprf , we
randomly choose one cluster id with a random duration, and repeat until we get the desired total
length of the music sequence. We then perform inference in our model conditioned on the chosen
scale, and use xprf as input to our key layer. At each time step, we sample a key according to
P (yt

key). We encode it as a one-hot vector and pass to the press, chord and drum layers. We sample
the press, chords and drums at each time step in a similar fashion.

5



Workshop track - ICLR 2017

Figure 4: Example of our music generation. From top to bottom: melody, chord and drum respectively.

Before putting the outputs across layers together, we further adjust the generated sequences at the
bar level. For melody, we first check at each bar if the first step is a continuation of a previous note
or silence. If it is the latter, we find the first newly pressed note within the bar and move it to the
beginning of the bar. We do similarly for the windows of two half-bars as well as the four quarter-
bars. This makes the melody more likely to be on the beat, and generally sounds better. We verify
this in our experiments.

For chord, we generate one chord at each half bar, which is the majority of all single step chord
generations. Furthermore, we incorporate the rule of chord progression in the Circle of Fifths as
between chords pairwise smooth terms, and compute the final chord using dynamic programming.
For drum, we generate one pattern at each half bar.

Our model generates with scale starting note C, and then applies a constant shift to generate music
with other starting notes. Besides scale, which instrument to use is also customizable. However, we
simply set all instruments as grand piano in all experiments, as the effect and musical meaning of
different instrument combinations is beyond the scope of this paper.

5 EXPERIMENTS

To train our model, we took 100 hours of pop music from midi man which consists of user-composed
pop songs and video game music. In our generation, we always use 120 beats per minute with 4 time
steps per beat. However, songs in the dataset can have arbitrary speed. To neutralize the effect of
this, we detect the most frequent interval between two adjacent notes for each song, and iteratively
divide or multiply this interval by 2 until it falls in the range between 0.25s and 0.5s. We use this
as a measure of the song’s beat duration. We then adjust the song’s temporal axis so that all songs
have the same beat duration of 0.5s.

A MIDI file can be separated into different channels/tracks, where the 9th channel is specifically
preserved for drums. We categorize the rest of non-drum tracks into melody, chord, and else, by
simply setting thresholds on average number of unique notes within a bar and average number of
note changing within a bar, as chords are by definition repetitive. Fig. 4 shows an example of our
music generation.

To evaluate the quality of our music generation, we conduct a human survey with 27 participants.
All subjects are university students who did not have any prior knowledge about the content of our
project. In the survey, participants are presented with several pairs of 30-second music clips, and are
asked to vote which clip in the pair sounds better. We gave no other information about what they
are listening to. They are also allow to submit a neutral vote in case they cannot decide between the
two choices. In our study, we consider three cases: our full method versus Magenta Waite et al., our
method with melody only versus Google Magenta (Waite et al.), and our method versus our method
without the temporal alignment described in Sec.4.5. We randomly generated 10 songs per method
and randomly shuffled each pair. For the Magenta baseline we used its Lookback version, which
was the latest version at the time of our submission.

As shown in Table 1, most participants prefer songs produced by our method compared to Magenta.
Participants also made comments such as music sounds better with percussion than piano alone,
and multiple instruments with continuous play is much better. This confirms that our multi-layer
generation improves music quality. Few participants also point out that drums sound too different
and do not participate to the melody perfectly, which indicates that further improvements can be still
made. In the second comparison, we study if the quality improvement of our method is only caused

6



Workshop track - ICLR 2017

Method Ours Magenta Ours-MO Magenta Ours Ours-NA
% of votes 81.6% 14.4% 69.6% 13.6% 75.2% 12.0%

Table 1: Human evaluation of music generated by different methods: ours and Waite et al.’s Magenta. Ours-
MO and Ours-NA are short for Ours Melody Only and Ours No Alignment. We allowed neutral votes, thus the
sum of the pair is less than 100%.

Human Magenta Ours
sub-seq 7.06 4.39 4.65
repeat 4.04 17.08 2.33

Table 2: Evaluations of the longest matching sub-sequence with training, and self repeating times.

by adding chords and drums, or is also related to our two-layer melody generation with alignment. It
can be seen that without chords and drums, the score drops as expected, but is still much higher than
the Magenta baseline. This is because our method produces less recursion and silence, and faster
and more accurate tempo as mentioned by the participants. In the last comparison, most participants
prefer our full method than the no-alignment version, since beats are more subtle and better timed.
This proves the usefulness of temporal alignment. We performed significance tests on the evaluation
results in Table 1. All comparisons passed the significance test with significance level 5%. The
lowest alpha values to reject the null hypothesis are 1e-19, 1e-14, and 1e-19, respectively. Further
experimental results of removing music scale in our method and adding temporal alignment to the
baseline can be found on our project page.

To examine the suitability of the four scale types we use, we collected the list of all existing musical
scales from Wikipedia and measured the scale distribution of the dataset. 37.8% of the data belongs
to our four scales, 47.7% belongs to Acoustic, Algerion, Lydian, Adonai Malakh, and Ukrainian,
while 14.5% belongs to the rest 31 uncommonly seen scales such as Insen, Iwato, Yo, and Enigmatic.
We also found out that the five scales that accounts for 47.7% are either one or two degree away
from one of our used scales (all notes are the same except one being one or two steps away). This
experiment shows that even in the most rigorous musical setting, at least 85.5% of online songs are
very close to the four scales that we use.

Finally we study our model’s capabilities to generate new music. Towards this goal, we generated
100 sequences of 50 seconds of length using different random initializations. We perform two
evaluations. First, for each sequence, we search for the longest sub-sequence of keys that matches
part of the training data, and record its length. This evaluates how much the model copies the
training data. Secondly, we break each generated melody into segments of 2-bars in length (inspired
by common definition of music plagiarism). We then compare each segment to all segments in the
rest of the 100 generated songs, and record the repeat time. This evaluates how much the model
repeats itself. For comparison, we repeat the same evaluation for the Magenta baseline, and human
composed music. Table 2 reports the results. It can be seen that our method performs similarly
as Magenta in terms of copying (sub-seq). It is somewhat surprising that human composers in
fact tend to copy more from other songs, which indicates that both generation approaches can be
further relaxed in terms copying. Our method is less likely to generate recurring melodies (repeat)
compared to Magenta, and is closer to the statistics of human-produced songs.

6 APPLICATIONS

In this section we demonstrate two novel applications of our pop music generation framework. We
refer the reader to http://www.cs.toronto.edu/songfrompi/ for the music videos.

6.1 NEURAL DANCING AND KARAOKE

In our first application, we attempt to generate both music and a stickman dancing to it, as well as
a sequence of karaoke-like text that people can sing along with. To learn the relationship between
music and dance, we download 1 hour of video from the game Just Dance, as well as the MIDI files
for songs included in the video from different sources. We use the method in Newell et al. (2016)
to track single-frame 2D human pose in the videos. We process the single-frame tracking result to
ensure left-right body consistency through time, and then use the method of Zhou et al. (2016) to
convert the 2D pose sequence into 3D. Example results are shown in Fig. 5. We observe that our
pose processing pipeline is able to extract reasonable human poses most of the time. However, the

7



Workshop track - ICLR 2017

(a) (b) (c) (d)
Figure 5: Examples from Just Dance and 3D human pose tracking result. (a) and (b) are success cases, pose
tracking fails in (c), and (d) shows the defect in video which makes tracking difficult.

quality is not perfect due to tracking failure or video effects. We define pose similarity as average
euclidean distance of all joints, and cluster poses into 456 clusters. We used Frey & Dueck (2007)
as the number of clusters is large.

We learn to generate a stickman dancing by adding another dancing layer on top of the key layer,
just like for drum and chord. We generate one pose at each beat, which is equivalent to 4 time
steps or 0.5 seconds in a 120 beat-per-minute music. In particular, we predict one of the 456 pose
clusters using a linear projection layer followed by softmax. We use cross-entropy at each time step
as our loss function. At inference time, we further apply moving average to temporally smooth the
generated 3D pose sequence.

To learn the relationship between music and lyrics, we collect 51 hours of lyrics data from the
internet. This data contains 50 hours of text without music, and the rest 1 hour are songs we collected
from Just Dance. For the music part, we temporally align each sentence in the lyrics with the midi
music by using the widely-existing lrc format, which records the time tag at the beginning of every
sentence. We select words that appear at least 4 times, which yields a vocabulary size of 3390
including unknown and end-of-sentence. Just as for dance, we generate one word per beat using
another lyrics layer on top of the key layer.

6.2 NEURAL STORY SINGING

In this application our aim is to sing a song about a photo. We first generate a story about the
photo with the neural storyteller Kiros et al. (2015) and try to accompany the generated text with
music. We utilize the same 1 hour dataset of temporally aligned lyrics and music. We further include
the phoneme list of our 3390 vocabulary as we also want to sing the story. Starting from the text
produced by neural storyteller, we arrange it into a temporal sequence with 1 beat per word and a
short pause for end-of-sentence, where the pause length is decided such that the next sentence starts
from a new bar. As our dataset is relatively small, we generate the profile conditioned on the text,
which has less dimensions compared to the key. This is done by a 2-layer LSTM that takes as input
the generated profile at the last time step concatenated with a one-hot vector of the current word, and
outputs the current profile. We then generate the song with our model given the generated profile.
The generated melody key is then used to decide on the pitch frequency of a virtual singer, assuming
the key-to-pitch correspondence of a grand piano. We further constrain that the singer’s final pitch is
always in the range of E3 to G4, which we empirically found to be the natural pitch range. We then
replace all words outside the vocabulary with the sound Ooh, and play the rendered singing with the
generated music.

7 CONCLUSION AND FUTURE WORK

We have presented a hierarchical approach to pop song generation which exploits music theory in
the model design. In contrast to past work, our approach is able to generate multi-track music. Our
human studies shows the strength of our framework compared to an existing strong baseline. We
additionally proposed two new applications: neural dancing & karaoke, and neural story singing.

In this paper, we show that incorporating knowledge from the music theory into the model, as
well as capturing multiple aspects of music results in better sounding songs. However, generating
appealing and interesting music that captures structure, rhythm, and mood is challenging, and there
is an exciting road ahead to improve on these aspects in the future.

8



Workshop track - ICLR 2017

REFERENCES

Jamshed J. Bharucha and Peter M. Todd. Modeling the perception of tonal structure with neural
nets. Computer Music Journal, 13(4):44–53, 1989.

Nicolas Boulanger-lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation and tran-
scription. In ICML, 2012.

Michael Chan, John Potter, and Emery Schubert. Improving algorithmic music composition with
machine learning. In 9th International Conference on Music Perception and Cognition, 2006.

Chun-Chi J. Chen and Risto Miikkulainen. Creating melodies with evolving recurrent neural net-
works. In International Joint Conference on Neural Networks, 2001.

Douglas Eck and Juergen Schmidhuber. A first look at music composition using lstm recurrent
neural networks. 2002.

Steve Engels, Fabian Chan, and Tiffany Tong. Automatic real-time music generation for games. In
AIIDE Workshop, 2015.

Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. volume
315, pp. 972–976, 2007.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm of artistic style. In
arXiv:1508.06576, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Allen Huang and Raymond Wu. Deep learning for music. arXiv preprint arXiv:1606.04930, 2016.

Daniel Johnson. Composing music with recurrent neural networks. https://goo.gl/YP9QyR.

Semin Kang, Soo-Yol Ok, and Young-Min Kang. Automatic Music Generation and Machine Learn-
ing Based Evaluation, pp. 436–443. Springer Berlin Heidelberg, 2012.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.
In ICLR 2016 Workshop, 2016.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Skip-thought vectors. In NIPS, 2015.

David Macdonald. Song from π. https://youtu.be/OMq9he-5HUU.

Reddit midi man. Midi collection. https://goo.gl/4moEZ3.

Michael C. Mozer. Neural network music composition by prediction: Exploring the benefits of
psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3), 1996.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estima-
tion. In ECCV, 2016.

Arnold Schoenberg and Dika Newlin. Style and idea. Technical report, Williams and Norgate
London, 1951.

Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun. Neuroaesthetics in
fashion: Modeling the perception of beauty. In CVPR, 2015.

Felix Sun. Deephear - composing and harmonizing music with neural networks. https://goo.
gl/7OTZZL.

Elliot Waite, Douglas Eck, Adam Roberts, and Dan Abolafia. Project magenta. https:
//magenta.tensorflow.org/.

Wikipedia. List of musical scales and modes. https://goo.gl/5kvXLP.

Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Kosta Derpanis, and Kostas Daniilidis. Sparse-
ness meets deepness: 3d human pose estimation from monocular video. In CVPR, 2016.

9

https://goo.gl/YP9QyR
https://youtu.be/OMq9he-5HUU
https://goo.gl/4moEZ3
https://goo.gl/7OTZZL
https://goo.gl/7OTZZL
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://goo.gl/5kvXLP

	Introduction
	Related Work
	Concepts from Music Theory
	Hierarchical Recurrent Networks for Pop Music Generation
	The role of Scale
	Two-layer RNN for Melody Generation
	Chord and Drum RNN Layers
	Learning
	Music Synthesis: Putting all the Outputs Together

	Experiments
	Applications
	Neural Dancing and Karaoke
	Neural Story Singing

	Conclusion and Future Work

