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ABSTRACT

Advances in natural language processing and large language models have sparked
growing interest in modeling DNA, often referred to as the “language of life”.
However, DNA modeling poses unique challenges. First, it requires the ability
to process ultra-long DNA sequences while preserving single-nucleotide reso-
lution, as individual nucleotides play a critical role in DNA function. Second,
success in this domain requires excelling at both generative and understanding
tasks: generative tasks hold potential for therapeutic and industrial applications,
while understanding tasks provide crucial insights into biological mechanisms
and diseases. To address these challenges, we propose HybriDNA, a decoder-
only DNA language model that incorporates a hybrid Transformer-Mamba2 ar-
chitecture, seamlessly integrating the strengths of attention mechanisms with se-
lective state-space models. This hybrid design enables HybriDNA to efficiently
process DNA sequences up to 131kb in length with single-nucleotide resolution.
HybriDNA achieves state-of-the-art performance across 33 DNA understanding
datasets curated from the BEND, GUE, and LRB benchmarks, and demonstrates
exceptional capability in generating synthetic cis-regulatory elements (CREs) with
desired properties. Furthermore, we show that HybriDNA adheres to expected
scaling laws, with performance improving consistently as the model scales from
300M to 3B and 7B parameters. These findings underscore HybriDNA’s versatil-
ity and its potential to advance DNA research and applications, paving the way for
innovations in understanding and engineering the “language of life”.

1 INTRODUCTION

Deoxyribonucleic acid (DNA) serves as the genetic code of life, encoding the instructions that gov-
ern gene expression, cellular processes, and biological functions. A deep understanding of the “lan-
guage” of DNA is crucial for unraveling the molecular mechanisms that underlie biological func-
tions and for leveraging these insights to advance medicine and biotechnology. The advent of high-
throughput sequencing technologies has generated an immense volume of genomic data, creating
an unprecedented opportunity for machine learning models to uncover complex patterns and rela-
tionships within DNA sequences. Foundation models, pre-trained on large-scale unlabeled datasets,
have already demonstrated remarkable capabilities in natural languages (Devlin et al., 2019; Bom-
masani et al., 2021; Achiam et al., 2023) and protein languages (Brandes et al., 2022; Lin et al.,
2023; He et al., 2024).
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Recently, foundation models have begun to drive a paradigm shift in genomics, showcasing their
ability to learn rich representations of DNA sequences that can be fine-tuned for a diverse array of
downstream tasks. Currently, DNA foundation models primarily adopt two main architectural ap-
proaches. The first approach, inspired by BERT (Devlin et al., 2019), employs encoder-only Trans-
former architectures. Models such as DNABERT2 (Zhou et al., 2023) and Nucleotide Transformer
(NT) (Dalla-Torre et al., 2023) excel at capturing contextual information within DNA sequences,
producing high-quality embeddings suitable for tasks such as classification and regression. How-
ever, their bidirectional nature constrains their ability to design novel DNA sequences. The second
approach leverages decoder-only architectures, such as Hyena (Poli et al., 2023b) and the Trans-
former architecture in GPT (Radford et al., 2018), which are autoregressive and well-suited for gen-
erative tasks. Models like HyenaDNA (Poli et al., 2023a) and Evo (Meier et al., 2023) have shown
promising results in generating DNA sequences. Nevertheless, they often fall behind encoder-only
models in understanding tasks requiring a deep understanding of sequence context.

This dichotomy highlights two critical challenges in DNA modeling: (1) How to develop a DNA
foundation model that integrates robust contextual understanding with advanced design capabilities?
Such a model would not only enhance the analysis of existing genomic data but also enable the de-
sign of novel, functional DNA sequences. (2) How to efficiently address the intricate complexity
of DNA sequences, which involves long-range interactions critical to fundamental biological pro-
cesses? Recent advances in Selective State Space Models (SSMs), such as Mamba (Gu & Dao, 2023;
Dao & Gu, 2024), have shown remarkable potential for addressing information-dense tasks, includ-
ing language modeling (Waleffe et al., 2024; Lieber et al., 2024). These models efficiently handle
long-range dependencies with subquadratic complexity, offering a promising approach to the chal-
lenges posed by DNA sequence modeling. However, SSMs alone struggle to capture fine-grained,
single-nucleotide-level interactions vital for understanding DNA function.

In this work, we introduce HybriDNA, a novel class of decoder-only DNA language models that
leverage a hybrid Transformer-Mamba2 architecture. This hybrid design combines the complemen-
tary strengths of its components: Mamba2 blocks excel at efficiently processing long sequences
and capturing long-range dependencies, whereas Transformer blocks enhance the model’s ability
to focus on fine-grained, token-level details within the context of the entire sequence. Pretrained
on large-scale, multi-species genomes at single-nucleotide resolution with a next-token prediction
objective, HybriDNA demonstrates foundational capabilities in both understanding and designing
genomic sequences. By incorporating an echo embedding discriminative fine-tuning approach, Hy-
briDNA achieves state-of-the-art performance across 35 biologically significant DNA understanding
datasets, such as transcription factor binding prediction and promoter detection (Zhou et al., 2023).
Additionally, through generative fine-tuning, HybriDNA exhibits exceptional proficiency in design-
ing synthetic cis-regulatory elements (CREs) with desirable functional properties (Lal et al., 2024).
Finally, we show that scaling up HybriDNA is beneficial: increasing model size from 300 million
to 3 billion and 7 billion parameters improves performance, adhering to scaling laws observed in
language models such as GPT (Radford et al., 2018; Schulman et al., 2022). Extending the con-
text length (e.g., from 8 kilobases to 131 kilobases at single-nucleotide resolution) further enhances
HybriDNA’s performance on specific tasks. Together, these advancements position HybriDNA as a
powerful tool for advancing both the understanding and engineering of genomic sequences.

2 HYBRIDNA FOUNDATION MODEL

In this section, we present the HybriDNA model for long-range genomic sequence modeling. We
first provide a detailed description of the model architecture, followed by an explanation of the
pre-training stage of HybriDNA. Finally, we explore the fine-tuning stages utilized for a range of
downstream applications. The pipeline of our model is illustrated in Figure 1.

2.1 MODEL ARCHITECTURE

The HybriDNA model uses a decoder-only, sequence-to-sequence architecture purpose-built for ef-
ficiently and accurately processing long-range DNA sequences. It combines the unique strengths
of Mamba2 selective state-space models and Transformer attention mechanisms within a hybrid
framework inspired by recent hybrid architectures (Lieber et al., 2024; Glorioso et al., 2024; Ren
et al., 2024). As shown in Fig. 1, the architecture consists of a series of HybriDNA blocks, where
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Figure 1: Overview of HybriDNA: A Language Model for DNA sequences. HybriDNA builds
upon an efficient hybrid Transformer and Mamba2 architecture. It is first pre-trained on large-scale,
multi-species genomic data at single-nucleotide resolution using a next-token prediction objective.
Following this, HybriDNA utilizes an echo embedding fine-tuning approach for DNA understanding
tasks and a generative fine-tuning approach for DNA generation tasks.

each block alternates between HybriDNA Mamba2 blocks and HybriDNA Transformer blocks in a
7:1 ratio. This configuration has been empirically proven to effectively balance the advantages of
both block types, achieving optimal performance in the NLP domain (Waleffe et al., 2024). De-
tails of the Mamba block and Transformer block configuration are provided in Appendix B.1. In
the HybriDNA architecture, the first block is a HybriDNA Mamba2 block, eliminating the need
for explicit positional embeddings or mechanisms such as RoPE (Su et al., 2024). This approach
results in a HybriDNA design that completely omits positional encoding. Additionally, unlike the
Jamba model (Lieber et al., 2024), the MLP layers in HybriDNA avoid using Mixture-of-Experts
(MoE) configurations due to instability observed during fine-tuning for DNA-related downstream
tasks. By leveraging this hybrid architecture, HybriDNA excels in both short- and long-range tasks
while enabling the robust generation of synthetic DNA sequences.

2.2 PRETRAINING ON MULTI-SPECIES GENOMES

Dataset We pretrain HybriDNA on a large-scale, multi-species genome dataset using next nucleotide
(token) prediction (NTP). This dataset was curated from the Nucleotide Transformer (Dalla-Torre
et al., 2023) and NCBI. The resulting collection of genomes was downsampled to include a total of
845 species, comprising 160 billion nucleotides. The contribution of each class in the number of
nucleotides relative to the total nucleotide count in the dataset is summarized in Table 7.

Tokenizer A straightforward and effective base-level tokenization strategy is adopted in HybriDNA,
encoding each nucleotide (A, C, T, G) as an individual token. This approach ensures that the model
processes genomic data with high fidelity to its natural structure, enabling nuanced interpretation
and feature extraction. Unlike higher-order tokenization schemes that aggregate multiple bases into
a single token, the base-level strategy treats each nucleotide as a fundamental unit, preserving its
unique contribution to genomic patterns. This method is particularly advantageous for capturing
low-level sequence variations with significant biological implications, such as single nucleotide
polymorphisms (SNPs) and point mutations.

DNA Sequence Length Warm-up To enhance HybriDNA’s ability to generalize effectively across
longer genomic ranges, we implement a multi-stage warm-up procedure during the pre-training
phase. The pretraining process begins by training the model with an 8,192 token context length,
establishing a strong foundation for capturing intermediate sequence dependencies. After that, the
context length is gradually increased—first to 32,768 tokens and then to 131,072 tokens—with each
extension undergoing additional training equal to 2% of the training steps originally used for the
8,192 token context length. This gradual extension enables the model to adapt to increasingly
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long-range dependencies and ensure efficient processing of large-scale genomic spans, equipping
HybriDNA to excel in tasks that demand long-range comprehension.

2.3 DOWNSTREAM FINE-TUNING

2.3.1 DISCRIMINATIVE FINE-TUNING FOR DNA UNDERSTANDING TASKS

To support both generative and understanding tasks, HybriDNA uses a GPT-like decoder-only ar-
chitecture. A key limitation of autoregressive models is their inability to incorporate information
from future tokens. To address this, HybriDNA introduces echo embedding, inspired by Springer
et al. (2024), which leverages repeated sequences to encode bidirectional context. The central idea
of this approach is that repeating sequences facilitates the encoding of contextual information from
subsequent elements into the embeddings. To illustrate, consider an input sequence x and its corre-
sponding label y for a classification task involving K classes. For example, given the input sequence
x = AACG, we create an “echo” input by duplicating x: xecho = AACGAACG. Subsequently, we extract
the hidden embeddings from the final hidden layer, with particular attention to the embeddings from
the latter half. We then apply a mean-pooling operation over all token embeddings to yield hθ(xecho),
which is designed to encapsulate contextual information from the repeated segment of the input. The
pooled vector hθ(xecho) is subsequently fed into a classification head, which may consist of a linear
layer endowed with weights W ∈ Rd×K and bias b ∈ RK , to produce the predicted probability
distribution across the K classes:

P (y|x) = softmax(hθ(xecho)W + b). (1)

To optimize the model, we employ the standard cross-entropy loss, which adjusts the parameters
of either the classification head alone (W and b) or the entire model (θ, W , and b). By weaving
bidirectional context into the autoregressive model, echo embeddings reconcile the traditional au-
toregressive embedding paradigm with the intricate demands of high-fidelity genomic tasks, offering
substantial benefits for the analysis of extensive genomic sequences.

A potential limitation of employing echo embeddings for discriminative fine-tuning is the increased
computational cost, as the doubled input length leads to higher memory requirements. However,
HybriDNA’s efficient hybrid architecture alleviates much of this burden, making the technique a
practical and scalable solution for a wide range of genomic analysis and applications.

2.3.2 GENERATIVE FINE-TUNING FOR DNA GENERATION TASKS

Autoregressive models like ChatGPT generate realistic, instruction-following text (Schulman et al.,
2022). Similarly, HybriDNA, pre-trained on multi-species genomic data at single-nucleotide reso-
lution, enables the design of novel DNA sequences for diverse applications.

We introduce prompt tokens encoding task-specific instructions, randomly initialized in the ex-
panded embedding layer alongside the nucleotide vocabulary. HybriDNA predicts each nucleotide
xt sequentially, conditioned on preceding prompt tokens and generated nucleotides.

The model is optimized using the next-token prediction loss:

Lgenerative(θ) = − 1

T

T∑
t=1

log
(
pθ(xt | z0, . . . , zk−1, x0, . . . , xt−1)

)
, (2)

where θ denotes model parameters, zk−1 the k-th prompt tokens, and xt−1 the t-th generated nu-
cleotide. Minimizing Eqn. 2 trains HybriDNA to generate sequences aligned with design goals.

3 EXPERIMENTS

In the experiment section, we aim to answer the following questions regarding the HybriDNA mod-
els and their key capabilities: (1) How do the pretraining losses of HybriDNA models compare
across different scales and configurations? (2) Can the models achieve state-of-the-art performance
on short-range understanding benchmarks, and how does scaling affect their effectiveness? (3) How
do the models perform on long-range understanding tasks, and do they exhibit improved results with
increased pretraining context length? (4) Can the models generate realistic and desirable regulatory
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sequences across multiple species? (5) How do the models compare to pure Transformer-based
models in terms of computational efficiency during training?

We benchmark our model against a series of recently proposed tasks, including DNABERT2 (Zhou
et al., 2023), BEND (Marin et al., 2024), and Genomics LRB (Poli et al., 2023c). In selecting tasks
for comparison, we adhere to the principle of encompassing a diverse range of challenges, encom-
passing both short and long-range capabilities. Additionally, we prioritize tasks that are biologically
meaningful, covering a variety of species and functionalities within DNA-related areas.

3.1 PRETRAINING CURVES

Configurations We train three model variants of HybriDNA with 300M, 3B, and 7B parameters.
These models differ in the number of layers, hidden size, and learning rates. Despite these variations,
all models share a consistent pretraining strategy. We use a next-token-prediction (NTP) loss instead
of the commonly used masked language modeling (MLM) loss to enable generative ability. Our
models are trained on NVIDIA A100/H100 and AMD MI300X GPUs. Details of our model and
training settings can be found at Appendix B.

Scaling Behaviors To investigate scaling law behavior, we analyze the training and validation
losses during the pretraining stage for the 300M, 3B, and 7B models. As the model size increases, we
observe consistent improvements in both training and validation losses, highlighting the benefits of
larger models in capturing intricate genomic patterns. Detailed loss curves for each model variant are
presented in Fig. 5, which illustrate the diminishing returns in loss reduction as the model size grows.
These findings align with theoretical expectations of scaling laws in deep learning and genomics-
specific modeling.

We also demonstrate the effectiveness of using the hybrid Mamba2 and self-attention model, as
opposed to using Mamba2-only models. The training and validation losses for pretraining two
comparable 300M-size models are presented in Fig. 6.

3.2 SHORT-RANGE UNDERSTANDING BENCHMARKS (GUE, BEND)

We first evaluate our model on the short-range understanding capabilities using two comprehen-
sive benchmarks: Genome Understanding Evaluation (GUE) and BEND. These benchmarks assess
model performance on biologically meaningful tasks with short sequence length around hundreds
bp. We compare HybriDNA with five state-of-the-art genomics foundation models: NT-500M-
human, NT-2.5B-MS, DNABERT-2, HyenaDNA-medium-160k, and Caduceus-Ph-131k. For all
baseline models, we utilize the pretrained weights provided in their respective original codebase.
Detailed descriptions of our baseline models are provided in Appendix C.1.

GUE Following the identical settings in DNABERT-2, we use metrics of Matthews Correlation
Coefficient (MCC) for all the tasks except F1 score for Covid task following the GUE dataset’s
original setting. The settings of hyperparameters, training epochs, and evaluation strategies follow
exactly from the original paper, where we fine-tune all the parameters of the model and use the
hidden state of the last token for embedding representation. The training epochs and evaluation
steps are all followed from the original paper. We use a learning rate of 5e-5 for our 300M model,
3e-5 for our 3B model, and 1e-5 for our 7B model across all the tasks. We take the mean MCC/F1-
score value of tasks in the same category and summarize results in Table 1. The suffix “(E)” in
the model name within the table indicates that echo embedding was applied during discriminative
fine-tuning. For detailed results on each task, refer to Appendix C.3.

BEND BEND paper (Marin et al. (2024)) presents a series of tasks for the evaluation of genomics
foundation models. We select the three supervised classification tasks on local DNA sequences:
Chromatin Accessibility, Histone Modification, and CpG Methylation. For the Histone Modification
tasks, the training process follows the original paper. We freeze the embedding of the models and
train a downstream CNN model for 100 epochs. For autoregressive models such as HyenaDNA
and our HybriDNA model, we use the mean of the hidden state of the sequence as embedding
representations. The model with the lowest validation loss is tested and the metric reported is the
mean AUROC score. We report the AUROC score of each model on the three tasks in Table 2.
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Type Model PD(H) CPD(H) SS(H) TF(H) TF(M) EMP(Y) CV(V)
(MCC) (MCC) (MCC) (MCC) (MCC) (MCC) (F1)

Encoder
DNABERT-2 83.96 71.81 85.42 68.71 70.00 55.98 71.02
NT-2.5B-MS 88.15 71.57 89.35 63.21 67.02 57.64 73.04
NT-500M-human 82.96 66.79 78.63 61.92 45.24 45.35 50.82
Caduceus-Ph 82.36 67.03 71.80 65.17 62.28 51.05 40.35

Decoder HyenaDNA 80.14 69.22 77.76 61.74 64.39 47.15 25.88

Our

HybriDNA-300M 83.29 68.87 87.74 68.37 75.32 67.38 73.81
HybriDNA-300M (E) 83.67 69.96 88.72 69.70 75.73 68.25 73.90
HybriDNA-3B 85.40 69.50 89.01 70.48 75.43 69.06 74.05
HybriDNA-3B (E) 85.55 70.71 89.10 71.13 77.14 68.97 74.88
HybriDNA-7B 86.53 71.37 90.09 70.72 78.02 63.05 74.02
HybriDNA-7B (E) 88.10 72.03 90.12 72.01 79.02 65.30 74.30

Table 1: Results on the GUE Benchmark, which includes a series of short-range classification tasks
across multiple species, including Promoter Detection (PD), Core Promoter Detection (CPD), Splice
Site Detection (SS), Transcription Factor Prediction (TF), Epigenetic Marks Prediction (EMP) and
Covid Variant Classification (CV). The suffix “(H)” denotes the human genome, “(M)” the mouse
genome, “(Y)” the yeast genome, and “(V)” the virus genome. The suffix “(E)” in the model name
indicates that echo embedding was applied during discriminative fine-tuning.

Model Type Model Chromatin Histone CpG
Accessibility Modification Methylation

(AUROC) (AUROC) (AUROC)

Encoder Models
DNABERT-2 0.81 0.79 0.90
NT-2.5B-MS 0.79 0.78 0.92
NT-500M-human 0.74 0.76 0.88
Caduceus-Ph 0.83 0.77 0.91

Decoder Models HyenaDNA 0.81 0.77 0.87

Our Model
HybriDNA-300M 0.78 0.77 0.88
HybriDNA-3B 0.82 0.79 0.92
HybriDNA-7B 0.84 0.79 0.93

Table 2: Results on the BEND Benchmark, which includes Chromatin Accessibility, Histone Modi-
fication, and CpG Methylation tasks.

3.3 GENOMICS LONG-RANGE BENCHMARK (LRB)

The Genomics Long-Range Benchmark (LRB) introduced by Poli et al. (2023c) focuses on tasks
that require understanding long-range context within genomic sequences. To assess models’ abil-
ity to capture dependencies across extended genomic regions, we selected two tasks across distinct
datasets that inherently demand long-range sequence comprehension: Causal eQTL Variant Effect
Prediction, OMIM Variant Effect Prediction. During discriminative fine-tuning, all models were
trained using frozen embeddings generated in the same manner as those used in the BEND bench-
mark. These embeddings were passed through an MLP classifier, with all models sharing identical
architectures and hyperparameters to ensure consistency. We report accuracy and AUROC metrics
for all tasks, with detailed results summarized in Table 3.

3.4 DESIGNING REALISTIC SYNTHETIC CIS-REGULATORY ELEMENTS (CRES)

regLM (Lal et al., 2024) integrates autoregressive language models with supervised sequence-to-
function tasks to design synthetic cis-regulatory elements (CREs). This benchmark underscores the
capability of models to generate regulatory sequences with specific desired properties. To evaluate
the generative ability of our model, we adopt this framework for assessing DNA models’ ability to
design yeast promoters and human enhancers. This framework also highlights the distinct advan-
tages of Decoder-only Genomics Foundation Models (GFMs). For result comparison, we utilize
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Model Type Model Causal eQTL OMIM
Fine-tune Zero-shot Zero-shot
(AUROC) (AUROC) (AUPRC)

Encoder Models
DNABERT-2 0.72 0.50 0.002
NT-500M-human 0.72 0.51 0.003
Caduceus-Ph 0.68 0.49 0.002

Decoder Models HyenaDNA 0.71 0.51 0.002

Our Model
HybriDNA-300M (8k) 0.71 0.51 0.003
HybriDNA-300M (32k) 0.72 0.51 0.003
HybriDNA-300M (131k) 0.74 0.51 0.003

Table 3: Results on the LRB Benchmark, which includes Causal eQTL Variant Effect prediction,
OMIM Variant Effect prediction tasks.

HyenaDNA, as it is not only the foundation of regLM but also the sole existing Decoder-only GFM,
making it an ideal baseline for this evaluation.

Cell Type-Specific Human Enhancer Generation The human enhancer generation task involves
producing desired human enhancer genomic sequences for three specific cell line types: HepG2,
K562, and SK-N-SH. Each sequence incorporates a three-digit label (ranging from 0 to 3) that indi-
cates the strength of the enhancer in a particular cell line. The evaluation metrics for the generated
sequences are as follows: 1. Top-1 activity: The highest predicted enhancer activity for each cell
type. 2. Mean activity: The average of the top 100 predicted activities for each cell type, aligned
with the regLM methodology. 3. Diversity: The mean of pair-wise edit distance of the top 100
predicted sequences across all cell types, measuring the overall diversity of high-quality generated
sequences. The results are summarized in Table 4.

Model HepG2 K562 SK-N-SH Diversity

Top-1 Mean Top-1 Mean Top-1 Mean Mean Edit Distance

Held-out Test 6.2 2.6 5.5 2.4 5.1 1.6 110.10
HyenaDNA 5.5 4.0 4.3 3.8 5.2 2.3 98.50
HybriDNA-300M 7.3 5.4 7.8 6.2 6.6 4.7 108.74

Table 4: Comparison between HybriDNA-300M and HyenaDNA on the human enhancer generation
task. Metrics include Top-1 activity, Mean activity, and Diversity for each cell line type (HepG2,
K562, SK-N-SH).

Yeast Promoter Generation The yeast promoter generation task follows a similar setup. How-
ever, instead of three cell lines, this task involves a two-digit label representing promoter activity in
complex and defined media, with activity levels ranging from 0 to 4. Since HyenaDNA is pretrained
only on human genomic data, the model is fine-tuned in the same manner as in the human enhancer
task, rather than training it from scratch as done in regLM. The results are summarized in Table 5.

Model Complex Media Defined Media Diversity

Top-1 Mean Top-1 Mean Mean Edit Distance

Held-out Test 16.0 5.9 15.7 6.7 28.8
HyenaDNA 16.8 11.4 16.3 10.8 27.3
HybriDNA-300M 18.2 15.0 17.6 13.5 30.7

Table 5: Comparison between HybriDNA-300M and HyenaDNA on the yeast promoter generation
task. Metrics include Top-1 activity, Mean activity, and Diversity for both media types.
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Figure 2: Comparison of throughput and GPU memory consumption during training between Hy-
briDNA and a pure Transformer model with 300M parameters

3.5 COMPUTATIONAL EFFICIENCY

To evaluate the computational efficiency of our HybriDNA model relative to a standard Transform-
ers model of comparable parameter size (utilizing the same Transformers block as in our hybrid
model), particularly during the training phase, we compare their performance using the following
two metrics: 1. Tokens/second per GPU: This metric assesses the throughput of a single GPU by
measuring the number of tokens it can process each second during the pre-training stage. For each
context length, the batch size is set to the maximum number to fit into the GPU memory. 2. GPU
memory cost (GB): This measures the amount of GPU memory consumed when training a model
with a fixed context length and a batch size of 1.

We assess the two models on four NVIDIA A100 GPUs (80G memory) using DeepSpeed Zero-
1 Stage optimization and BF16 mixed-precision training. Both models comprise approximately
300M parameters. The Transformers model incorporates Flash Attention 2 optimization, while the
Mamba2 layers in our HybriDNA model are implemented using CUDA kernels. We test both models
at various context lengths —from 2k tokens up to 65k tokens—doubling the sequence length at each
step.

As illustrated in Figure 2, HybriDNA model achieves significantly higher training throughput than
standard Transformer models, especially when processing context lengths exceeding 32,000 tokens.
For instance, at a context length of 49,000 tokens, the throughput of HybriDNA is approximately 3.4
times higher than that of Transformers. This performance gap widens as context length increases,
highlighting the enhanced efficiency of our model compared to Transformers. In terms of GPU
memory usage, our HybriDNA consistently achieves better efficiency than modern Transformer
models, even those optimized with advanced techniques such as Flash Attention 2 (Dao, 2023).
Notably, at context lengths around 65,000 tokens, a standard Transformer model not only runs into
Out-Of-Memory (OOM) issues on A100 GPUs but also experiences a drop in throughput owing to
its quadratic complexity. These findings underscore the exceptional ability of our hybrid model to
manage larger context lengths effectively, a critical aspect for long-range DNA-related tasks.

4 CONCLUSION

In this work, we develop a class of decoder-only DNA language models built on a hybrid
Transformer-Mamba2 architecture. By integrating Mamba2 layers, our model can process ex-
tremely long DNA sequences at single-nucleotide resolution with remarkable computational effi-
ciency. Pretrained on large-scale, multi-species genomes at single-nucleotide resolution with a next-
token prediction objective, HybriDNA demonstrates foundational capabilities in both understanding
and designing genomic sequences. Through echo embedding discriminative fine-tuning, HybriDNA
achieves state-of-the-art performance across 33 biologically significant DNA understanding tasks
from the BEND, GUE, and LRB benchmarks. Through generative fine-tuning, HybriDNA exhibits
remarkable proficiency in generating synthetic cis-regulatory elements with desirable functional
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properties. These results highlight HybriDNA’s versatility and establish its potential as a power-
ful foundation model for advancing DNA research and applications.

Looking ahead, there are several exciting directions to further explore. These include: (1) Expanding
the pretraining dataset to include a greater number of nucleotide tokens and species classes, enabling
broader generalization across downstream tasks involving diverse species. (2) Conducting more
downstream fine-tuning tasks with diverse and significant scientific impacts, and performing wet-
lab experiments to further validate the sequences designed by HybriDNA.
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A PRELIMINARIES AND RELATED WORK

A.1 ATTENTION MECHANISM IN TRANSFORMERS

Powering many foundation models is the attention mechanism (Bahdanau, 2014; Vaswani, 2017) in
Transformers. Attention is a type of operator that assigns scores to every pair of tokens in a sequence,
enabling each element to “attend” to the others. The most widely adopted variant of attention to date
is Scaled Dot-Product Attention, which is defined as:

y = softmax(
QKT

√
dk

) · V, (3)

where x ∈ RL×d represents an input sequence with sequence length L and embedding size d. The
learnable parameters WK ∈ Rd×dk ,WQ ∈ Rd×dk , and WV ∈ Rd×d are used to compute the key,
query, and value matrices: K = xWK , Q = xWQ, and V = xWV . The attention layer, therefore,
transforms an input x of shape RL×d into an output y of the same shape, RL×d.

Attention computes all pairwise comparisons for every token in a sequence, resulting in a computa-
tional complexity that scales as O(L2) with sequence length L. While this enables capturing global
context at high resolution, it also restricts the context length on modern GPU architectures.

A.2 SELECTIVE STATE SPACE MODELS

Structured state space sequence models (S4) (Gu et al., 2022b; 2021) are a recent class of sequence
models for deep learning that are broadly related to RNNs, CNNs, and classical state space models.
They are inspired by a particular continuous system, which maps a 1-D function or sequence f :
x(t) ∈ R 7→ y(t) ∈ R through a hidden state h(t) ∈ RN , N denotes SSM state size.

This continuous system is defined by four matrices (∆,A,B,C), ∆ ∈ R,A ∈ RN×N , B ∈ RN×1,
C ∈ R1×N . They define a sequence-to-sequence transformation in two steps:

h′(t) = Ah(t) +Bx(t), ht = Āht−1 + B̄xt, K̄ = (CB̄,CĀB̄, ...,CĀkB̄),

y(t) = Ch(t). yt = Cht. y = x ∗ K̄.
(4)

Discretization S4 models represent discrete versions of the continuous system (corresponding to the
second column of Eqn. 4), which incorporates a timescale parameter ∆ to convert the continuous
parameters A, B into their discrete counterparts Ā, B̄. A commonly used transformation for this
process is the zero-order hold (ZOH), defined as follows (where “exp” denotes the exponential):

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B. (5)

Computation After the parameters have been transformed from (∆,A,B) to (Ā, B̄), the model
can be computed in two ways, either as a linear recurrence (corresponding to the second column of
Eqn. 4) or a global convolution (corresponding to the third column of Eqn. 4). Commonly, the model
uses the convolutional mode for efficient parallelizable training (where the whole input sequence is
seen ahead of time), and switched into recurrent mode for efficient autoregressive inference (where
the inputs are seen one timestep at a time).

Structured matrix A S4 (Structured SSM) models are so named because computing them effi-
ciently also requires imposing structure on the A matrix. The most popular form of structure is
diagonal (Gupta et al., 2022; Gu et al., 2022a; Smith et al., 2023). In this case, the A,B,C matrices
can all be represented by N numbers. To operate over an input sequence x of batch size B and
length L with D channels, the SSM is applied independently to each channel.

Linear Time Invariance (LTI) An key property of Eqn. 4 is that the model’s dynamics remain
constant over time, a characteristic known as Linear Time Invariance (LTI). In other words, the
matrices (∆,A,B,C), and consequently (Ā, B̄), are fixed for all time-steps. The LTI property
is closely tied to recurrence and convolutions. Before Mamba, all S4 models adhered to LTI (e.g.
computed as convolutions during training) because of fundamental efficiency constraints.
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This above formulation is central to S4. H3 (Fu et al., 2022) generalizes this recurrence to use S4;
it can be viewed as an architecture with an SSM sandwiched by two gated connections. H3 also
inserts a standard local convolution, which they frame as a shift-SSM, before the inner SSM layer.

Mamba (Gu & Dao, 2023) introduces the concept of Selective SSMs (S6), enhancing the tradi-
tional S4 framework through input-dependent gating mechanisms. The matrices Ā, B̄, and ∆ are
dynamically gated by the input xt, enabling them to adjust their behavior based on the current input.
Mamba simplifies the block design by combining the H3 block Fu et al. (2023) with gated MLPs.
Additionally, Mamba proposes selective scan, a hardware-aware algorithm that computes the model
recurrently using a scan operation, enhancing computational efficiency and scalability.

Mamba2 (Dao & Gu, 2024) builds upon Mamba1 by introducing two key enhancements:

1. From the perspective of the SSM layer, the new Structured State Space Duality (SSD) layer
imposes a stricter constraint on the diagonal matrix Ā. The diagonal matrix is now reduced to a
scalar times an identity matrix, which can be represented using only a single identical value across
the diagonal. In this case, A can be represented with shape just sequence length.

2. The Mamba2 block produces the SSM parameters (Ā, B̄,C) in parallel with the input x, as
opposed to sequentially in the Mamba1 block. This modification enables greater parallelism and
scalability improvements, making tensor parallelism feasible for scaling the model to larger dimen-
sions and longer contexts. Compared to Mamba1, Mamba2 allows much larger state dimensions
(from N = 16 in Mamba1 to N = 64 to N = 256 or even higher) while simultaneously being
much faster during training.

A.3 DNA FOUNDATION MODELS

The advent of high-throughput sequencing technologies has produced vast amounts of genomic
data, presenting an unprecedented opportunity for deep learning to uncover complex relationships
and dependencies in DNA sequences. Recent advancements in genome language modeling have
demonstrated their effectiveness across a wide range of downstream applications, including pro-
moter prediction (Le et al., 2022; Zhang et al., 2022), gene expression prediction (Avsec et al.,
2021), DNA methylation prediction (Jin et al., 2022), chromatin state analysis (Lee et al., 2022),
promoter-enhancer interaction prediction (Chen et al., 2022; Ni et al., 2022) TF-DNA binding pre-
diction (Wang et al., 2022), variant effect prediction (Rozowsky et al., 2023), gene network predic-
tion (Theodoris et al., 2023) and more. More recently, inspired by advancements in natural language
processing, researchers have begun developing DNA foundation models. These include, but are not
limited to: (1) encoder-only models such as DNABERT, DNABERT-2, Nucleotide Transformer, and
Caduceus; and (2) decoder-only models such as HyenaDNA and Evo.

DNABERT (Ji et al., 2021) is an early foundation model designed to interpret the human genome
from a language perspective. By adapting the BERT framework with Transformers architecture,
it captures a transferable understanding of human genome reference sequences. This single pre-
trained Transformer model achieves state-of-the-art performance in tasks such as predicting pro-
moters, splice sites, and transcription factor binding sites, after fine-tuning on small task-specific
labeled datasets. The model contains 86M parameters and operates with a context length of 512 on
the hg38 human reference genome dataset.

DNABERT-2 (Zhou et al., 2023) builds on its predecessor by employing Byte Pair Encoding (BPE)
for tokenization, which improves computational efficiency and representation quality. It also incor-
porates Attention with Linear Biases (ALiBi) with Transformers-Encoder layers, enabling the model
to process longer input sequences effectively. DNABERT-2 achieves state-of-the-art results on the
Genome Understanding Evaluation (GUE) benchmark, showcasing its capacity to address diverse
genomic tasks. The model consists of 112M parameters and is trained on a multi-species dataset
comprising 135 species with a total of 32 billion nucleotides and a context length of 512.

Nucleotide Transformer (NT) (Dalla-Torre et al., 2023) is a scalable genomics foundation model,
built on an encoder-only Transformer architecture, with parameter sizes ranging from 500M to
2,500M, based on encoder-only Transformer architecture. Its multi-species variant is pre-trained on
genomic data from 850 species, employing a non-overlapping k-mer tokenization method that ef-
fectively reduces tokenized sequence lengths. Additionally, two human-specific versions are trained
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separately on the hg38 human reference genome dataset and the 1000 Genomes Project. All pre-
training is conducted with a context length of 1,000 tokens.

Caduceus (Schiff et al., 2023) introduces the bi-directional Mamba1 architecture, specifically de-
signed for DNA sequence modeling. By incorporating reverse complement (RC) equivariance at
the architectural level, Caduceus is optimized for long-range DNA sequence modeling. The model
effectively captures the intricate understanding required for DNA sequence tasks. The Caduceus se-
ries features parameter sizes ranging from 500K to 7M, with a context length of 131k, and is trained
on the hg38 dataset.

HyenaDNA (Poli et al., 2023a) utilizes the Hyena operator, a recurrence of gating and implicitly
parametrized long convolutions, to handle long-range genomic sequences, enabling the process-
ing of input contexts up to 1 million tokens with single-nucleotide resolution. This model shows
effectiveness in tasks requiring long-range understanding, such as analyzing DNA fragments far
apart, beyond the context window of traditional Transformer models. HyenaDNA is trained on the
hg38 human reference genome dataset, with parameter sizes ranging from 1.7M to 50M and context
lengths varying from 1k to 1M.

Evo (Meier et al., 2023) is a 7-billion-parameter foundation model built on the StripedHyena ar-
chitecture and trained on 2.7 million raw prokaryotic and phage genome sequences. It integrates
multiple biological modalities, including DNA, RNA, and proteins. With a context length of 131k
nucleotide bases, Evo delivers superior performance in sequence modeling and functional design
tasks, spanning molecular to genome-scale applications.

A.4 HYBRID MODELS IN GENERAL DOMAINS

Recent advancements in Mamba-based hybrid models for NLP tasks combine the efficiency of
SSMs with the expressiveness of attention mechanisms, excelling in long-context scenarios. In-
novations include Jamba’s (?) integration of Transformer, Mamba, and Mixture-of-Experts layers
for sequences up to 256k tokens, Zamba’s (Glorioso et al., 2024) compact 7B model with shared
self-attention for reduced latency, and SAMBA’s (Ren et al., 2024) sliding window attention for effi-
cient handling of sequences up to 1M tokens. Other notable contributions include Taipan’s (Nguyen
et al., 2024) selective attention layers for scalability and Waleffe’s (Waleffe et al., 2024) versatile
8B hybrid architecture combining Mamba2, self-attention, and MLP layers. These models achieve
strong results across various short- and long-range benchmarks.

B HYBRIDNA MODEL

B.1 HYBRIDNA BLOCK

A key component of the HybriDNA Mamba2 block is the State-Space Duality (SSD) layer (Dao &
Gu, 2024). It processes input sequence x efficiently using the recurrence:

ht = Atht−1 +Btxt, yt = C⊤
t ht, (6)

where ht ∈ RN is the hidden state, xt ∈ R is the input, At ∈ RN×N represents state transitions,
Bt ∈ RN×1 projects the input, and Ct ∈ RN×1 maps the hidden state to the output yt ∈ R.

The SSD layer simplifies the matrix At to At = atI , where at ∈ R is a scalar and I is the identity
matrix, to further improve efficiency. This simplification reduces the recurrence to:

ht = atht−1 + btxt, bt = Bt. (7)

For multi-dimensional inputs x ∈ RL×d, the SSD layer is extended into a multi-head design, where
each head independently processes a distinct subset of the input dimensions, similar to the mech-
anism of multi-head attention in Transformers. This architecture enables the SSD layer to capture
complex interactions across multiple input channels in parallel, greatly enhancing its representa-
tional capacity. Typically, the head dimension is set to 64 or 128, consistent with standard configu-
rations used in Transformers.

Computationally, the SSD layer can be reformulated as a matrix operation:

y = Mx, Mij =

{
C⊤

i Ai:j+1Bj if i ≥ j,

0 otherwise,
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where Ai:j+1 = AiAi+1 · · ·Aj . The matrix M is semiseparable, meaning its submatrices possess
low-rank properties. Specifically, a semi-separable matrix M can be decomposed into the sum of
two components:

M = UV ⊤ +K,

where U and V capture the structured part, and K represents the lower-triangular portion. This
structure ensures efficient computation with O(NL) complexity, which is significantly faster than
the O(L2) cost of traditional Transformers-based methods.

As shown in Fig. 3, the HybriDNA Mamba2
block is a scalable, hardware-optimized archi-
tecture designed to efficiently process input
sequences by integrating grouped-value pro-
jections and lightweight convolutional opera-
tions. These projections, combined with 1D
convolutions, allow for flexible feature extrac-
tion and dimensionality reduction while main-
taining computational efficiency. To further
optimize performance, all data-dependent pro-
jections are computed in parallel at the start
of the block, leveraging tensor parallelism to
maximize the utilization of matrix multiplica-
tion units on modern GPUs. Additionally, the
Mamba2 blocks employ RMSNorm normaliza-
tion (Zhang & Sennrich, 2019) both before in-
put projection and after the SSD layer, which
improves training stability, especially at large
model scales.

Projection Projection
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Figure 3: HybriDNA Mamba2 Block

For the HybriDNA Transformers block, we adopt a standard Transformers Decoder block as de-
scribed in Section A.1.

B.2 ARCHITECTURE DETAILS

The HybriDNA model employs a hybrid Transformer-Mamba2 architecture. The architecture inter-
leaves Transformer and Mamba2 layers in a 7:1 ratio, optimizing the strengths of both mechanisms.
The Transformer layer is placed in the fourth of every eight layers. Our three model variants—300M,
3B, and 7B—differ in their hidden dimension size and layer configurations. The details of each
model are summarized in Table 6:

Model Variant # Layers Hidden Size Intermediate Size # Heads Head Dim
7B 32 4096 8192 128 64
3B 16 4096 8192 128 64
300M1 24 1024 2048 32 64

Table 6: Model configurations of HybriDNA’s three model variants.

B.3 TRAINING

Fig. 4 is a detailed architecture diagram of our HybriDNA model and its components. We train
the HybriDNA models using a standard causal language modeling (CLM) objective. The training

1You may notice that HybriDNA-300M model has 32 layers, inspired by the configuration of Jamba-1.5
model: https://huggingface.co/ai21labs/AI21-Jamba-1.5-Large/blob/main/config.json.
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Figure 4: Model Architecture of HybriDNA

employs the Adam Kingma & Ba (2015) optimizer with a learning rate schedule and standard ex-
ponential decay rates β1 = 0.9, β2 = 0.95, and ϵ = 1e−8. All models are trained with a warmup
phase of 2,000 steps and a total of 500,000 steps. The learning rate for the 300M model is 1e−3, for
the 3B model is 6e−4, and for the 7B model is 1e−4. Mamba-based models demonstrate higher tol-
erance for learning rates compared to standard Transformer architectures, showcasing their stability
during optimization.

Our 300M, 3B and 7B models are trained on 0.5M tokens per batch, optimized for efficient utiliza-
tion of computational resources and consistent training dynamics. Initially, the models are pretrained
on sequences with 8192 context length for 500k steps, resulting a total of 250B tokens (∼1.5 epoch)
in the first pretraining stage. Following this, the models undergo further pretraining to extend their
capabilities to handle larger context lengths. This two-stage pretraining strategy allows the mod-
els to gradually adapt to more complex and computationally demanding settings, ensuring robust
performance across varying sequence lengths.

Training was conducted on the following hardware configurations: the 300M model on 8 AMD
MI300X GPUs, the 3B model on 8 NVIDIA H100 GPUs, and the 7B model on 64 AMD MI300X
GPUs. Models are trained for approximately 300 hours for the 300M and 7B variants, and 500 hours
for the 3B model. These configurations ensure efficient utilization of computational resources and
stable training for large-scale models.

B.4 DATASET

We utilized a comprehensive dataset comprising approximately 200 billion tokens, following the
Nucleotide Transformer’s multi-species dataset (Dalla-Torre et al., 2023). It comprises of a subset
of the NCBI dataset with 850 species and the details are in Tab. 7.
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Figure 5: Pretraining loss curves for HybriDNA-300M, 3B, and 7B models

Class # Species (train) # Nucleotides (train) # Species (valid) # Nucleotides (valid)
Bacteria 647 16.5B 20 0.5B
Fungi 44 2.0B 3 0.2B
Invertebrate 37 19.9B 2 1.9B
Protozoa 9 0.45B 1 0.05B
Mammalian Vertebrate 28 65.2B 3 4.6B
Other Vertebrate 51 57.4B 6 6.0B

Total 845 160.75B 35 13.25B

Table 7: Statistics of multi-species pretraining data for our HybriDNA model.

B.5 HYBRID-MODEL EFFECTIVENESS

To evaluate the effectiveness of incorporating Transformers layer in our HybriDNA model, we pre-
train a variant of 300M-size model without Transformers layer. Both our Hybrid and pure Mamba2
model are pretrained using 8k context length. We show the training and validation loss in pretraining
stage in Fig 6. We can see that for models with similar parameter size, hybird model demonstrates
lower training and validation loss comparing to a model comprised with pure Mamba2 blocks.

Figure 6: Effectivenss of Hybridization in HybriDNA
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It can be observed that the incorporation of some Transformers blocks into the HybriDNA architec-
ture brings improvements in both training and validation loss in the pretraining stage.

C DOWNSTREAM EXPERIMENTS SETUP AND RESULTS

C.1 BASELINE MODEL DESCRIPTIONS

In this section, we describe the details of the baseline models we benchmark against.

NT-500M-human is a Transformer-encoder based model with 500M parameters pretrained on
GRCh38/hg38 human reference genome with about 3.2B nucleotide bases. It utilizes k-mer tok-
enization method with k = 6 and is pretrained using standard Masked Language Modeling (MLM)
objective. The pretraining context length is 1,000.

NT-2.5B-MS is another variant of Nucleotide Transformer series with larger size of 2.5B parameters
and was pretraiend on a multi-species dataset with 174B nucleotides from a total of 850 species.
Other pretraining details remain the same with NT-500M-human.

DNABERT-2 is also a BERT-like model with 112M parameter size. It is pretrained on a multi-
species dataset with 135 species of roughly 32.5B total nucleotide bases. It improves the tokenizer
with the Byte Pair Encoding (BPE) method and is also trained with standard MLM objective with a
context length of 512.

Caduceus-Ph-131k builds upon the Mamba architecture, which exmploys selective state space
models for long-range sequence processing. It enables Bi-directional sequence modeling using Bi-
Mamba block. The model is trained on GRCh37/hg37 human reference genome with about 3.2B
nucleotide bases using MLM objective. This variant has 7.73M parameter size and uses nucleotide-
level tokenization with pretraining context length of 131,072.

HyenaDNA-Medium-160k utilizes the Hyena operator, derived from state space models, for com-
putationally efficient long-range sequence modeling. It is pretrained on GRCh38/hg38 human refer-
ence genome using next-token prediction objective. This specific variant has 14.2M parameters and
uses nucleotide-level tokenization with pretraining context length of 160,000.

Since our evaluation is mainly focused on eukaryote-related tasks, Evo is excluded from the com-
parison.

C.2 DOWNSTREAM TASKS

GUE (Zhou et al., 2023) aggregates 28 datasets across 9 tasks, encompassing input lengths from
70 to 512 bp. GUE serves as a standardized evaluation suite, measuring the effectiveness of ge-
nomic foundation models on multi-species genome classification. For the GUE benchmark, we use
the exact settings for each task, including the warmup steps and training/validation steps that are
customized for each task. The only modification we’ve made is the learning rate: 5e−5 for the
300M model, 3e−5 for the 3B model, and 1e−5 for the 7B model. We apply a simple classification
head for the model and either use the hidden state of the last token to classify for the ordinary setting
or the averaged hidden state of the repeated sequence input for echo embedding.

BEND (Marin et al., 2024) evaluates models on a collection of realistic and biologically mean-
ingful tasks defined on the human genome. It emphasizes the importance of capturing intricate
features with biologically meaningful tasks that are comprehensive and provide a standard evalua-
tion methodology for genomics foundation models. We select the 3 largest short-range tasks on 3
different datasets from the benchmark for evaluation. For the BEND dataset, we adopt the exact
settings for all three tasks, using a learning rate of 3e−3 and training for 100 epochs. It adopts a
linearly decreasing learning rate to 0 and we use the epoch with the lowest validation loss for the
final test-set evaluation. The task freezes the embedding input of the model and only fine-tunes a
downstream two-layer CNN model for classification. The hidden state extracted is the average of
hidden states of the input for the ordinary setting and the average of the repeated sequence for the
echo-embedding setting.
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Genomics LRB Following the newer version of the Genomics LRB paper, for all fine-tuning tasks
we fine-tune all the parameters of the model with the following MLP for classification. we finetune
based on the benchmark’s setting by inputting sequence with the pretraining context length into the
model and then take the average across the same length window for the same task around differ-
ent models. For zero-shot tasks, we use the sequence-level probability for a regression correlation
coefficient analysis also identical to the benchmark’s method.

regLM For the baseline HyenaDNA model, we follow the exact setting of the regLM model to
load its fine-tuned checkpoint. As for fine-tuning our HybriDNA-300M model, we finetune 16
epochs on the human enhancer task with learning rate of 1e-4. For the Yeast Promoter task, as our
model itself has been pretrained on multi-species data including yeast sequence, we fine-tuned our
model on the dataset for 2 epochs also with a learning rate of 1e-4. We carry out validation for every
400 steps for each task and save the model with the highest validation accuracy as the final model.
During generation, we use beam search with a beam width of 2500 and beam size of 256 for both
models on both tasks to generate 200 sequences with each label for evaluation. The activity scoring
models are the same with those in the original regLM models and the diversity metric is calculated
by the mean pair-wise edit distance of the top-100 activity sequence of all labels for each task.

For the Human Enhancer Task, the model is fine-tuned for 16 epochs with a learning rate of 1e-4,
incorporating these prompt tokens. Performance is validated using the accuracy of the validation set.
The fine-tuning dataset consists of 670k training samples of 200bp enhancers with varying levels of
activity. After fine-tuning, the model is tasked with generating 600 sequences for each label {300,
030, 003}, representing high enhancer activity in a specific cell line. These generated sequences
are then evaluated using a scoring model from regLM to assess their actual enhancer activity in
the respective cell types. Beam search decoding is employed during sequence generation for fair
comparison. The baseline for comparison is the fine-tuned HyenaDNA model variant, ”hyenadna-
medium-160k-seqlen,” as referenced in the original regLM paper.

For the Yeast Promoter Task, the model is fine-tuned for 2 epochs with a learning rate of 1e-4,
validated using the validation set accuracy. The fine-tuning dataset comprises approximately 7.4M
training samples of 80 bp promoters with varying activity levels. Models are prompted to generate
sequences with label {40, 04}. The evaluation steps and metrics are consistent with those used in
the human enhancer generation task.

C.3 GUE BENCHMARK RESULTS

Model Type Model Transcription Factor Prediction (Human)
0 1 2 3 4

(MCC) (MCC) (MCC) (MCC) (MCC)

Baselines

DNABERT-2 70.89 74.49 66.62 60.35 71.21
NT-2.5B-MS 66.46 70.25 58.70 51.28 69.34
NT-500M-human 60.03 69.34 47.02 39.27 58.84
Caduceus-Ph-131k 70.69 69.00 61.13 55.98 69.07
HyenaDNA-160k 64.47 70.74 60.44 39.78 73.27

Our Model

HybriDNA-300M 68.12 67.13 70.29 55.52 80.80
HybriDNA-300M(E) 67.64 71.28 70.84 57.92 80.80
HybriDNA-3B 69.88 69.24 72.21 56.44 84.61
HybriDNA-3B(E) 69.02 70.82 72.80 58.01 85.02
HybriDNA-7B 70.00 74.47 70.42 64.52 85.03
HybriDNA-7B(E) 71.46 75.60 71.81 65.82 86.20

Table 8: Results on Transcription Factor Prediction (DNABERT2-Human) in GUE benchmark
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Model Type Model Promoter Detection (Human) Splice Site Prediction (Human)
all notata tata reconstruct

(MCC) (MCC) (MCC) (MCC)

Baselines

DNABERT-2 86.64 94.20 71.04 85.42
NT-2.5B-MS 91.00 94.02 79.43 89.35
NT-500M-human 81.34 88.73 78.82 78.63
Caduceus-Ph-131k 83.98 92.13 70.96 71.80
HyenaDNA-160k 83.04 91.03 66.36 77.76

Our Model

HybriDNA-300M 88.94 94.44 69.63 87.74
HybriDNA-300M(E) 88.81 94.45 68.45 88.72
HybriDNA-3B 89.48 94.49 72.24 89.01
HybriDNA-3B(E) 89.30 94.33 73.02 89.10
HybriDNA-7B 88.28 94.73 73.59 90.09
HybriDNA-7B(E) 90.20 94.57 76.84 90.12

Table 9: Results on Promoter Detection and Splice Reconstruct (DNABERT2-Human) in GUE
benchmark

Model Type Model Core Promoter Detection (Human)
all notata tata

(MCC) (MCC) (MCC)

Baselines

DNABERT-2 69.97 69.62 75.83
NT-2.5B-MS 70.28 71.49 72.95
NT-500M-human 63.36 64.67 72.34
Caduceus-Ph-131k 64.09 68.35 68.65
HyenaDNA-160k 66.18 67.41 74.07

Our Model

HybriDNA-300M 68.40 69.12 69.09
HybriDNA-300M(E) 68.37 69.15 72.36
HybriDNA-3B 68.98 69.63 69.89
HybriDNA-3B(E) 68.90 70.01 73.21
HybriDNA-7B 66.50 70.66 76.94
HybriDNA-7B(E) 67.10 71.53 77.49

Table 10: Results on Core Promoter Detection (DNABERT2-Human) in GUE benchmark

Model Type Model Transcription Factor Prediction (Mouse) Classification (Virus)
0 1 2 3 4 Covid

(MCC) (MCC) (MCC) (MCC) (MCC) (F-1)

Baselines

DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02
NT-2.5B-MS 63.31 83.76 71.52 69.44 47.07 73.04
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82
Caduceus-Ph-131k 50.44 82.63 73.81 61.13 43.40 40.35
HyenaDNA-160k 56.25 80.46 78.14 60.83 46.25 25.88

Our Model

HybriDNA-300M 68.57 83.46 86.02 87.96 50.58 73.81
HybriDNA-300M(E) 68.66 85.62 85.39 87.78 51.20 73.90
HybriDNA-3B 70.96 84.18 89.63 88.59 50.97 74.05
HybriDNA-3B(E) 71.02 84.30 89.78 88.20 52.39 74.88
HybriDNA-7B 71.68 87.75 86.59 87.62 56.47 74.02
HybriDNA-7B(E) 72.91 88.64 87.64 88.59 57.33 74.30

Table 11: Results on Transcription Factor Prediction (DNABERT2-Mouse) and Covid Variant Clas-
sification (DNABERT2-Virus) in GUE benchmark
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