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Abstract

This paper presents a learning from demonstration approach to programming safe,1

autonomous behaviors for uncommon driving scenarios. Simulation is used to2

re-create a targeted driving situation, one containing a road-side hazard creating3

significant occlusion in an urban neighborhood, and collect optimal driving behav-4

iors from 24 users. Paper employs a key-frame based approach combined with5

an algorithm to linearly combine models in order to extend the behavior to novel6

variations of the target situation. This approach is theoretically agnostic to the kind7

of LfD framework used for modeling data and our results suggest it generalizes8

well to variations containing additional number of hazards occurring in sequence.9

The linear combination algorithm is informed by analysis of driving data, which10

also suggests that decision making algorithms need to consider a trade-off between11

road-rules and immediate rewards to tackle some complex cases.12

1 Introduction13

There have been significant improvements in the field of autonomous driving [5, 7, 15, 13, 14, 12],14

however we do not currently see such vehicles on our roads. The technical reason is that Auto15

Vehicles (AV) are expected to demonstrate safety records superior to humans. Driving on urban roads16

in common and predictable situations can be considered a solved problem, however the real challenge17

of AV is handling unexpected situations while maintaining safety[11]. In this work, we focus on18

one such situation: when there is a risk of a previously unobserved pedestrian or object suddenly19

appearing from an occluded area (see figure 1). Rather than waiting for the hazard to emerge, AVs20

can potentially take preemptive actions to reduce risk of an accident once a hazard is sensed, for21

instance by steering farther away or reducing speed[10]. This paper studies how such behaviors could22

be learned from human demonstrations.23

End-to-end models [5, 7] are data-driven and generally suffer from disproportionate quantities of24

various corner-cases in datasets, being incomplete in terms of safety guarantees. Another viable25

approach is to recreate the corner cases in simulation and use approaches like reinforcement learning26

(RL), inverse RL or learning from demonstration to model the behavior. RL however either requires27

an accurate model of the environment[15] or large amount of exploration[9] before figuring out how28

to avoid fatal scenarios, inverse RL on the other hand assumes similar underlying rewards for all29

demonstrations thus requiring large amount of perfect data to converge[16].30

We use Learning from Demonstrations (LfD)[2, 3, 1] in this work because it inherently captures the31

human knowledge of reacting to obvious as well as emerging hazardous situations without placing32

any limiting assumptions on the behavior. We conduct our experiments in simulation, however our33

framework is also easily applicable to a real vehicle, if the data is sourced from such demonstrations.34

This is a hypothesis driven exploratory study. We present our results on how the independent35

features of hazard affect behavior of drivers and also show algorithm generated constraints from36
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Figure 1: Depiction of Hazard and Variation of Size and Position in Simulation

Figure 2: Schematic Diagram of System Architecture
This figure shows the three-tiered planning system as well as the data-flow between different modules relevant to

this paper. The mid-level planner is highlighted to emphasize algorithm placement.

our trained models which learns variance of behavior over the recorded behaviors. We have also37

added a generalization algorithm to the constraint generator, agnostic of LfD model used, which38

linearly combines models depending upon the environment to generate constraints for out-of-training-39

distribution (OOTD) cases. Our results suggest that this approach captures enough details to generalize40

the solution for generating constraints given novel scenarios with multiple hazards in occurring in41

sequence with some or no overlap.42

2 Approach43

We started this work with a hypothesis that the size and closeness of the hazard have a significant44

correlation with the evasive behavior that it elicits in a human driver. By evasive behavior we mean,45

categorically, the extent of deviation from “normal" driving trajectory, how early on this behavior46

is triggered (Dthresh) and the change in speed. To test this hypothesis, we implemented a driving47

simulator using Gazebo 1 as can be seen in figure 1.48

2.1 System Architecture49

The system follows a funneled plan generation paradigm. The top layer provides a milestone-based50

plan using road networks to travel from start to goal position, which we will call the route. The51

middle layer generates speed, acceleration, trajectory, etc. constraints for the road-segments included52

in this route. The bottom-most layer consists of the actual low-level controllers of the autonomous53

car and generates optimized trajectories using the constraints from mid-level planner. Figure 2 is a54

schematic illustration of this architecture and how it interacts with other relevant modules.55

1http://gazebosim.org
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Our component sits in the middle layer and generates trajectory and speed constraints for the current56

segment of the route for the particular case of hazard occlusion. It depends on the perception module57

to provide it with the required state information (as described in section 3.1). Middle layer consists58

of many such modules which generate constraints and then the constraint aggregator combines the59

ones it deems relevant based on its scene understanding.60

2.2 Study and Data Collection61

Our driver population consisted of 24 people from Honda Research Institute, consisting of 3 female62

and 21 male drivers. More than 50% of the population had a driving experience of 10 years or63

plus and around 90% of the population drove an average of 0 to 2 hours per week. The users were64

provided with one pilot run to acclimate themselves with the sensitivity of the wheel and feel of the65

simulator before having them drive the controlled test cases. Our recorded feature set consisted of66

global measures namely: Location of the car, location of the hazard, heading of the car, speed of the67

car, size of the hazard, nature of the road: bidirectional or unidirectional, and road lane limits. Users68

were also asked to fill out a survey to note their driving experience statistics and general demographic69

information.70

We used a Logitech Driving Force G29 Racing wheel and paddle setup, to interface with the gazebo71

environment. The interface for the study was completely based on Gazebo for visualization with72

ROS handling the back-end processing and communication. We wanted the drivers to have an idea73

that there is a non-zero probability of human beings appearing on the street, so that they drive with a74

safety-primed perspective to account for the possibility of pedestrians behind the hazard. This was75

done indirectly by lining pathways with moving pedestrians. During the pilot run, we also added76

actual pedestrians crossing the streets from the pathway and also from behind vans to directly prime77

them for such a possibility. For actual data collection cases a pedestrian was programmed to walk out78

from behind the hazard with a probability of 30%.79

For the controlled cases we manipulated the following independent categorical variables: (a) Size80

of the vehicle: Moderate (Van) or Large (truck), (b) Closeness of vehicle to the driving lane: Close81

(∼ 10% of the vehicle parked on the road) or Far (vehicle clearly parked on the curb), (c) Direction82

of Traffic: No traffic (unidirectional road) or Opposing traffic (bidirectional road). This gives us 883

unique scenarios which the user was required to drive through in the study. Figure 1 shows how84

the first two aspects were varied in the Gazebo world. Our dependent variables were: the choice of85

sub-lane on the road and the speed of the car.86

In order to find the significance of effect that size and position of hazard had on driver’s behavior we87

used paired t-test and Wilcoxon’s test on the non-collision runs for each user. For the data measures88

to be of equal cardinality irrelevant of speed and sampling frequency, we binned speed and sub-lane89

values over every 0.5 meters and averaged them. Sub-lanes are lanes were further categorized into90

0.2 m wide strips. We only consider the data after Dthresh has been crossed by the ego-car. We did91

this separately for each dependent variable. We only compared observations under similar traffic92

conditions.93

3 Training and Generating Constraints94

We adopted Key-frame based Learning from Demonstration (KLfD) from Akgun et al. [1] for95

modeling our training trajectories. It works by identifying key-frames in trajectories by repeatedly96

splining them based on base-set of knots, comparing interpolated trajectory with the original and97

adding points of maximum error to the set until this comparison error is less than some threshold.98

The base knot set consists of the start and end-points of the user demonstrated trajectory and the final99

set is then termed as key-frames. These key-frames are then further time aligned using Dynamic Time100

Warping [4] and clustered to give mean key-frames which can be used to extrapolate the behavior101

trajectory at run-time.102

We used key-frames as an indirect measure of how far the ego-agent has progressed in its behavior.103

The more distance ego-car has traveled with respect to the hazard, the further it is in its behavior104

execution. We were able to use such a simplistic metric only because we are only considering105

variations of given target case. However, if an oracle exists which can provide our system with the106

closest key-frame to current state, this method will work irrelevant of level of data abstraction.107
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3.1 Training108

Before starting key-frame extraction, the recorded features are first transformed to an intermediate,109

hazard-centric representation (see sub-figure (a), (b) of figure 3). We are following ROS conventions110

here, which means forward of ego-car (trajectory axis) is positive y and left of ego-car (sub-lane axis)111

is positive x. After transformation the feature pile consists of: Sub-lane ego-car is on, Lateral and112

perpendicular distance of ego-car from the hazard, Vx, Vy of the ego-car, Size of hazard, and Traffic113

condition.114

Once transformed into this feature-set, we use only the non-accidental “good" (with points within road115

limits) trajectories and we train one model per unique scenario resulting in 8 different models. We116

follow the same steps as KLfD approach, except we use cubic splines (trade-off between smoothness117

and ability to linearly combine many knots) and save the mean as well as the variance of clustered key-118

frames since we are primarily interested in the safety boundaries. This ordered tuple of
(
µKx , σKx

)
119

is saved as the scenario model.120

3.2 Constraint Generation121

The final framework takes the following features as input: Current sub-lane of the car, position of122

the hazard, current heading of the car, current speed of the car, size of hazard, and the type of road.123

The output of the framework is max and min limits on the sub-lanes as well as vehicle speed for a124

time horizon of 5 seconds. For evaluation purposes, we are not classifying the cases but only passing125

randomized start values to each case model.126

The system first calculates distance horizon by using current speed along with time horizon of 5127

seconds in ego-centric coordinate system. This distance is used to create a grid in hazard-centric128

coordinate system, where key-frame variances are splined to create envelopes with respect to the129

hazard’s location. Finally these envelopes are converted back to ego-car’s coordinate system and130

passed to constraint aggregator.131

3.2.1 Only One Hazard132

This is the simplest case, where we load the right model and use cubic splines to extrapolate the133

envelope based on one standard deviation in both directions, accounting for ∼ 70% of the variation.134

3.2.2 Multiple Hazards135

We treat each hazard as a new isolated one once we hit the Dthresh for it. If the hazards are at enough136

distance from each other such that the latter’s Dthresh and formers active behavior time do not137

collide, then the agent just treats them as several one-hazard case and applies treatment from previous138

section. However, if hazards are close enough that the active behavior time and distance threshold139

overlap then the agents treats this as two hazards together. The algorithm in this case, uses an adapted140

Dthresh for next hazard. This provides us with a mixed key-frame set consisting of previous hazard’s141

key-frames lying before adapted Dthresh and the next hazards key-frames lying after Dthresh. We142

use piecewise cubic splines to smoothly combine these knots from different key-frame sets. Cubic143

splines are heavily favored in field like computer graphics [8, 6] because they are twice differentiable144

and produce smoother curves as compared to higher degree splines, which is desirable in trajectory145

generation.146

For hazard without any overlap we use end of the first hazard’s bounding box as the adapted Dthresh147

and for hazards with overlap in bounding boxes we use the average of their centers as the adapted148

Dthresh (refer to section 4 for why we follow this methodology for combination).149

4 Results and Discussion150

The collected data suggests drivers follow a common pattern for the studied case. At some distance151

Dthresh the drivers start veering away from the sub-lane which is closer to the hazard, they all trace152

a path which maximizes their distance from the hazard and continue onwards or come back to the153

original lane depending upon traffic conditions. We found that for all the users in our population154

there was a statistically significant effect of size and position of hazard on driving behavior. Both our155
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Figure 3: Generated Constraints for In-Distribution and OOTD Cases
(a) Constraints for large hazard in far position under bidirectional condition, (b) Constraints for large hazard in
near position under unidirectional condition, (c) Constraints for OOTD cases arranged in order of complexity

from left to right. They feature additional number of hazards and the last one also incorporates the bidirectional
constraint of the road.

tests resulted in a p-value of less than 0.05. Interestingly, except one user everyone else collided with156

the occluded pedestrian at least once.157

Figure 3 shows the generated constraints for cases from training set as well as OOTD cases. Sub-158

figures (a) and (b) show the internal hazard-centric coordinate system along with the resultant159

constraints in ego-car’s coordinate system to illustrate the transformation. Sub-figure (c) shows160

generated constraints for cases with multiple hazards in sequence. The rightmost figure in sub-figure161

(c) is the hardest case that our algorithm can handle. Table 1 shows the distance of ego-car from162

Table 1: Table showing Dthresh and point of Maximum Curvature for various cases

Traffic Independent
Variable

Dthresh

in m
Point of Maximum Curvature
(distance from hazard in m)

Uni

Small 36.5 -5.56
Large 37.01 -5.01
Near 36.18 -0.36
Far 40 -13.17

Bi

Small 15.4 -10.92
Large 14.93 0.01
Near 16.15 -2.72
Far 12.97 -8.06
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hazard at the maximum point of curvature of the preemptive trajectory as well as the calculated163

Dthresh across the independent variables.164

First, we present a qualitative evaluation of the auto-generated constraints. Our criteria includes165

two factors: 1. Following rules of the road, 2. Being safety optimal in novel situations. For the166

former criteria, we would like to point out how the algorithm performs on bidirectional roads versus167

unidirectional roads. The constraints, completely data-driven, are stricter for bidirectional scenario168

and the outer edge is more conservative as it tends to stick within its own lane allowance.169

Now for the second, and more important factor, we would argue that the capability of the algorithm170

to handle multiple hazards in sequence attests to this. If one analyzes the figures a case can be171

made that the generated constraints ensure the trajectory is collision-free and realistic for a car172

to follow. To emphasize another interesting observation, one can see in the figures that the two173

extremes of the envelope are not actually symmetrical. While one is a tighter bound with less174

steering movement, the other is more curvy and weighted more towards “evading” the hazards. Such175

contrasting boundaries represent different stereotypes of driver profiles. The goal-oriented ones who176

take minimum deviations in evasive actions and the safety-oriented ones with extra steps of actions.177

Next, we would like to briefly address the shortcoming of our algorithm here, namely its inability178

to handle hazards with higher degrees of overlap. We believe this is because humans inherently179

treat single hazard and multi-hazard situations differently and the single hazard demonstrations fail180

to capture this. The single hazard demonstrations tell us how far the ego-car should stay from the181

hazards, but when you add multiple such hazards this constraint can turn the ego-car into a sitting182

duck, just like a mobile robot surrounded by multitudes in a crowd. Such situations require an183

inherent concept of aggression and “goal-orientedness” on the agent’s part, which is very different184

than what our demonstrations show.185

Moving to the second part of our study, our statistical analysis suggests a validation of our initial186

hypothesis. It is also interesting to note here that as per Berndt and Clifford [4] such studies in187

simulation with results consistent across variables and users, are especially suited for evaluating188

hazard perception of the users and by an extension learning from the good measures. Moreover,189

hazard perception ability in humans has been found to be directly linked to risk of accident by the190

driver [10].191

A striking observation that can be gleaned from table 1 is the variation in point of maximum192

curvature for positional cases under unidirectional road condition and for size under bidirectional193

condition. Under the bidirectional condition, the smaller hazard still allows the driver to have a194

largely unobstructed view of the road, see figure 1. In accordance with our hypothesis of preemptive195

behavior, the user here steers away well ahead in advance and is able to maintain a forward trajectory196

without colliding with either the hazard or the oncoming traffic while maintaining view of the road197

itself. However the larger hazard ends up blocking most of the user’s access and view of the lane. In198

order to abide the road rules and prevent collision, the user here traces a larger curve trajectory but199

only when right next to the hazard. This is because this larger trajectory requires creeping into the200

next lane first before heading back on one’s own.201

This is an interesting case study for modeling corner-cases in AVs since our observations from real202

human users suggest that sometimes for the safety of ego as well as other agents in the environment,203

the rules of the road need to be made fluid. There needs to be a model which can inform the trade-off204

between such preemptive behaviors versus strict adherence to traffic rules depending upon scene-205

understanding. Under the current bottleneck of imperfect perception, we advocate the use of scientific206

exploration and analysis of corner-cases in urban driving scenarios to push the needle a little further207

in terms of increased autonomy with safety guarantees.208

By the way of this paper, this is also our attempt in advocating for the use of LfD or imitation based209

techniques to encompass the complex decision process of a human driver. AVs are specially well210

suited for this problem, since recording “good”, safe trajectories on the platform itself is much easier211

as compared to traditional robotics arms or even mobile platform operated via game controllers. This212

means the embodiment mapping [2] for the data is effectively the identity, thereby reducing the scope213

of our efforts to solve only the record mapping problem, i.e. states observed by machine to be similar214

to what the human observes.215
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