
Published as a conference paper at ICLR 2017

EFFICIENT REPRESENTATION OFLOW-DIMENSIONAL

MANIFOLDS USING DEEPNETWORKS

Ronen Basri
Dept. of Computer Science and Applied Math
Weizmann Institute of Science
Rehovot, 76100 Israel
ronen.basri@weizmann.co.il

David W. Jacobs
Dept. of Computer Science
University of Maryland
College Park, MD
djacobs@cs.umd.edu

ABSTRACT

We consider the ability of deep neural networks to represent data that lies near a
low-dimensional manifold in a high-dimensional space. We show that deep net-
works can efficiently extract the intrinsic, low-dimensional coordinates of such
data. Specifically we show that the first two layers of a deep network can ex-
actly embed points lying on amonotonic chain, a special type of piecewise linear
manifold, mapping them to a low-dimensional Euclidean space. Remarkably, the
network can do this using an almost optimal number of parameters. We also show
that this network projects nearby points onto the manifold and then embeds them
with little error. Experiments demonstrate that training with stochastic gradient
descent can indeed find efficient representations similar to the one presented in
this paper.

1 INTRODUCTION

Figure 1:We illustrate the embedding of a manifold by a deep network using the famous Swiss Roll example
(left). Dots represent color coded input data, with color indicating one of the intrinsic coordinates of each input
point. In the center, the data is divided into three parts using hidden units represented by the yellow and cyan
planes. Each part is then approximated by a monotonic chain of linear segments. Additional hidden units, also
depicted as planes, control the orientation of the next segments in the chain. A second layer of the network then
flattens each chain into a 2D Euclidean plane, and assembles these into a common 2D representation (right).

Deep neural networks have achieved state-of-the-art results in a variety of tasks. One possible reason
for this remarkable success is that their hierarchical, layered structure may allow them to capture the
geometric regularities of commonplace data. We support this hypothesis by exploring ways that
networks can handle input data that lie on or near a low-dimenisonal manifold. In many problems,
for example face recognition, data lie on or near manifolds that are of much lower dimension than
the input space (Turk & Pentland, 1991; Basri & Jacobs, 2003; Lee et al., 2003), and that represent
the intrinsic degrees of variation in the data.

We study the ability of deep networks to represent manifold data. We show that the initial layers
of networks can approximate data that lies on high-dimensional manifolds using piecewise linear
functions, and economically output their coordinates embedded in a low-dimensional Euclidean
space. In fact, each new linear segment approximating the manifold can be represented by a single
additional hidden unit, leading to a representation of manifold data that in some cases is nearly
optimal in the number of parameters of the system. Subsequent layers of a deep network could

1

Published as a conference paper at ICLR 2017

build upon these early layers, operating in lower dimensional spaces that more naturally represent
the input data. We further show empirical results that suggest that training with stochastic gradient
descent can find efficient representations akin to the one suggested in this paper.

We first show how this embedding can be done efficiently for manifolds consisting ofmonotonic
chainsof linear segments. We then show how these primitives can be combined to form linear
approximations for more complex manifolds. This process is illustrated in Figure1. We further show
that when the data lies sufficiently close to their linear approximation, the error in the embedding
will be small. Our constructions will use a feed-forward network with rectified linear unit (RELU)
activation. We consider fully connected layers, although the treatment of complex manifolds that
are divided into pieces (e.g., of monotonic chains) will be modular, resulting in many zero weights.

2 PRIOR WORK

Realistic learning problems, e.g., in vision and speech processing, involve high dimensional data.
Such data is often governed by many fewer variables, producing manifold-like sub-structures in a
high dimensional ambient space. A large number of dimensionality reduction techniques, such as
principle component analysis and multi-dimensional scaling (Duda et al., 2012), Isomap (Tenen-
baum et al., 2000), and local linear embedding (LLE) (Roweis & Saul, 2000), have been introduced.
An underlyingmanifold assumption, which states that different classes lie in separate manifolds, has
also guided the design of clustering and semi-supervised learning algorithms (Nadler et al., 2005;
Belkin & Niyogi, 2003; Weston et al., 2008; Mobahi et al., 2009).

A number of recent papers examine properties of neural nets in light of this manifold assumption.
Brahma et al.(2015) show empirically that the layers of deep networks trained with data that lies
on a manifold progressively unfold that data into Euclidean spaces. They do not consider the mech-
anisms used to perform this unfolding.Rifai et al. (2011) trained a contractive auto-encoder to
represent an atlas of manifold charts.Shaham et al.(2015) demonstrate that a 4-layer network can
efficiently represent any function on a manifold through a trapezoidal wavelet decomposition. In
both, each chart is represented independently, requiring an independent projection for each chart.
Likewise, (Chui & Mhaskar, 2016) consider methods by which a neural network can map points
on a manifold to a low-dimensional, Euclidean space, although they do not consider the efficiency
of this representation in terms of hidden units or weights. We show that for monotonic chains we
can reduce the size of the representation to near optimal by exploiting geometric relations between
neighboring projection matrices, so an additional chart requires only a single hidden unit.

Another family of networks attempt to learn a “semantic” distance metric for training pairs, often by
using a siamese network (Salakhutdinov & Hinton, 2007; Chopra et al., 2005; R. Hadsell & LeCun,
2006; Yi et al., 2014; Huang et al., 2015). These assume that the input space can be mapped non-
linearly by a network to produce the desired distances in a lower dimensional feature space.Giryes
et al.(2016) shows that even a feed-forward neural network with random Gaussian weights embeds
the input data in an output space while preserving distances between input items.

Another outstanding question is to what extent deep networks can be more efficient than shallow net-
works with a single hidden layer. Shallow networks are universal approximators (Cybenko, 1989).
However, recent work demonstrates that deep networks can be exponentially more efficient in rep-
resenting certain functions (Bianchini & Scarselli, 2014; Telgarsky, 2015; Eldan & Shamir, 2015;
Delalleau & Bengio, 2011; Montufar et al., 2014; Cohen et al., 2015). On the other hand, (Ba &
Caruana, 2014) shows empirically that in many practical cases a shallow network can be trained to
mimic the behavior of a deep network. Our construction does not produce exponential gains, but
does show that the early layers of a network can efficiently reduce the dimensionality of data that
feeds into later layers.

3 MONOTONIC CHAINS OF LINEAR SEGMENTS

We construct networks that perform dimensionality reduction on data that lies on or near a manifold.
We focus on feed-forward networks with RELU activation, i.e.,max(x, 0). Clearly the output of
such networks are continuous, piecewise linear functions of their input. It is therefore natural to ask
whether they can embed piecewise-linear manifolds in a low-dimensional Euclidean space both ac-

2

Published as a conference paper at ICLR 2017

Figure 2: Left: A continuous chain of linear segments (above) that can be
flattened to lie in a single low-dimensional linear subspace (bottom). Right:
A monotonic chain.Sk denotes thek’th segment in the chain.Hk is a hyper-
plane bounding the half-space that separatesS1, ..., Sk from Sk+1, ..., SK .

curately and efficiently. In this section we construct such efficient networks for a class of manifolds
that we callmonotonic chains of linear segments, which are defined shortly. These will serve as
building blocks for handling more general data that can be decomposed into monotonic chains.

We will consider data lying in a chain of linear segments, denotedC = S1 ∪ ...∪SK . Each segment
Sk (1 ≤ k ≤ K) in the chain is a portion of somem-dimensional affine subspace ofRd, and the
segments are connected to form a chain (Figure2). We suppose that every two consecutive segments
Sk−1 andSk intersect, and that the intersection lies in an(m− 1)-dimensional affine subspace. We
further assume that these chains can be flattened by isometry so that they may be represented inRm.
Note that any curve onC will be mapped to a curve of the same length inRm on the flattened chain.

Each unit in the first hidden layer of a neural network will have a response of zero to input points
that lie on a hyperplane, defined by its weights and bias term. This hyperplane bounds a half-space
in which the output of the unit is positive; when the output is negative, RELU turns the output to
zero. We say that a unit isactiveover the half-space in which its output is positive. There is a close
connection between these hyperplanes and the embedding of a manifold, which we begin to develop
with the following definition.

Definition: We say that a chain ofK linear segments ismonotonic(see Figure2) when there exist
a set of hyperplanes such that thek’th hyperplane separates the firstk segments from the rest.
Denoting the positive half-spaces associated with these hyperplanes asH1, H2, ..., HK−1, thenHk

is bounded by a hyperplane that contains the intersection ofSk andSk+1, andSk+1, Sk+2, ..., SK ⊂
Hk while S1, S2, ..., Sk ⊂ HC

k , whereHC
k is the complement ofHk. We can consider each half-

space to represent a hidden unit that isactive(i.e., non-zero) over a subset of the regions. With a
monotonic chain, the set of active units grows monotonically, so that,(Hk+1 ∩ C) ⊆ (Hk ∩ C). We
can also define some additional units that are active over all the regions.

Below we show that monotonic chains can be embedded efficiently by networks with two layers of
weights. These networks haved units in the input layer, a hidden layer withκ = K + m − 1 units
that encodes the structure of the manifold, and an output layer withm units. Denote the weights
in the first layer by aκ × d matrix A and further use a bias vectora0 ∈ Rκ. The second layer
of weights is captured by am × κ matrix B. The total number of weights in these two layers is
(d + m + 1)(K + m − 1). This network maps a pointx ∈ Rd to the embedding spaceRm through

u = B[Ax + a0]+
where[.]+ denotes the RELU operation. For now we do not use a bias or RELU in the second level,
but those will be used later when we discuss more complex manifolds.

A simple example of a manifold that can be represented efficiently with a neural network occurs
when the data lies in a singlem-dimensional affine subspace ofRd. Embedding can be done in this
case with just one layer, with the matrixA of sizem×d containing in its rows a basis parallel to the
affine space. One way to extend this example to handle chains is by encoding each linear segment
separately. Such encoding will requiremK units in addition to units that use RELU to separate each
segment from the rest of the segments. A related representation was used, e.g., in (Shaham et al.,
2015). Below we show that monotonic chains can be encoded much more efficiently.

We next show how to construct the network (i.e., set the weights inA, a0, andB) to encode mono-
tonic chains. Below we use the notationA(k) to denote the matrix formed by the firstk rows of
A, a0

(k) is the vector containing the firstk entries ofa0, andB(k) the matrix including the firstk
columnsof B. ThereforeB(k)[A(k)x + a0

(k)]+ will express the output of the network when only
the firstk hidden units are used. These will be set to recover the intrinsic coordinates of points in the
first k segments inC; RELU ensures that subsequent hidden units do not affect the output for points
in these segments.

For the construction we consider the pull-back of the standard basis ofRm onto the chain, producing
a geodesic basis to the manifold. Note that to produce a local basis for the intrinsic coordinates of

3

Published as a conference paper at ICLR 2017

points on the manifold, we only need a basis for each linear segment. This basis is expressed by
a collection ofd × m column-orthogonal matricesX(1), X(2), ..., X(K). Each matrix provides an
orthogonal basis for one of the segments.

We will construct the network inductively. Supposek = 1. We setA(1) = X(1) T , B(1) = I,
and seta0

(1) so that for allx ∈ C all the components ofA(1)x + a0
(1) are non-negative. Clearly,

B(1)A(1) = X(1) T is an orthogonal projection matrix andB(1)A(1)X(1) = I. This shows that the
network projects the orthonormal basis for the first segment intoI, an orthonormal basis inRm.
Next we will show thatB(k)A(k)X(k) = I for all k. This implies thatB(k)A(k)x = X(k) T x, so
there is no distortion in the projection. This will show that the network extends this basis throughout
the monotonic chain in a consistent way.

Suppose we usedm + k − 2 units to constructA(k−1), a0
(k−1), andB(k−1) for the firstk − 1 ≥ 1

segments. (For notational convenience we will next omit the superscriptk − 1 for these matrices
and vectors, soA = A(k−1), etc.) We will now use those to constructA(k), a0

(k), andB(k). We do
so by adding a node to the first hidden layer. The weights on the incoming edges to this node will
be encoded by appending a row vectoraT ∈ Rd to A and a scalara0 to a0, and the weights on the
outgoing edges will be encoded by appending a column vectorb ∈ Rm to B. Our aim is to assign
values to these vectors and scalar to extend the embedding toSk.

By induction we assume that anyx̃ ∈ S1 ∪ ... ∪ Sk−1 is embedded with no distortion toRm by

ũ = B[Ax̃ + a0]+,

and thatBAX = I. By monotonicity we further assume thatSk−1 ∩ Sk is m − 1 dimensional
and there exists a hyperplaneH with normalh ∈ Rd that contains this intersection withC − (S1 ∪
...∪ Sk−1) lying completely on the side ofH in the direction ofh, while S1 ∪ ...∪ Sk−1 lies on the
opposite side ofH. We then seta = h and seta0 so thataT x̄+a0 = 0 for any pointx̄ ∈ Sk−1∩Sk.
(This is well defined sinceh is orthogonal toSk−1 ∩ Sk.)

To determineb, we first rotate the basesX(k−1) (referred to asX below) andX(k) by a com-
mon, m × m matrix R, i.e., Y = XR and Y (k) = X(k)R so thatY = [w,y2, ...,ym] and
Y (k) = [v,y2, ...,ym] with y2, ...,ym providing an orthogonal basis parallel toSk−1 ∩ Sk. (This
is equivalent to rotating the coordinate system in the embedded space and then pulling-back to the
manifold.) Note that by the induction assumptionBAY RT = I. We next aim to setb so that
B(k)A(k)X(k) = I. We note that

B(k)A(k)X(k) = B(k)A(k)Y (k)RT = (BA + baT)Y (k)RT .

We aim to setb so that(BA + baT)Y (k)RT = I = BAY RT . Consider this equality first for
the common columnsy2, ...,ym of Y andY (k). These columns are parallel toSk−1 ∩ Sk, so that
aT yj = 0 for 2 ≤ j ≤ m, implying equality for any choice ofb. Consider next the left-most
column ofY andY (k), denoted respectivelyw andv, we get

(BA + baT)v = BAw.

This is satisfied if we set

b =
1

aT v
BA(w − v).

We have constructedb so that the segments are embedded with consistent orientations. In Ap-
pendixA we show that they are also translated properly bya0, to create a continuous embedding.
Note that by constructionaT y + a0 ≤ 0 for all y ∈ S1 ∪ ... ∪ Sk−1 so RELU ensures that the
embedding of the these segments will not be affected by the additional unit.

Finally, we note that the proposed representation of monotonic chains with a neural network is
very efficient and uses only a few parameters beyond the degrees of freedom needed to define such
chains. In particular, the definition of a chain requires specifyingm basis vectors inRd for one
linear segment (exploiting orthonormality these requirem(d − (m + 1)/2) parameters), with each
additional segment specified by a 1D direction for the new segment (a unit vector inRd specified
by d − m − 1 parameters) and a direction in the previous segment to be replaced (specified by a
unit vector inRm, i.e. m − 1 parameters). The total number of degrees of freedom of a chain is
thereforeN = m(d − (m + 1)/2) + (K − 1)(d − 2). This is the number of parameters required to

4

Published as a conference paper at ICLR 2017

specify a monotonic chain. Our construction requiresN ′ = (K + m + 1)(d + m + 1) parameters.
Specifically, note that for any choice of parametersK, d,m > 0, N ≥ (K + m − 1)(d − m − 2).
We therefore obtain that

N ′

N
≤

(

1 +
2

K + m − 1

)(

1 +
2m + 3

d − m − 2

)

.

Assumingd,K + m >> 1 we get
N ′

N
/ 1 +

2m

d − m
.

Since we normally expect that the dimension of the input space will be much greater than the di-
mension of the manifold, this ratio will be close to 1.

4 ERRORANALYSIS

We now consider points that do not lie exactly on the monotonic chain, due to noise, or because
we are approximating a non-linear manifold with piece-wise linear segments. Letp0 be a point on
the segmentSj that is then perturbed by some small noise vector,δ, that is perpendicular toSj , to
produce the pointp = p0 + δ. Ideally, the network would representp using the coordinates ofp0.
In effect, the network would project all points onto the monotonic chain. If the network embedsp
andp0 with coordinateŝp andp̂0 we define therelative errorof the embedding as‖p̂−p̂0‖

δ . We now
analyze this relative error. Our analysis assumes that‖δ‖ is small enough thatp andp0 lie in the
same region so that they are both on the same side of all hyperplanes defined by the hidden units.

We note that given sufficient data that lies on the manifold, it is possible to learn local linear projec-
tions of the manifold that will embed it with zero relative error. This can be done with traditional
manifold learning methods or by neural networks that contain a sufficiently large number of units.
Zhang & Zha(2004) provides an error analysis that shows how the error of their approach depends
on the noisiness and number of points in the training data, and the magnitude of the difference be-
tween the manifold and its linear approximation. Our contribution here is to analyze the error that
can occur when a network learns the embedding very efficiently using a small number of units.

In AppendixB we show that in the worst case, the relative error of the embedding can be unbounded.
This occurs when the monotonic chain has very high curvature, so that a separating hyperplane has
to be nearly parallel to the segment that follows it. In this section we show that for more typical
cases, the relative error will be a small constant.

We will consider a class of monotonic chains in which the total curvature between all segments is
less than or equal to some angleT , and in each separating hyperplane is not too close to parallel to
the next segment. We denote the angle betweenSk−1 andSk asθk−1. (This angle is well defined
sinceSk−1 andSk intersect in anm − 1-dimensional affine space.) As before, we will drop the
subscript when it isk − 1, and just writeθ. Specifically, we defineθ so thatcos θ = vT w (where
v andw are defined as in Sec.3, as vectors perpendicular toSk−1 ∩ Sk, and parallel toSk−1 and
Sk, respectively), definingθk similarly for anyk. We then express our constraint on the curvature
as
∑K−1

k=1 |θk| ≤ T .

Now letc be a constant such that we can boundaT v ≥ 1/c for anyk− 1. c is a bound on the cosine
of the angle between the normal to a separating hyperplane and a vector in the direction of the next
segment. To understand this, recall thata is a unit vector normal to the hyperplane separatingSk−1

andSk. By saying this bound holds for allk−1, we mean that we are able to choose the hyperplanes
that divide the chain into segments so that the angle between the normal to each hyperplane and the
following segment is not too big. We next bound the error in terms ofc and‖δ‖.

Let p = p0 + δ be as in the last section. We define the embedding error ofp by E(p) =(
B(k)A(k) − X(k)T

)
p, whereX(k) denotes the orthogonal projection toSk, as in Sec.3. Not-

ing that, by the construction of our network,B(k)A(k)p0 = X(k)T p0 (sincep0 is onSk) and that
X(k)T δ = 0 (due to the orthonormality ofX(k)), we obtainE(p) = B(k)A(k)δ. The magnitude of
the error therefore is scaled at most by the maximal singular value ofB(k)A(k), denotedσk.

To boundσk we note thatB(k)A(k) = BA+baT for k ≥ 2 (where, as before, we drop superscripts
so thatB denotesB(k−1)). Therefore,σk ≤ σk−1+|aT b|, whereσk−1 denotes the largest singular

5

Published as a conference paper at ICLR 2017

Figure 3: This plot shows the error in flattening the Swiss Roll. Relative
error is constant in every segment, starting from zero for each monotonic chain
and increasing with each segment. The absolute error (for display purposes
this error is normalized by the maximal distance from the Swiss Roll to its
linear approximation) behaves similarly, but vanishes at the end points of each
segment where the Swiss Roll and its linear approximation coincide.

value ofBA. Recall that‖a‖ = 1 and b = 1
aT v

BA(w − v). Note thatw − v ≤ θk−1. Therefore,
|aT b| ≤ cσk−1θk−1, from which we conclude thatσk ≤ σk−1(1 + cθk−1).

Finally, note thatB(1)A(1) = X(1)T , implying that σ1 = 1. We therefore obtain σk ≤∏k−1
j=1 (1 + cθj). Note that

∑k−1
j=1 θj ≤ T and so

∏k−1
j=1 (1 + cθj) ≤ (1 + cT

k−1)k−1. Therefore,

σk ≤
(
1 + cT

k−1

)k−1

≤ ecT . We conclude that‖E(p0 + δ)‖ ≤ ecT ‖δ‖.

Many segments of many monotonic chains can be divided using hyperplanes in whichc is not too
big, and may be as low as 1. For such manifolds, when a point is perturbed away from the manifold,
its coordinates will not be changed by more than the magnitude of the perturbation times a small
constant factor. For example, ifT = π/4 andc = 1 thenek ≤ e

π
4 ≈ 2.19. Note that rather than

beginning at the start of the monotonic chain, we could ”begin” in the middle, and work our way out.
That is, provide an orthonormal basis for the middle segment and add hidden units to represent the
chain from the central segment toward either ends of the chain. This can reduce the total curvature
from the starting point to either end by up to half. We further emphasize that this bound is not tight.

We conclude this section by showing the error obtained in using our construction in the ”Swiss Roll”
example. To represent this data we use hidden units and their corresponding hyperplanes to divide
the Roll into three monotonic chains (see Section5 below for further details). We then divide each
chain into segments, obtaining a total of 14 segments. Figure1 shows the points that are input into
the network, and the 2D representation that the network outputs. The points are color coded to allow
the reader to identify corresponding points. In Figure3 we further plot the absolute and relative error
in embedding every point of the Swiss Roll due to the linear approximation used by the network.
One can see that the Swiss Roll is unrolled almost perfectly. In fact, despite the relatively large
angular extent of each monotonic chain (the three chains range between 126 to 166.5 degrees each
in total curvature), the relative error does not exceed 2.5. (In fact, our bound for this case is very
loose, amounting to 18.3 for166.5◦.) The mean relative error is 0.98, indicating that the magnitude
of the error is approximately the same as the distance of points to the approximating monotonic
chains.

5 COMBINATIONS OF MONOTONIC CHAINS

To handle non-monotonic chains and more general piecewise linear manifolds that can be flattened
we show that we can use a network to divide the manifold into monotonic chains, embed each
of these separately, and then stitch these embeddings together. Suppose we wish to flatten a non-
monotonic chain that can be divided intoL monotonic chains,M1,M2, ...ML. Let Al, a0l and
Bl denote the matrices and bias used to represent the hidden units that flattenMl, which hasKl

segments. We suppose that a set ofJl hyperplanes (that is, a convex polytope) can be found that
separateMl from the other chains. LetNl denote a matrix in which the rows represent the normals
to these hyperplanes, oriented to point away fromMl. We can concatenate these vertically, letting
A′

l = [Al; Nl]. We next letΥ = −n1m×Jl
where1m×Jl

denotes anm × Jl matrix containing all
ones andn is a very large constant. Note thatBl hasm rows. So we can defineB′

l = [Bl, Υ], where
the matrices are concatenated horizontally.

We now note that ifu = B′
l[A

′
lx + a0l]+ then whenx lies onMl, u will contain the coordinates of

x embedded inRm, as before. Whenx lies on a different monotonic chain,u will be a vector with
very small negative numbers. Applying RELU will therefore eliminate these numbers.

A′
l andB′

l therefore represent a module consisting of a two layer network that embeds one monotonic
chain inRm while producing zero for other chains. We can then stitch these values together. First,

6

Published as a conference paper at ICLR 2017

we must rotate and translate each embedded chain so that each chain picks up where the previous
one left off. LetRl denote the rotation of each chain, and letb0l denote its appropriate translation.
Then, for each chain, the appropriate coordinates are produced by

[RlB
′
l[A

′
lx + a0l]+ + b0l]+.

We can now concatenate these for all chains to produce the final network. We letA, a0 andb0 be
the vertical concatenation of allA′

l anda0l andb0l respectively, and letB be the block-diagonal
concatenation of allRlB

′
l. The application of[B[Ax + a0]+ + b0]+ to x ∈ Ml will produce a

vector withmL entries in which them(l−1)+1, ...,ml entries give the embedded coordinates ofx
and the rest of the entries are zero. We can now construct a third layer of the network to then stitch
these monotonic chains together. LetC denote a matrix of sizem × mL obtained by concatenating
horizontallyL identity matrices of sizem × m. Then the output of the network is:

u = C[B[Ax + a0]+ + b0]+.

Note, for example, that the first element ofu is the sum of the first coordinates produced by each
module in the first two layers. Each of these modules produces the appropriate coordinates for points
in one monotonic chain, while producing 0 for points in all other monotonic chains.

We note that this summation may result in wrong values if there is overlap between the regions
(which will generally be of zero measure). This can be rectified by replacing the summation due
to C by max pooling, which allows overlap of any size. Together, all three layers will require(∑L

l=1 Jl + m + Kl − 1
)

+ (L + 1)m units. If the network is fully connected, this requires
(∑L

l=1 Jl + m + Kl − 1
)
(d + Lm) + Lm2 weights.

Note that the size of this network depends on how many regions are required (L) and how many
hyperplanes each region needs to separate it from the rest of the manifold (Ll). In the worst case,
this can be quite large. Consider, for example, a 1D manifold that is a polyline that passes through
every point with integer coordinates inRd. To separate any portion of this polyline from the rest will
require regions that are not unbounded, and soLl = O(d) for all l. We expect that many manifolds
can be divided appropriately using many fewer hyperplanes. We have shown this for the example of
a Swiss rolls (Figure1).

6 EXPERIMENTS

Up to this point we have theoretically analyzed the representational capacity of a deep network. Our
primary result is to show that data lying on a monotonic chain can be efficiently flattened by a net-
work with two hidden layers, usingm+k−1 hidden units in the first layer, andm units in the second
layer. An important question is whether real networks trained with stochastic gradient descent can
uncover such efficient representations. In this section we address that question experimentally.

We do not expect that a trained network will always produce the constructions developed in this
paper. First,we note that our constructions provide an upper bound; more efficient representations
possible. So we predict thatm + k − 1 or fewerhidden units are needed. Second, a trained network
may settle in a local minimum, and not produce an efficient embedding, even though one might be
possible. To determine whether a particular architecture can produce a good embedding, we train
networks with multiple random starting points, and select the solutions that produce very low error.

Figure 4:This graph shows error in the embedding produced by a trained
network. Each curve represents a manifold of different dimension, with
a different number of segments. Each curve shows how error in the em-
bedding on validation points changes as the number of hidden units in-
creases. Stars indicate the validation error at the point of each curve in
which h = m + k − 1. As our theory predicts, the error has reached an
asymptote close to zero at these points.

To determine the number of hidden units needed to create effective embeddings, we generate data on
monotonic chains in which we vary the dimension of the manifold,m, and the number of segments,

7

Published as a conference paper at ICLR 2017

k. An example in whichm = 2 andk = 7 is shown in Figure5. Note that there is some skew in the
chain, so that none of the dimensions can be trivially embedded by a single linear projection. We
sample 40,000 points on the manifold. We then train a regressor, with a varying number of hidden
units, using the squared difference between the ground truth distance between pairs of embedded
points and the distance computed by the network as a loss function. This simulates non-linear
metric learning. For each condition, we repeat training 15 times, and report the minimum error in
the objective (see Figure4). We can see that for each curve the error has dropped to an asymptote
near zero whenh = m + k − 1, just as our theory predicts.

In Figure5 we show a typical example produced for a 2D manifold with seven segments, shown
in a 3D space. Portions of hyperplanes correspond to six hidden units. This solution resembles
our constructions in several ways. One hyperplane is active over the entire chain, while the other
hyperplanes intersect the manifold at the intersection of consecutive segments. The solution differs
from our construction in that some hyperplanes are used to handle two segments of the manifold; it is
even more efficient than our construction. And two hyperplanes, at the top, intersect the manifold in
the same location. These hidden units have weights with opposite signs, producing positive outputs
for different segments. For reasons of space and simplicity, we do not discuss these constructions
theoretically, but it is straightforward to show that they can also produce efficient embeddings.

Figure 5: A network trained withm = 2, k = 7, h = 6. Left: Colored dots
represent points on the manifold. Their ground truth coordinates are encoded
by the size and hue of the dots. Colored rectangles represent the hyperplanes
associated with the six hidden units. Right: We show the labels generated for
each point, in 2D. Points are colored to indicate their segment. The embedding is
near perfect.

We perform a final experiment to get a sense of whether such embeddings can occur with more
realistic data. We generate images of a face with azimuth ranging from 0 to 50 degrees, and with
elevation ranging from 0 to 8 degrees. As a loss function, we use an L2 norm between them output
units and the true azimuth and elevation. Because the images have many pixels, and the amount
of training data is limited, a fully connected network would overfit the data if we use each pixel
as an input dimension. Consequently, we perform PCA before training to reduce the faces to a 3D
space, which also allows us to visualize the input and resulting network (see Figure6). We can
see that the data forms an approximately 2D manifold, but that it is much messier than with our
previous, synthetic data. The resulting embedding captures the azimuth and elevation reasonably
well, but with some noise (eg., it does not form a perfect grid). We can also see that the hyperplanes
associated with the first hidden layer of the network also resemble our construction, with individual
units periodically intersecting the manifold as it curves.

Figure 6: We train a regression network to learn the azimuth and elevation of face images. Left: the face
images projected to 3D and the hyperplanes learned in the first network layer. Dot size encodes elevation and
hue encodes azimuth. Right: We show the images embedded in a 2D space by the trained network.

7 DISCUSSION

We show that deep networks can represent data that lies on a low-dimensional manifold with great
efficiency. In particular, when using a monotonic chain to approximate some component of the data,
the addition of only a single neural unit can produce a new linear segment to approximate a region
of the data. This suggests that deep networks may be very effective devices for such dimensionality
reduction. It also may suggest new architectures for deep networks that encourage this type of
dimensionality reduction.

8

Published as a conference paper at ICLR 2017

We also feel that our work makes a larger point about the nature of deep networks. It has been
shown byMontufar et al.(2014) that a deep network can divide the input space into a large number
of regions in which the network computes piecewise linear functions. Indeed, the number of regions
can be exponential in the number of parameters of the network. While this suggests a source of
great power, it also suggests that there are very strong constraints on the set of regions that can be
constructed, and the set of functions that can be computed. Our work shows one way in which a
single hidden unit can control the variation in the linear function that a network computes in two
neighboring regions; it can shape this function to follow a manifold that contains the data.

ACKNOWLEDGEMENTS

This research is based upon work supported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No.
2014-14071600012. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annota-
tion thereon.

This research is also based upon work supported by the Israel Binational Science Foundation Grant
No. 2010331 and Israel Science Foundation Grants No. 1265/14.

The authors thank Angjoo Kanazawa and Shahar Kovalsky for their helpful comments.

A CONTINUITY OF EMBEDDING

In Section 3 of our paper we defined the weight matricesA(k) andB(k) and the bias vectora0
(k) that

map an input vectorx to its geodesic coordinates on the manifold. We showed that this construction
indeed maps points onSk to their geodesic coordinates, so that this coordinate system is consistent
in orientation with the coordinates assigned to the previous segmentsS1, ...,Sk−1. It is now left to
show that the biasa0

(k) is chosen properly to create a continuous embedding.

Consider a pointx ∈ Sk. Denote byx̄ its projection ontoSk−1 ∩ Sk, so thatx = x̄ + βv for a
scalarβ. Denoting the embedded coordinates ofx by u,

u = B(k)(A(k)x + a0
(k)).

We want to verify that asβ tends to 0u will coincide with the embedding of̄x due toSk−1, i.e.,

ū = B(Ax̄ + a0).

In our construction,B(k) is obtained fromB by appending the column vectorb to its right side,
andA(k) is obtained fromA by appending the row vectoraT to its bottom, so thatB(k)A(k) =
BA + baT . Recall further thata0

(k) is obtained froma0 by appending the scalara0 at its end. We
therefore obtain

u = (BA + baT)x + Ba0 + a0b.

Replacingx = x̄ + βv we obtain

u = (BA + baT)x̄ + β(BA + baT)v + Ba0 + a0b.

Sincea = h, aT x̄ + ao = 0 and we get

u = B(Ax̄ + a0) + β(BA + baT)v,

which coincides with̄u whenβ → 0, implying that the embedding is extended continuously toSk.
Note that by constructionaT y + a0 ≤ 0 for all y ∈ S1 ∪ ... ∪ Sk−1 so RELU ensures that the
embedding of these segments will not be affected by the additional unit.

9

Published as a conference paper at ICLR 2017

B WORST-CASE ERROR

In this section we show that the error obtained while embedding noisy points using our construction
can in principle be unbounded. As we show below, this happens when we are forced to choose
hyperplanes that are almost parallel to the segments they represent. In contrast, Section 4.1 of our
paper shows that we can bound the error in many reasonable scenarios.

To show that the error can be unbounded, we consider a simple case in which the piecewise linear
manifold consists of three connected 1D line segments,S1, S2 andS3, with 2D vertices respectively
of (0, 0) and(N, 0), (N, 0) and(N, ε), and(N, ε) and(0, ε). N is very large, andε is very small
(see Figure7). Since three segments compose a 1D manifold, three hidden units defining three
hyperplanes,H1, H2 andH3 (lines) will be needed to represent the manifold. In addition, a single
output unit will sum the results of these units to produce the geodesic distance from the origin to any
point on the three segments.

Figure 7: In black, we show a 1D monotonic chain with three segments. In red, we show three hidden units
that flatten this chain into a line. Note that each hidden unit corresponds to a hyperplane (in this case, a line)
that separates the segments into two connected components. The third hyperplane must be almost parallel to
the third segment. This leads to large errors for noisy points nearS3.

Using our construction in Section 3 of the paper we get the embeddingf(p) = B[Ap + a0]+ with

B =

(

1,
1
q2

,−
1
r1

(

2 +
q1

q2

))

, A =

(
1 0
q1 q2

r1 r2

)

, a0 =

(
0
q3

r3

)

.

Note that the first row ofA uses the standard orthogonal projection(x, y) → x; the two other rows
of A anda0 separate the three segments with (1)q1, q2 > 0 andq1/q2 ≤ ε/N andq3 = −q1N
set so that the separatorH2 goes through(N, 0), and (2)r1 < 0, r2 > 0 andr1/r2 ≥ −ε/N , and
r3 = −r1N − r2ε set so that the separatorH3 goes through(N, ε). It can be easily verified that in
this setup points on the first segment(x, 0), 0 ≤ x ≤ N are mapped tox, points(N, y), 0 ≤ y ≤ ε
on the second segment are mapped toN + y, and points(x, ε), 0 ≤ x ≤ N on the third segment are
mapped toN + ε + (N − x).

Ideally, we would wantp to be embedded to the same point asp0. Let E(p) = f(p) − f(p0).
ClearlyE(p) = B(k)A(k)δ. It can be readily verified that, under these conditions, whenp0 ∈ S1

thenE(p) = 0; whenp0 ∈ S2 thenE(p) = (1 + q1/q2)δ, and whenp0 ∈ S3 thenE(p) =
(1 − (r2/r1)(2 + q2/q1))δ. Therefore, there is no error in embeddingp for p0 ∈ S1. The error in
embeddingp with p0 ∈ S2 is small and bounded (sinceq1/q2 ≤ ε/N , assumingε is small andN
is large), while the error in embeddingp whenp0 ∈ S3 can be huge since−r2/r1 ≥ N/ε. In the
next section we show that this can only happen when there is a large angle between a segment and
the normal to the previous separating hyperplane.

C CLASSIFICATION

In experiments in the body of this paper we have demonstrated that the theoretical constructions that
we analyze can arise when networks are trained to solve regression problems that map points on the
manifold to their low-dimensional embeddings. An interesting question is whether similar embed-
dings may be learned by a network that is trained to classify points that lie on a low-dimensional
manifold when it is more efficient to represent the boundaries of these classes in the embedded space
than it is in the ambient space. In this Appendix, we describe some very preliminary experiments
that address this question.

10

Published as a conference paper at ICLR 2017

First we note that the embeddings that arise in solving classification problems may be much less
constrained and therefore more complex than those that arise in regression problems. The regres-
sion loss function directs the network to learn the known, ground truth coordinates of the embedded
manifold. Only an isometric unfolding of the manifold will satisfy this condition. While this iso-
metric embedding will facilitate classification as well, there may be many non-isometric unfoldings
that will be equally useful in classification.

As a simple example of this, suppose a monotonic chain contains two classes that are linearly separa-
ble, once the chain is isometrically embedded in a low-dimensional space. If instead of an isometric
embedding, we allow a related embedding in which each segment of the chain undergoes a different
linear transformation that stretches it in the direction of the linear separator, or orthogonal to the
separator, the classes will still be linearly separable in the transformed, non-isometric embedding.

As another example, no mapping of the manifold to a low-dimensional space will allow for correct
classification if it maps two points from different classes to the same point in the low-dimensional
space. However, classification may not be affected if two points from the same class are mapped
to the same point. So when points from only one class appear near the boundary between two
segments, a network may learn a mapping in which the points from two segments overlap in the
low-dimensional space.

It is an open and rather complex problem to determine which mappings of the input to low-dimension
may be suitable for classification of a particular set of labeled points. However, we stress that the
main point of our paper is to show that when isometric embeddings can be used to solve a problem,
a deep network can efficiently represent such embeddings. It is certainly possible that the network
can also efficiently find alternate embeddings that are equally useful.

Bearing this in mind, we have designed some simple classification tasks and examined the em-
beddings that they give rise to in a neural network. We stress that these experiments are quite
preliminary, and should be taken as intriguing examples that can help motivate future work.

In our experiments we created monotonic chains with seven segments, similar to those used in our
earlier experiments. We generate 20,000 points that lie on each chain. To label these points with
classes, we unfolded the chain and intersected it with several lines, varying the number. These lines
form an arrangement on the 2D unfolded manifold; we labeled each region of the arrangement,
which is a convex polygon, as a separate class. We did this randomly, selecting arrangements in
which classes tended to span multiple segments.

We then trained a network to perform classification. After the input layer, the next layer contained
between five and eight hidden units. This was followed by a layer containing two hidden units.
This was followed by another layer with 10-30 units, and an output layer with a unit for each class.
Relu was used between layers, with softmax for the loss function. The layer containing two units
essentially represents a two-dimensional embedding of the input. The previous layer could be used
to represent the constructions developed in this paper, while the subsequent layer can be used to
classify the data in the low-dimensional space. This architecture allows us to easily extract the
embedding that the network has learned.

Figure8 shows a typical example of the results. On the left we plot the input points, color coded to
indicate their class. On the right, we plot each point at its embedded location, color coded to indicate
to which segment it belongs. The embedding preserves the order and continuity of the segments. In
several cases each segment has been approximately transformed by a different linear transformation.
In the case of the red and green colored segments on the right, there is some overlap. Looking at
the left-hand figure we can see that in this case, points near the boundary between the two segments
belong to the same class. So this folding over of the segments in the embedding does not interfere
with the network’s ability to correctly classify the points.

In general, this embedding meets our expectations, showing that the monotonic chain can be very
efficiently mapped to a low-dimensional space using very few units, in a way that enables accurate
classification. It would be interesting in future work to determine the class of mappings that can be
instantiated efficiently by a network, and to understand how these relate to different classification
problems. It would also be interesting to design classification problems that can only be solved
using isometric embeddings, and to determine whether these embeddings can be found by neural
networks.

11

Published as a conference paper at ICLR 2017

Figure 8:We train a network on a classification problem in which the points lie on a low-dimensional manifold.
We show the points on the left, color coded to indicate their class. We then extract the embedding learned by
the network. Here we show the input mapped to this embedding, with points colored to indicate which of the
seven segments of the monotonic chain they lie on.

D DEEPERNETWORKS

We also note that the previously developed constructions can be applied recursively, producing a
deeper network that progressively approximates data using linear subspaces of decreasing dimen-
sion. That is, we may first divide the data into a set of segments that each lie in a low dimensional
subspace whose dimension is higher than the intrinsic dimension of the data. Then we may subdi-
vide each segment into a set of subsegments of lower dimension, using a similar construction, and
deeper layers of the network. These subsegments may represent the original data, or they be further
subdivided by additional layers, until we ultimately produce subsegments that represent the data.

We first illustrate this hierarchical approach with a simple example that requires only one extra
layer in the hierarchy. Consider a monotonic chain ofK, m2-dimensional linear segments that
collectively lie in am1-dimensional linear subspace,L, of ad-dimensional space, withm2 < m1.
We can construct the first hidden layer withm1 units that are active over the entire monotonic chain,
so that their gradient directions form an orthonormal basis forL. The output of this layer will contain
the coordinates inL of points on the monotonic chain. These can form the input to two layers that
then flatten the chain, as described in Section3.

In Section3 we had already shown how to flatten the manifold with two layers that take their input
directly from the input space. Here we accomplish the same end with an extra layer. However, this
construction, while using more layers, may also use fewer parameters. The construction in Section3
requiredd(m2 +K−1) parameters. Our new construction will requiredm1 +m1(m2 +K−1) pa-
rameters. Note that asK increases, the number of parameters used in the first construction increases
in proportion tod, while in the second construction the parameters increase only in proportion to
m1. Consequently, the second construction can be much more economical whenK is large andm1

is small.

In much the same way, we could represent a manifold using a hierarchy of chains. The first layers
can map am1-dimensional chain to a linearm1-dimensional output space. The next layers can select
anm2-dimensional chain that lies in thism1-dimensional space, and map it to anm2-dimensional
space. This process can repeat indefinitely, but whether it is economical will depend on the structure
of the manifold.

REFERENCES

J. Ba and R. Caruana. Do deep nets really need to be deep? InNIPS, pp. 2654–2662, 2014.

R. Basri and D. W. Jacobs. Lambertian reflectance and linear subspaces.PAMI, 25(2):218–233, 2003.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural
computation, 15(6):1373–1396, 2003.

12

Published as a conference paper at ICLR 2017

M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A comparison between shallow
and deep architectures.IEEE Trans. on Neural Networks and Learning Systems, 25(8), 2014.

P. P. Brahma, D. Wu, and Y. She. Why deep learning works: A manifold disentanglement perspective. 2015.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face
verification. InCVPR, 2005.

C. K. Chui and H. N. Mhaskar. Deep nets for local manifold learning.ArXiv preprint:1607.07110, 2016.

N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor analysis, 2015.

G. Cybenko. Approximation by superpositions of a sigmoidal function.Mathematics of control, signals and
systems, 2(4):303–314, 1989.

O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. InNIPS, pp. 666674, 2011.

R. O. Duda, P. E. Hart, and D. G. Stork.Pattern classification. John Wiley & Sons, 2012.

R. Eldan and O. Shamir. The power of depth for feedforward neural networks.ArXiv preprint: 1512.03965,
2015.

R. Giryes, G. Sapiro, and A. M. Bronstein. Deep neural networks with random gaussian weights: A universal
classification strategy?ArXiv preprint: 1504.08291, 2016.

R. Huang, F. Lang, and C. Shu. Nonlinear metric learning with deep convolutional neural network for face
verification. In J. et al. Yang (ed.),Biometric Recognition, volume 9428 ofLecture Notes in Computer
Science, pp. 78–87. Springer, 2015.

K. C. Lee, J. Ho, M. H. Yang, and D. Kriegman. Video-based face recognition using probabilistic appearance
manifolds. InCVPR, volume 1, pp. I–313. IEEE, 2003.

H. Mobahi, J. Weston, and R. Collobert. Deep learning from temporal coherence in video. InICML, 2009.

G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks.
In NIPS, pp. 2924–2932, 2014.

B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps, spectral clustering and eigenfunctions
of fokker-planck operators. InNIPS, volume 18, 2005.

S. Chopra R. Hadsell and Y. LeCun. Dimensionality reduction by learning an invariant mapping. InCVPR,
2006.

S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller. The manifold tangent classifier. InNIPS, pp.
2294–2302, 2011.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.Science, 290(5500):
2323–2326, 2000.

R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving class neighbourhood structure.
In AISTATS, 2007.

U. Shaham, A. Cloninger, and R. R. Coifman. Provable approximation properties for deep neural networks.
ArXiv preprint: 1509.07385, 2015.

M. Telgarsky. Representation benefits of deep feedforward networks.ArXiv preprint: 1509.08101, 2015.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality
reduction.Science, 290:23192323, 2000.

M. Turk and A. Pentland. Eigenfaces for recognition.Journal of cognitive neuroscience, 3(1):71–86, 1991.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. InICML, 2008.

D. Yi, Z. Lei, S. Liao, and S. Z. Li. Deep metric learning for person re-identification. InICPR, 2014.

Zhen-yue Zhang and Hong-yuan Zha. Principal manifolds and nonlinear dimensionality reduction via tangent
space alignment.Journal of Shanghai University (English Edition), 8(4):406–424, 2004.

13

	Introduction
	Prior Work
	Monotonic Chains of Linear Segments
	Error Analysis
	Combinations of Monotonic Chains
	Experiments
	Discussion
	Continuity of embedding
	Worst-case error
	Classification
	Deeper Networks

