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ABSTRACT

Recent image style transferring methods achieved arbitrary stylization with in-
put content and style images. To transfer the style of an arbitrary image to a
content image, these methods used a feed-forward network with a lowest-scaled
feature transformer or a cascade of the networks with a feature transformer of
a corresponding scale. However, their approaches did not consider either multi-
scaled style in their single-scale feature transformer or dependency between the
transformed feature statistics across the cascade networks. This shortcoming re-
sulted in generating partially and inexactly transferred style in the generated im-
ages. To overcome this limitation of partial style transfer, we propose a total style
transferring method which transfers multi-scaled feature statistics through a sin-
gle feed-forward process. First, our method transforms multi-scaled feature maps
of a content image into those of a target style image by considering both inter-
channel correlations in each single scaled feature map and inter-scale correlations
between multi-scaled feature maps. Second, each transformed feature map is in-
serted into the decoder layer of the corresponding scale using skip-connection.
Finally, the skip-connected multi-scaled feature maps are decoded into a stylized
image through our trained decoder network.

1 INTRODUCTION

Recent image style transferring methodsJohnson et al. (2016); Ulyanov et al. (2016; 2017) improved
image generating speed up to sub-realtime processing by learning a feed-forward network of a single
style or several fixed stylesDumoulin et al. (2017). Huang et al.Huang & Belongie (2017) proposed
an adaptive instance normalization layer (AdaIN) that adaptively transforms the statistics of an en-
coded content feature into that of a target style feature and they achieved style transferring into
arbitrary input target style. However, they did not consider multi-scaled style characteristics of an
imageGatys et al. (2016) but only a single scale feature in differentiating styles inside AdaIN layer.
Li et al.Li et al. (2017b) proposed to use cascade networks that cumulatively transfer the multi-scaled
style characteristics by using a network per scale as shown in fig.1 (a). They also transformed corre-
lation between channels of feature map by using their whitening and coloring transformer (WCT).
However, their cascade scheme requires multiple feed-forward passes to produce a stylized image
and it is not guaranteed that the transferred style through a network is preserved after going through
the subsequent networks because of inter-scale dependency in the multi-scaled styles of an image.
Therefore, transferring multi-scaled style without interference between scales is still remained to
study.

In this paper, we propose an improved feed-forward network structure (fig.1 (b)) and a multi-scaled
style transferring method, called total style transfer, to efficiently perform style transfer in all scales
of feature maps through a single feed-forward pass. Our work has the following contributions.

• Transforming both intra-scale and inter-scale statistics of multi-scaled feature map: There
exist both of inter and intra-correlations in the encoded multi-scaled feature map as shown
in fig.2 (b). Therefore, we match the second-order statistics, i.e., mean and covariance, of
the encoded multi-scaled feature map considering the correlations not only between chan-
nels in each scale (intra-scale correlation) but also between scales (inter-scale correlation).
Our feature transformer makes the transformed feature map closer to the target style feature
map and this results in an output style closer to the target style.
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Figure 1: Network structure diagram for applying multi-scale stylization. (a) The cascade network
scheme transfers style of an image into that of a target style image by using single scale transformers
(SST) scale by scale. (b) Our multi-scaled style transformer (MST) transfers multi-scaled styles in
a feed-forward process by using internal SSTs and a skip-connected decoder.
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Figure 2: Correlation between channels in the multi-scaled feature map of the input image (a) ex-
tracted from the pre-trained VGG16 Simonyan & Zisserman (2014). The area corresponding to each
scale of feature map is divided into red lines. In case of intra-scale feature transform, the diagonal
rectangles on the correlation matrix are used. In case of inter-scale feature transform, entire region
of the correlation matrix is considered.

• Decoder learning with multi-scaled style loss: we use a multi-scaled style loss consistent
to the feature transformer, i.e., mean and covariance loss between the concatenated feature
map (fig.3 (a)). Using our multi-scaled style loss allows the decoder network to generate
an output image of co-occurring multi-scale patterns which is better style expression than
independently occurring scale patterns on the image that the existing methods generated.

• Multi-scaled style transfer with a single feed-forward network: we use skip-connections
for each decoder layer as shown in fig.1 (b) to consider the transformed feature map as
well as the decoded feature map. By doing this, the style of scale corresponding to the
layer and the transferred multi-scaled style so far are optimally merged into the next layer.
Therefore, our method transfers multi-scaled style through a feed-forward pass in a single
network instead of multiple feed-forward passes of cascade networks (fig.1 (a)) without
considering inter-scale correlation.

In the remained of this paper, we review previous works closely related to this work in Sec. 2, our
multi-scaled style transforming method is described in Sec. 3, the effectiveness of our method is
tested and proven by a bundle of experiments in Sec. 4, and this work is concluded in Sec. 5.

2 RELATED WORK

Gatys et al. Gatys et al. (2016) represented content and style features of an image using a deep
feature map, i.e., the filtered responses of a learned convolutional neural network (CNN). To stylize
an input image, they performed pixel-wise optimization of the image to reduce the feature losses of
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Figure 3: Each diagram shows the process of merging multi-scale features and dividing them into
the original size for inter-scale feature transform. (a) Merging multi-scale features is performed
as upsampling each scale feature by using nearest neighborhood interpolation to the largest size
followed by concatenating them along the channel axis. (b) After feature transform, the transformed
feature is split into multi-scale features and downsampled into its original size. Each split feature is
inserted into the decoder layer of the corresponding scale by using skip-connection

the input and a target style image. Their method can transform an image in any target style by a
time consuming online optimization process. Li et al. Li et al. (2017a) interpreted the process of
generating a stylized image by matching Gram matrix Gatys et al. (2016) as a problem of maximum
mean discrepancy (MMD) specifically with a second-order polynomial kernel.
Using a feed-forward neural network Johnson et al. (2016); Ulyanov et al. (2016) moved the time
consuming online optimization process into an offline feed-forward network learning to speed up
the image generating speed of the previous method Gatys et al. (2016). The generated style quality
was also improved by using instance normalization (IN) Ulyanov et al. (2017).
Dumoulin et al. Dumoulin et al. (2017) extended the previous single style network to transfer multi-
ple styles. They used conditional instance normalization (CIN) layers in a single network. As select-
ing learnable affine parameters corresponding the specific style in the CIN layers, the feed-forward
network transfers the selected style. This method achieved generation of pre-trained multiple styles
with a single network.
To generalize a single network for arbitrary style transfer, Huang et al. Huang & Belongie (2017)
proposed to use a feature transformer called adaptive instance normalization (AdaIN) layer between
encoder and decoder networks. Once feature maps of content and target style images are encoded,
AdaIN directly adjusts the mean and standard deviation of a content feature map into those of a
target style feature map, and then the adjusted feature map is decoded into an output image of the
target style. Li et al. Li et al. (2017b) further improved the arbitrary stylization by using covariance,
instead of standard deviation, which considers the correlation between feature channels.
To transfer multi-scaled style, Li et al. Li et al. (2017b) used cascade networks, one scale of style
transfer per network. Very recent feed-forward network approach Sheng et al. (2018) used multiple
transformers in each scaled layer of their decoder network, where each transformer transfers corre-
sponding scale of style and this reduced redundancy of cascade networks. However, their method
did not consider the correlation between scales.
Recent generative adversarial networks (GANs) Isola et al. (2017); Zhu et al. (2017a;b) were used to
transform a style per network as an application of their image translation. And there are also many
methods dealt with various aspects of image style transfer such as photorealism Luan et al. (2017),
spatial color control Gatys et al. (2017), and multi-style interpolation Huang & Belongie (2017);
Dumoulin et al. (2017); Ghiasi et al. (2017). But, those methods did not deal with multiple scales of
style.

3 METHOD

3.1 MULTI-SCALE FEATURE TRANSFORM

As described in Gatys et al. (2016), each scaled feature of CNN represents different style character-
istics of an image. So, we utilize multiple feature transformers for each scale feature to transfer total
style characteristics of an image. In this section, we explain two schemes of our total style transfer,
i.e, intra-scale and inter-scale feature transform, with a single feed-forward network.

3.1.1 INTRA-SCALE FEATURE TRANSFORM

Our intra-scale feature transform is a set of independent single-scale style transforms as an extended
multi-scale version of the single-scale correlation alignment of CORAL Sun et al. (2016) or WCT
Li et al. (2017b).
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Suppose we have i-th scale features Fc,i ∈ RCi×(Hc,i×Wc,i) of content image and Fs,i ∈
RCi×(Hs,i×Ws,i) of style image, where Ci, Hc,i (or Hs,i), and Wc,i (or Ws,i) represent the number
of channels, spatial height, and width of i-th scale features respectively. For a single-scale style
transform with these features, CORAL or WCT performs (1) style normalization and (2) stylization
sequentally. In the style normalization step, first zero-centered feature F̄c,i ∈ RCi×(Hc,i×Wc,i) of
the content feature Fc,i is calculated and then the content feature Fc,i is normalized into F̂c,i by
using its own covariance matrix cov(F̄c,i) ∈ RCi×Ci as eq.1.

F̂c,i = cov(F̄c,i)
− 1

2 · F̄c,i. (1)

In the stylization step, the normalized content feature F̂c,i is stylized into Fcs,i by using the square
root of covariance matrix cov(F̄s,i) ∈ RCi×Ci of zero-centered style feature F̄s,i and spatial mean
µs,i ∈ RCi×1 of the style feature Fs,i as eq.2.

Fcs,i = cov(F̄s,i)
1
2 · F̂c,i + µs,i · 11×(Hs,i×Ws,i). (2)

Our intra-scale transform method applies the above single-scale transform independently to each
scaled feature for i = 1..3 corresponding to {relu_1_2, relu_2_2, relu_3_3} layers.
Then, those transformed features Fcs,i, i = 1..3 are inserted into the subsequent decoder through
skip-connenction. More detail about skip-connection will be described in Sec.3.1.3.

3.1.2 INTER-SCALE FEATURE TRANSFORM

As shown in fig.2 (b), there exists not only inter-channel correlation in a certain scale feature but
also inter-scale correlation between multi-scale features. These correlations should be considered in
order to transfer total style characteristics of an image. CORAL Sun et al. (2016) or WCT Li et al.
(2017b) did not consider inter-scale correlation but only inter-channel correlation. Therefore, we
propose inter-scale feature transformer which considers more style characteristics of image for style
transfer.
To perform feature transform considering both inter-channel and inter-scale correlations, we apply
the intra-scale feature transform of Sec.3.1.1 to the concatenated feature F ′c ∈ R

∑
i Ci×(Hc,1×Wc,1)

of content image and F ′s ∈ R
∑

i Ci×(Hs,1×Ws,1) of style image (eq.3) instead of independently
applying to each scaled features Fc,i and Fs,i of Sec.3.1.1.

F ′c =
[
Fc,1

T U(Fc,2)
T
U(Fc,3)

T
]T
, F ′s =

[
Fs,1

T U(Fs,2)
T
U(Fs,3)

T
]T
. (3)

As shown in fig.3 (a), the content features Fc,i and style features Fs,i for i = 1..3 are spatially
upsampled into U(Fc,i) and U(Fs,i) of a common size (we use the largest size of Fc,1 or Fs,1

corresponding to {relu_1_2}) and concatenated into F ′c and F ′s respectively along the channel
axis. After going through a transformer, the transformed feature F ′cs is split and downsampled into
F ′cs,i ∈ RCi×(Hc,i×Wc,i) of the original feature size as shown fig.3 (b) and eq.4,

F ′cs,1 = F ′cs[1 : C1], F ′cs,i = Di(F
′
cs[

i−1∑
k

Ck + 1 : Ci]) for i > 1, (4)

where, Di(f) is a function which spatially downsamples f into Hc,i × Wc,i. These features are
inserted into the subsequent decoder through skip-connenction of Sec.3.1.3.

3.1.3 SINGLE DECODER NETWORK WITH SKIP-CONNECTIONS

To utilize the transformed multi-scale features in generating output stylized image, decoding archi-
tecture of previous decoder network should be modified because each decoder layer has two input
feature maps as fig.1 (b), one is a decoded feature map from the previous decoder layer, the other
is a (intra-scale or inter-scale) transformed feature from the transformer. We adopt skip-connection,
which has been applied to several applications of computer vision field Ronneberger et al. (2015);
Mao et al. (2016); Isola et al. (2017); Bagautdinov et al. (2018) but not to image style transfer yet,
to merge the two feature maps in decoding process as shown in fig.3 (b). Skip-connected two scale
features are optimally merged by learnable convolution layer and this improves the quality of the
decoded image by considering multi-scale filter responses.
Our method is different from the previous cascade scheme of Li et al. (2017b) because we use a sin-
gle encoder/decoder network, parallel transformers for each scale feature, and merges multi-scaled
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styles optimally while the cascade scheme needs several encoder/decoder networks (one network per
scale feature) and sequentially transfers scaled styles from large to small scale at the risk of degra-
dation in previously transferred scale of style. Avatar-Net Sheng et al. (2018) also used a single
decoder like ours but it sequentially applied feature transformers from large to small scale without
considering possible degradation of the previously transferred scale.

3.2 MULTI-SCALED STYLE LOSS

We need an appropriate objective function for decoder network to generate a stylized image from
the transformed feature map. Among the existing losses such as Gram Gatys et al. (2016), Mean-Std
Huang & Belongie (2017), and reconstruction error Li et al. (2017b), we adopt Mean-Std loss Huang
& Belongie (2017) with some modification because of its consistency with AdaIN transformer.
Instead of using Mean-Std loss as it is, we use Mean-Covariance loss to additionally consider inter-
channel and inter-scale correlations, which is consistent with our feature transformers described in
Sec.3.1.
In case of using intra-scale feature transform (Sec.3.1.1), our style loss (eq.5) is calculated as the
summation of mean loss Huang & Belongie (2017) and covariance loss, i.e., square root of Frobenius
distance between covariance matrices of feature maps of output and target style images. In case of
using inter-scale feature transform (Sec.3.1.1), the summation of mean and covariance losses of the
concatenated features are used as the style loss (eq.6).

Lstyleintra =
∑
i

||µs,i − µo,i||+
∑
i

||cov(F̄s,i)− cov(F̄o,i)||, (5)

Lstyleinter = ||µ′s − µ′o||+ ||cov(F̄ ′s)− cov(F̄ ′o)||, (6)

where subscript o represents of output stylized image.

4 EXPERIMENTAL RESULT

4.1 EXPERIMENTAL SETUP

We used VGG16 feature extractor Simonyan & Zisserman (2014) as the encoder and
a mirror-structured network as the decoder of our style transfer network. Our de-
coder network has 2 times larger number of channels in the corresponding layer of skip-
connections than the previous methods Dumoulin et al. (2017); Huang & Belongie (2017).
{relu_1_2, relu_2_2, relu_3_3, relu_4_3} layers were used in calculating style
loss and {relu_3_3} layer in calculating content loss. Here, we used the same content loss
of Gatys et al. (2016) and our multi-scaled style loss in Sec.3.2. For training data set, MS-COCO
train2014 Lin et al. (2014) and Painter By Numbers Kingma & Ba (2015) were used as content
image set and large style image set respectively. Each dataset consists of about 80,000 images. And
we used an additional small style image set of 77 style images to verify the effect of our proposed
method as the number of training style increases. Each image was resized into 256 pixels in short
side maintaining the original aspect ratio in both training and test phases, and, only for training
phase, randomly cropped into (240, 240) pixels to avoid boundary artifact. We trained networks
with 4 batches of random (content, style) image pairs, 4 epochs, and learning rate of 10−4. And all
experiments were performed on Pytorch 0.3.1 framework with NVIDIA GTX 1080 Ti GPU card,
CUDA 9.0, and CuDNN 7.0.

4.2 COMPARISON OF INTER-SCALE AND INTRA-SCALE FEATURE TRANSFORMS

In order to verify the effect of our multi-scale feature transform for varying number of training style
images, we trained two networks, one with the small style image set of 77 images and the other with
the large style image set of about 80,000 images. Then we compared the output stylized images of
the networks.
Fig.4 shows an example of the output stylized images using our intra-scale or inter-scale feature
transform method. With the network trained by a small style image set, the result images generated
by our intra-scale transform (fig.4 (c)) show very similar texture style to the target style images
(fig.4 (b)). And those by our inter-scale transform (fig.4 (d)) show even better style of texture. With
the network trained by a large style image set (fig.4 (e,d)), the result images also show the same
tendency that inter-scale is better in expressing the texture of target style. Because of the existing
correlations between scales as shown in fig.2 (b), inter-scale feature transform which considers inter-
scale correlations shows the better quality of style than intra-scale transform.
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Figure 4: Comparison of intra-scale and inter-scale transform: (a) input content image, (b) target
style, (c,d) result of each model learned small style set and (e,f) results of learning large style set.
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Figure 5: Output stylized images according to the number of skip-connections: The (content, style)
losses of output images are (c) (0.910, 0.535), (d) (0.707, 0.512), and (e) (0.814, 0.497). The more
skip-connections are used, the less style loss is acheived. And there is a trade-off between style and
content losses.

4.3 ANALYSIS OF SKIP-CONNECTED DECODER NETWORK

To verity the effect of skip-connections in our style transfer network, we trained three differ-
ent networks. The first one has the conventional single layer encoder/transformer/decoder ar-
chitecture Huang & Belongie (2017); Li et al. (2017b) which a sinlge feature transformer on
{relu_3_3} without skip-connection. The second one has muti-scale feature transformers on
{relu_3_3,relu_2_2} and one skip-connection on {relu_2_2}. The last one has multi-
scale feature transformers on {relu_3_3,relu_2_2,relu_1_2} and two skip-connections
on {relu_2_2,relu_1_2}.
Fig.5 shows an example of the output stylized image from the three different networks. As the
number of skip-connections increases from fig.5(c) to (e), the style loss decreases from 0.535 to
0.497 and, accordingly, the color tone of the stylized image is getting better matched to the target
style (fig.5(b)) and small patterns appear.
To clarify the contributions of the skip-connected feature from the transformer and the decoded
feature from the previous scale of decoder layer, we observed the absolute values of loss gradients
with respect to the convolution weights of skip-connected decoder layers during the network learning
process. As shown in fig.6(a), the gradient values for the skip-connected feature (channel indices
from 129 to 256) on {relu_2_2} layer of decoder network are much larger than those for the
decoded feature (channel indices from 1 to 128) at the beginning of training. This means that the
skip-connected feature which already has target style through transformer dominantly affected to
the decoder learning at the start of training phase. This happens because the previous decoder layer
{relu_3_3} has random initial weights and outputs noisy feature at the start of training phase.
As iteration goes, the gradient values for both features became similar to each other. This means
that both skip-connected feature and decoded feature were equally utilized to generate an image of
multi-scaled style. Fig.1(b) shows that the gradient values for the skip-connected feature (channel
indices from 65 to 128) are smaller than those for the decoded feature (channel indices from 1 to 64)
at the latter decoder layer. This means that the decoded feature of the latter decoder layer already
has accumulated multi-scaled styles by the previous skip-connection and this resulted in the less
impact of the skip-connected feature. However, using the skip-connection with the stylized feature
of smaller scale has a certain effect on the result image in color tone matching as shown in fig.5(d,e).

4.4 COMPARING WITH THE EXISTING METHODS

4.4.1 COMPARISON IN QUALITY OF OUTPUT STYLIZED IMAGE

We compared the image quality of our method with those of the existing methods Gatys et al. (2016);
Huang & Belongie (2017); Li et al. (2017b). We took the output stylized images for Gatys et al.
(2016) after 700 iterations of Adam optimization with learning rate 10−1, for Huang & Belongie
(2017) with the same setting of our method except transformer and loss, and for Li et al. (2017b) with
style strength α = 0.6 (as mentioned in their work) and 3 cascade networks of VGG16 structure.
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Figure 6: Amplitude of loss gradients with resprct to the convolution weights in the skip-connected
decoder layers during the learning process: The gradients are drawn every 500 iterations. The
former half of the channels are for decoded feature from the previous scale and the latter are for
skip-connected feature from transformer. Based on the gradients of 1st skip-connected layer (a) and
2nd skip-connected layer (b), the skip-connected (transformed) feature highly seems to affect to the
decoder in initial interations but both decoded and transformed features samely affect as iteration
goes. And the latter decoder layer (b) is less affected by the skip-connected feature than the former
layer (a).

  
(a) Content (b) Style (c) Gatys et al. (d) Huang et al. (e) Li et al.  (f) Ours­intra (e) Ours­inter

Figure 7: Output stylized images of the existing methods and our method: The target style images
are not used for network learning.

Fig.7 shows the generated images from the existing and our intra/inter-scale feature transform meth-
ods. Compared to the online optimization method Gatys et al. (2016) (fig.7(c)), the other methods
based on feed-forward network generated images of somewhat degraded style quality (fig.7(d e)).
However, thanks to our muti-scaled style transfer which considering inter-channel or inter-scale
correlation, texture detail and color tone of the generated image of our method with inter-scale
(fig.7(f)) or intra-scale feature transform (fig.7(g)) are more similar to the target style than those of
single-scale style transfer without considering inter-channel correlation Huang & Belongie (2017)
(fig.7(d)) are.
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On-line
Learning Trained with Small Style Image Set Trained with Large Style Image Set

(a) (b) (c) intra inter (c) (d) intra inter
Content

Loss
9.94

(6.23)
14.80
(6.90)

9.17
(3.06)

8.72
(4.41)

13.11
(5.02)

8.69
(2.50)

9.82
(2.07)

8.62
(3.81)

12.13
(4.23)

Inter-scale
Covariance
and Mean

0.30
(0.10)

0.42
(0.19)

0.65
(0.31)

0.55
(0.24)

0.45
(0.22)

0.73
(0.41)

0.84
(0.42)

0.622
(0.33)

0.54
(0.31)

Inter-scale
Gram

0.11
(0.07)

0.26
(0.31)

0.78
(0.98)

0.55
(0.66)

0.39
(0.53)

0.97
(1.52)

1.13
(1.60)

0.72
(1.10)

0.58
(0.94)

Intra-scale
Covariance
and Mean

0.32
(0.13)

0.42
(0.22)

0.72
(0.36)

0.56
(0.26)

0.49
(0.25)

0.81
(0.47)

0.86
(0.46)

0.63
(0.35)

0.57
(0.34)

Intra-scale
Gram

0.14
(0.13)

0.34
(0.51)

1.32
(1.74)

0.81
(1.12)

0.64
(0.95)

1.70
(2.97)

1.80
(2.88)

1.06
(1.85)

0.88
(1.61)

Mean, Std 0.13
(0.08)

0.24
(0.18)

0.65
(0.37)

0.45
(0.27)

0.34
(0.26)

0.75
(0.53)

0.91
(0.57)

0.52
(0.35)

0.42
(0.33)

Table 1: Average (standard deviation) losses of various image style transferring methods. Each
methods (a) is Gatys et al. (2016), (b) is Dumoulin et al. (2017), (c) is Huang & Belongie (2017)
and (d) is Li et al. (2017b).

Compared to Li et al. (2017b), the generated images of our method present the styles closer to the
target styles because our methods trained a decoder network to minimize style loss between target
style and output images while Li et al. (2017b) trained its decoder network to minimize reconstruc-
tion loss of content images.
We also compared our method to Avatar-Net Sheng et al. (2018) that performs multi-scale feature
transform with a single decoder network. For a fair comparison, as the structure of Avatar-Net Sheng
et al. (2018), we used VGG19 network Simonyan & Zisserman (2014) up to {relu_4_1} layer
as the encoder and its mirrored structure as the decoder, and we also used additional style loss (eq.5
or eq.6) on image-level which is corresponding to the image reconstruction loss of Avatar-Net. As
shown in fig.8, Both our intra (e) and inter (f) methods generated the stylized images with both
detailed shapes of content images (a) and multi-scaled strokes of target style images (b). In contrast,
the generated images of Avatar-Net (c, d) show somewhat deemed content shapes and blurred or
burnt color patterns without detailed strokes. And selecting appropriate patch size corresponding to
the scale of style pattern was necessary in Avatar-Net (in second row of fig.8, {patch size=1}
(c) did not show large square patterns but {patch size=3} (d) did.) while our method did not
require any scale matching parameter due to multi-scaled skip-connections in the decoder network.

4.4.2 COMPARISON IN CONTENT AND STYLE LOSSES

For a quantitative comparison, we compared the content and style losses of the generated images of
the existing methods and ours.
Table.1 shows the measured average (standard deviation) losses across 847 tests of style transfer.
Online optimization method Gatys et al. (2016) achieved the smallest style loss with a low content
loss. Among the feed-forward networks trained with a small style image set, Dumoulin et al. (2017)
achieved the lowest style loss (red colored numbers). This is because it has a learnable transformer
and this resulted in a most optimized transformer. However, it is not extendable to arbitrary style
transfer. Among the arbitrary style transferring methods, our method achieved the lowest style
loss (blue colored numbers) with inter-scale feature transformer, and the second lowest style loss
(green colored numbers) with intra-scale feature transformer. Among the feed-forward networks
trained with a large style image set, our method shows the lowest style loss with inter-scale feature
transformer and the second lowest style loss with intra-scale feature transformer in the same manner
of the result with a small style image set.
For the content loss with large style image set, the best method in style loss (our-inter) shows the
highest content loss and the second best method (our-intra) shows the lowest content loss. This
interesting result can be interpreted that inter-scale correlation has not only style of an image but
also content of the image. Tasks of transferring style and preserving content are a trade-off in feed-
forward network methods. The result of Dumoulin et al. (2017) with small style image set also
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Figure 8: Comparison of single-network-multi-scale transform methods (Avatar-Net Sheng et al.
(2018) and Ours): the numbers in bottom-right of images are content loss values.

shows the same content/style trade-off. Therefore, we can select either inter-scale or intra-scale
feature transformer according to user preference or purpose of application.

4.4.3 COMPARISON IN PROCESSING SPEED AND MEMOCY EFFICIENTY

Our method achieved 31% less encoder/decoder feed-forward time (4.4 ms in average of 1000 trials
with images of 240 by 240 pixels) and 4% less number of parameters (3,655,296 parameters) than
the existing cascade network scheme Li et al. (2017b) (6.4 ms, 3,769,856 parameters).

5 CONCLUSION

In this paper, we proposed a total style transfer network that generates an image through a single
feed-forward network by utilizing multi-scale features of content and style images.
Our intra-scale feature transformer transfers multi-scale style characteristics of the target style im-
age and our inter-scale feature transformer transfers even more style characteristics of inter-scale
correlation into the content image. By using our intra/inter scale feature transform, our total style
transfer network achieved the lowest style loss among the existing feed-forward network methods.
In addition, we modified the feed-forward network structure by using skip-connections which make
our decoder network to utilize all transformed multi-scale features. This modification allowed a
single feed-forward network to generate image of multi-scaled style without using multiple feed-
forward networks of cascade scheme, and resulted in the reduced test time by 31% and memory
consumption by 4% compared to cascade network scheme.
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