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ABSTRACT

The sophisticated structure of Convolutional Neural Network (CNN) allows for
outstanding performance, but at the cost of intensive computation. As significant
redundancies inevitably present in such a structure, many works have been pro-
posed to prune the convolutional filters for computation cost reduction. Although
extremely effective, most works are based only on quantitative characteristics of
the convolutional filters, and highly overlook the qualitative interpretation of indi-
vidual filter’s specific functionality. In this work, we interpreted the functionality
and redundancy of the convolutional filters from different perspectives, and pro-
posed a functionality-oriented filter pruning method. With extensive experiment
results, we proved the convolutional filters’ qualitative significance regardless of
magnitude, demonstrated significant neural network redundancy due to repetitive
filter functions, and analyzed the filter functionality defection under inappropriate
retraining process. Such an interpretable pruning approach not only offers out-
standing computation cost optimization over previous filter pruning methods, but
also interprets filter pruning process.

1 INTRODUCTION

The great success of Convolutional Neural Network (CNN) is benefited from its advanced algo-
rithm and architecture, which utilize inter-connected multi-layer network structure to hierarchically
abstract the data feature for recognition tasks Krizhevsky & et al (2012). However, this complex
mechanism offers CNN outstanding performance at the price of intensive computation cost. There-
fore, many CNN optimization works have been proposed to alleviate this computation cost Han &
et al (2015), Jaderberg & et al (2014), etc.

While those network redundancy leveraging works are mostly based on quantitative evaluation, the
qualitative analysis based on network interpretation is highly overlooked. With the neural network
interpretation, CNN can be well analyzed regarding its hierarchical structure and individual compo-
nent’s functionality, and therefore no longer a “black-box”. However, most neural network interpre-
tation works is merely considered as a post-analysis approach, and very few works have utilized it
to analysis and guide the optimization directly (Yosinski et al. (2015)).

Considering the absence of the network interpretation analysis and optimization, in this work we
utilized different CNN interpretation techniques to analysis the convolutional filter functionality and
optimize the filter pruning method. In this work, we have the following major contributions:

• We utilized CNN visualization techniques and backward-propagation gradients analysis to
interpret the convolutional filter functionality, and demonstrate significant network redun-
dancy due to repetitive filter functions rather than insignificant magnitude;

• We designed a hierarchical filter functionality-oriented pruning method to explore the in-
terpretable neural network optimization;

• We observed the filter functionality transission with model tuning, and reveals the inappro-
priate pruning and retraining methods may significantly defect the filter functionality and
cause unnecessary network reconstruction effort.

Experiment results with various CNN models and image dataset show that, the proposed filter inter-
pretation approach can effectively analysis the convolutional filters’ the functionality and similarity.
The proposed functionality-oriented pruning methods also achieves outstanding performance com-
pared to traditional filter pruning methods with better training efficiency and interpretability
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Figure 1: The illustration of visualized patterns of
the convolutional filters.
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Figure 2: Filter similarity matrices.

2 RELATED WORK

Convolutional Filter Pruning It is well known that the major computation cost in a CNN comes
from the convolutional layers. Therefore, most CNN optimization works fall into convolutional filter
pruning or compact CNN training with convolutional filter constraints: Li et al. (2016) ranked the
convolutional filters with their absolute weight sum as the filter significance indication and pruned
the insignificant filters for better computation efficiency, which is well-recognized and `1 ranking
based prunning; Hu et al. (2016) evaluated the filter significance calculating the occupation of zero
valued weights for pruning guidance; He et al. (2017) also applied Lasso-regression in the filter
pruning for batched processing. The filter significance is also evaluated with the filter feature maps:
Polyak & Wolf (2015) pruned the filters with small feature map values; Luo et al. (2017) evaluate
filter’s significance by testing its impact on feature map reconstruction errors after being pruned.

Most of these works are based on quantitative analysis on the filter significance. However, such
an approach is already questioned by some recent works: Huang et al. (2018) proved that certain
redundancy also exists in filters with large “significance”; while Ye et al. (2018) correspondingly
demonstrated that filters with small values also significantly affect the neural network performance.
Therefore, rather than merely evaluating the convolutional filters in a quantitative approach, we
analysis the filter functionality in a qualitative manner to guide the neural network optimization.

Convolutional Filter Visualization As the convolutional filters are designed to capture certain
input features, the semantics of the captured feature can effectively indicate the functionality of
each filter. However, as the convolutional filter are embodied by matrices, the functionality is hard
to directly interpret, which significantly hinders the qualitative neural network optimization.

Recently, many CNN visualization techniques have been proposed to qualitatively analysis the CNN
in perspectives of network structure and component functionality, such as Activation Maximization
(AM) (Yosinski et al. (2015)), Network Inversion (Mahendran & Vedaldi (2015)), Deconvolutional
Neural Networks (Zeiler & Fergus (2014)), and Network Dissection based Visualization (Zhou et al.
(2016)). Among those methods, AM offers the most efficient and effective interpretation for the
convolutional filter functionality, which is defined by each filter’s maximum activation pattern. In
this work, we utilize the AM as our major visualization tool for convolutional filter analysis.

3 CONVOLUTIONAL FILTER FUNCTIONALITY INTERPRETATION
AND FILTER REDUNDANCY ANALYSIS

Different from previous quantitative filter significance analysis, the convolutional filter functionality
is qualitatively interpreted in this paper. Based on the functionality interpretation, the neural network
redundancy is further analyzed regarding the filter functionality. For preliminary demonstration, we
adopt a VGG-16 model trained on CIFAR-10 dataset for intuitive result demonstration.
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3.1 INTERPRETABLE CONVOLUTIONAL FILTER FUNCTIONALITY ANALYSIS

To qualitatively interpret the convolutional filter functionality, both AM visualization and backward-
propagation gradients analysis are utilized. AM visualization interprets a filter’s feature extraction
preference from the neural network inputs, while the backward-propagation gradients evaluate the
filters’ contribution to classification outputs.

In AM visualization, the feature extraction preference of a filter F l
i from layer Ll is represented by

a synthesized input image X that causes the highest activation of F l
i (i.e. the convolutional feature

map value). Mathematically, the synthesis process of such an input can be formulated as:

V (F l
i ) = arg max

X
Al

i(X), X ← X + η · ∂A
l
i(X)

∂X
, (1)

where Al
i(X) is the activation of filter F l

i from an input image X , η is the gradient ascent step size.
WithX initialized as an input image of random noises, each pixel of this input is iteratively changed
along the ∂Al

i(X)/∂X increment direction to achieve the highest activation. Eventually, X demon-
strates a specific visualized pattern V (F l

i ), which contains the filter’s most sensitive input features
with certain semantics, and represents the filter’s functional preference for feature extraction.

Fig. 1 demonstrates several filters’ visualized patterns from different layers. By interpreting the
content of these patterns, it is clear to see that the filters in lower layers are more sensitive to funda-
mental colors and shapes. While with the layer depth increasing, the patterns tend to show specific
objects and eventually recognizable class targets.

In the backward-propagation gradients analysis, the gradients indicate the impact of each convolu-
tional filter to individual classification targets:

γi,yj
=

1

N

N∑
n=1

∥∥∥∥ ∂P (yj)

∂Al
i(xn)

∥∥∥∥ , (2)

where P (yj) is the output probability of a sample image xn to the class yj , and Al
i(xn) is the

activation of filterF l
i for each test image xn. ∂P (yj)/∂Ai(xn) is the backward-propagation gradient

of class yj respective to the filter’s activation, which indicates the dedicated contribution of filter F l
i

to class yj . With preliminary experiments, we also find that some filters’ visualized patterns also
constrain obvious class objects, which indicates large impact to certain classes yj . Therefore, the
connection between filters and dedicated class outputs can be also determined.

Associating these two analysis methods, namely the CNN visualization and backward-propagation
gradients analysis, the filters’ functionalities can be well interpreted in a qualitative manner.

3.2 FUNCTION SIMILARITY BASED FILTER REDUNDANCY ANALYSIS

Based on the above analysis, the convolutional filter functionality can be well interpreted regarding
the input feature extraction preference and output contribution. These qualitative interpretations
also guide certain neural network redundancy analysis, where filters with similar functionalities may
indicate unnecessary structural repetition. Such repetition can be well identified among the filters
with similar visualized patterns, as shown in the Fig. 1: as denoted by the red blocks, significant
functionality similarities present among the convolutional filters in each layer.

To quantitatively determinate possible filter functionality repetition, a similarity degree between
filter F (c,l)

k and F (c,l)
i is formulated regarding both AM visualized patterns and the back-propagation

gradients:
SD[V (F

(c,l)
i ), V (F

(c,l)
k )] = ‖V (F

(c,l)
i )− V (F

(c,l)
k )‖2 · ‖γi − γk)‖2, (3)

where ‖V (F
(c,l)
i )− V (F

(c,l)
k )‖2 calculates the Euclidean distance between two visualized patterns,

which indicate feature extraction preference similarity 1. And ‖γi − γk)‖2 calculates the similar-
ity between the two filter’s contribution to specific output classes. To equally evaluate these two
criterion, both vectores are normalized, and the summation is utilized as the filter similarity degree.

1Although image similarity analysis tools like SSIM are more specialized, they cannot be applied into low
layer filters with extremely small resolutions. Therefore, the Euclidean distance is adopted for its generality.
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(a) Proposed functionality-oriented filter pruning. (b) `1 ranking based filter pruning.

Figure 3: Case study of the hierarchical filter functionality-oriented and filter `1 ranking based filter
pruning on the Conv5 1 of VGG-16. The convolutional filters are shown by their visualized patterns,
and aligned according to the visualization based filter clustering.

According to the qualitative analysis of Eq.3, a set of matrices filter similarity degrees are con-
structed as shown in Fig.2. The matrix axes represent the filter index in each layer (e.g. 512x512
for filter Conv5 2), and each cross-point indicates the similarity degree SD between two filters. The
magnitudes of the similarity degrees are denoted by a color range, where the minimum is denoted
as red and the maximum is denoted as white. From Fig.2, it can be observed that the filter similar-
ity widely present in different layers. Meanwhile, significant filter similarity exit in the shallowest
and deepest layers of the neural network (e.g. Conv1 1 and Conv5 2). Those high similarity de-
grees indicate considerable functionality repetition among the convolutional filters, which might be
leveraged for effective neural network optimization.

In later sections, the filter functionality evaluation approach is widely applied for network redun-
dancy analysis and filter pruning guidance.

4 HIERARCHICAL FILTER FUNCTIONALITY-ORIENTED PRUNING

Based on the convolutional filter functionality and redundancy analysis, we further propose a novel
hierarchical filter pruning method oriented by the qualitative functionality interpretation.

4.1 PRUNING METHOD OVERVIEW

The proposed functionality-oriented filter pruning method is designed in a hierarchical manner to
address the functionality redundancy in different neural network component levels.

The method has the following major stages: (1) Filter Clustering – Based on the aforementioned
filter similarity analysis with AM visualization and the backpropagation gradients, the filters with
similar functionalities in each layer are clustered into multiple groups. The filters in the same cluster
are considered to have repetitive functionalities; (2) Filter Level Pruning – Inside each cluster, the
filters’ relative contribution to the output classes are qualitative evaluated by the backpropagation
gradients analysis. The contribution index of each filter can be considered as the filter significance
regarding its functionality; (3) Cluster Level Pruning – Inside each layer, the relative cluster prun-
ing rate is based on the cluster volume size to guide the filter pruning in each cluster; (4) Layer
Level Pruning – Guided by the layer sensitive to pruning, the relative pruning ratio for each layer is
calculated to guide the pruning in each layer and therefore each cluster.

Fig. 3(a) illustrate an intuitive example for the filter clustering in the layer Conv5 1, where each
row represents one cluster in the layer, and the horizontal axis indicates the filter’s contribution
index. Given a pruning rate for the model, the relative pruning rate for each layer and cluster can
be determined, and the filters with least classification contribution will be pruned first (marked by
green crosses). Meanwhile, we also demonstrate `1 ranking based filter pruning in the Fig. 3(b).
Considering `1 ranking’s quantitative filter significance evaluation, the pruned filters (marked by
red crosses) have no interpretable selection patterns and no functionality correlations. Moreover,
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Algorithm 1 Visualization based k-means Filter Clustering

Input: CNN, Number of layers L, and Number of filters in each layer Il
Output: L Clusters

1: for each Layer Ll do Listl=[];
2: for each Filter F l

i do Generate the pattern: V (F l
i )=X l

i ; Listl.append(V (F l
i ));

3: for c in range (1, Il/2) do Grid search all possible cluster numbers: Cl=kmeans.cluster(Listl,
c);

4: for Cc
l in Cl do Merge the single filter clusters: Cl

locked = [];
5: if Len(Cl

c)== 1 then Cl
locked.append(Cl

c); k=k-1.
6: Select the maximal c as the optimal cluster number: c=Max(c) return Cl

c

comparing to `1 ranking based filter pruning, the proposed functionality-oriented pruning requires
extremely small effort for model retraining, which will be further explained in later sections.

In the next section, the details for each processing stage will be presented.

4.2 HIERARCHICAL FILTER PRUNING SCHEME

Filter Clustering SD derived from Eq. 3 demonstrates the functionality similarity of any two
convolutional filter. While to evaluate all the filters’ similarity in a comprehensive neural network
model, we applies k-means algorithm in each layer to cluster the filters.

As described in Alg. 1, we first utilize AM to obtain the visualized pattern of each convolutional
filter. Then, we apply the k-means algorithm to SD values of all the convolutional filters in each
individual layer. To determine proper cluster amount in each layer (i.e. k), a grid search is conducted
from one to half of the total filter number. It is worth noting that there are inevitably certain amount
of filters with extremely minimal similarity with others, which are also group together and won’t be
considered for pruning due to their possible instinct functionalities.

Each of the convolutional filter clusters can be considered as an interpretable functionality node.
However, they can be also considered as neural network redundancy units that extract repetitive
features from the inputs, and possibly defect the neural network computation efficiency.

Filter Level Pruning Ideally, the filters with the exactly same functionality can be substituted to
each other, and each cluster can reserve only one filter and prune out the rest. However, due to the
complex mechanism of neural networks, the filters with similar functionalities may have distinct
contribution to the classification results. Therefore a relative filter contribution evaluation inside the
cluster is necessary to determine the pruning significance for each filter.

To quantitatively identify the filters’ contribution variation, the backward-propagation gradients is
utilized to rank the filters in each cluster. Given a layer l with Il filters, the neural network output
could be formulated by any layer l’s output feature maps in the following format:

Z(F,Al) = FL(... α(F l+1 ∗Al + bl+1)...) + bL, (4)

where F is the filter weights and bias in every layer. Al is the output feature maps (activation
maps) of layer l. Due to the high complexity of F and multiple layers’ combination, an approximate
function Z is needed. Here we use Z’s first-order Taylor expansion for approximating:

Z(Al + ∆) = Z(Al) +
∂Z(Al)

∂Al
·∆. (5)

In our pruning method, when filter i in the l − 1 layer is pruned, the filter’s output feature map is
corresponding set to zero, i.e. changing the ith dimension of Al to zero. Therefore, the influence on
Z can be qualitatively evaluated as:

∂Z(Al
i)

∂Al
i

·∆, where ∆ = Al
i → 0. (6)
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Before pruning, each filterF (c,l)
i in the clusterCl

c of layer l is firstly ranked by the contribution index,
I(F

(c,l)
i ), which is calculated by examining the backward-propagation gradients. Specifically,

I(F
(c,l)
i ) =

1

N

N∑
n=1

∥∥∥∥∂Z(F,Al)

∂Al
i(xn)

∥∥∥∥ , (7)

where the Z(F,Al) is the neural network output loss of a sample image n, and the Al
i(xn) is the

feature map of filter i for each test image n.

As shown in Fig. 3, the filters in each cluster are ranked with contribution index. When a specific
filter pruning amount is assigned to the cluster, filters with small contribution will be firstly pruned.

Cluster Level Pruning As filter clusters are supposed to bear certain inner redundancy, they can
perform filter pruning independently. Hence a parallel pruning operation can be well executed in
each cluster as shown in Fig. 3. However, the significant variance of filter distribution also presents
in each cluster. In each layer, a few clusters may have significantly larger volumes, while there
are also a certain amount of filters that can’t be well clustered. Therefore, a dedicated cluster level
scheme is necessary to balance the pruning rates between clusters. Considering the cluster volume,
we define an adaptive pruning rate of R(c,l)

clt = length(Cl
c). The length(Cl

c) calculates the cluster
volume size, since larger cluster volume demonstrates more filter redundancy. And a larger R(c,l)

clt
value will lead significantly more aggressive cluster level pruning. Therefore, we can see different
filter pruning amounts between clusters in the Fig. 3.

Layer Level Pruning As the functionalities of each layer are relatively independent, all the layers
can be pruned in a parallel manner with minor accuracy defection. In our pruning method, we derive
a hyper-parameter Pr based on each layers’ accuracy sensitive to the pruning. Specifically, we prune
filters in each layer independently and evaluate the pruned model’s accuracy on the test set without
retraining. Pr is the neural network accuracy drop by pruning certain amount filters in each layer.
Since each layer has different accuracy sensitivity to pruning, we empirically determine the same
accuracy drop Pr for all layers. By setting the hyper-parameter Pr, we can find a certain amount of
filters r to prune for each layer, corresponding amount of filters can be well assigned to each cluster
as r · R(c,l)

clt . And in each cluster, the filters to be pruned can be well identified by the contribution
index of I(F

(c,l)
k ).

Leveraging the convolutional filters’ qualitative functionality analysis, our proposed method is ex-
pected to leverage the neural network interpretability for more accurate redundant filter allocation,
faster pruning speed, and optimal computation efficiency.

5 EXPERIMENTS

In this section, we will evaluate the functionality-oriented filter pruning method and testify the in-
terpretable filter functionality that the method derived from.

5.1 EXPERIMENT SETUP

The visualization analysis and filter pruning method are implemented in Caffe environment (Jia
et al. (2014)). The evaluation is performed on our designed ConvNet and VGG-16 on CIFAR-10,
VGG-16 and ResNet-32 on ImageNet.

In evaluations on CIFAR-10, a data argumentation procedure is processed firstly through horizontal
flip and random crop, and a 4 pixel padded training data set is generated. The whole training data
is utilized in calculating the contribution index in Eq.7 for more accurate estimation. Our designed
ConvNet is designed based on the classic AlexNet model, in which the convolutional filter has the
size of 3x3 and the number as the same as the original model 2.

In evaluations on ImageNet, 10 classes images out of 1000 classes, namely ImageNet-10 is utilized
in this work. And each class contains 1300 training images and 50 validation images. The VGG-16
and ResNet-32 on ImageNet-10 is pre-trained with a batch size of 128 and a learning rate of 1e−3,

2The detailed neural network structure of the ConvNet and the VGG-16 are demonstrated in the Appendix.
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Figure 4: Sensitivity of each individual layer to pruning methods.

achieving 98.6% and 97.1% testing accuracy respectively. As the same, the train data set is fully
utilized to calculate the contribution index.

The ResNets-32 for ImageNet have three stages of residual blocks for feature maps with sizes of
56x56, 28x28, and 14x14. The three stages contain 3, 4, and 2 residual blocks respectively, and
each residual block has three convolutional layers. The first convolutional layer of ResNets-32 is
numbered as 1 and the layer number is defined to increase from shallower to deeper layers. Note that
the projection layer located in the junction of two adjacent stages is neither numbered nor pruned as
was done in other previous works. In each residual block, only the first two convolutional layers are
pruned to keep the input and output feature maps to be identical. Hence, only filters from layer 2, 3,
5,... ,9 in stage 1, layer 11, 12,... 18 in stage 2, and layer 23, 24, 26, 27 in stage 3 are pruned.

In the experiment, the well trained neural network models are pruned by both proposed methods and
`1 are compared from the perspectives of layer-wise pruning, model-wise pruning, filter training
behavior, as well as the overall performance. The retraining process is executed on 20 epochs (i.e.
1/8 original training epochs) with a constant learning rate of 0.001.

5.2 LAYER-WISE PRUNING ANALYSIS

We demonstrate the effectiveness of our proposed method by comparing the accuracy defection sen-
sitivity of individual layers to the proposed pruning method and `1 (Li et al. (2016)) based pruning.

The first row of Fig. 4 shows the layer-wise network accuracy degradation under different pruning
ratio according to our method, while the the accuracy degradation caused by the `1 based method is
demonstrated in the second row.

The following phenomenon is observed: (1) The proposed pruning has a slower accuracy degrada-
tion rate compared with the `1 ranking based pruning method in majority of layers, especially in
the scenario of VGG-16 on the CIFAR-10; (2) In the proposed pruning, the accuracy degradation is
slight and degradation rate is small before more than 50% repetitive convolutional filters are pruned;
(3) The proposed method can slow down the accuracy degradation of some representative layers of
ResNet-32 with the increasing of pruning rate. The reason is the ResNet contains much less filters
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Table 1: CIFAR-10 Pruning Configuration

Pruning FLOPs FLOPs prune retrain
network Rate (x108) reduction accuracy accuracy

ConvNet 0 8.53 90.05%*
prune A 40.2% 5.34 37% 87.88% 90.04%
A-L1 40.2% 5.34 37% 83.29% 89.42%
prune B 64.5% 2.1 63% 65.61% 88.57%
B-L1 64.5% 2.1 63% 53.72% 87.88%
VGG-16 0 3.31 90.2%*
prune A 42.9% 1.85 41% 88.1% 90.3%
A-L1 42.9% 1.85 41% 82.4% 89.82 %
prune A 66.6% 1.03 68% 72.1% 89.9%
B-L1 66.6% 1.03 68% 60.2% 89.73 %

*Baseline accuracy

compared to other neural network model. In addition, the deeper layers of ResNet are more sensitive
to pruning than the shallower layers, which is different with the other network models.

As such, our proposed method demonstrates significant pruning stability and robustness in the layer-
wise pruning. It also means the functionality redundant filters can be more accurately identified and
pruned through the proposed interpretive approach.

5.3 MODEL-WISE PRUNING ANALYSIS

In this section, we further analyze the sensitivity to pruning of different neural network models. The
performance of the proposed method is compared with both the `1 and the activation based methods.
In the activation based filter pruning method, filters with small output activation are removed Polyak
& Wolf (2015)).

Fig. 5 shows the model-wise pruning results of different network models under different pruning
rate in the three pruning methods that are named as Cluster, L1, Activation respectively. Here, all
convolutional layers in a network model are pruned simultaneously. The results depict that (1) The
proposed method outperforms the `1 and activation based methods on all models, especially when
the neural networks pruning rate is between 20% and 40%; (2) The proposed method has comparable
performance with the `1 based method when the pruning rate is smaller than 10%.

The above results demonstrate that our proposed method can be applied on full model compression
with less accuracy degradation. The overall performance is discussed in the next section.

5.4 OVERALL PERFORMANCE EVALUATION

In this section, the overall pruning performance of our proposed method and the `1 based method is
evaluated and compared, which are depicted as prune and L1 respectively in Table 1 and Table 2. In
the evaluation, a retraining procedure is performed to further recover the accuracy. Table 1 shows the
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Figure 5: Model-wise pruning analysis.
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performance in FLOPs reduction, accuracy after pruning, and accuracy after retraining of ConvNet
and VGG on the CIFAR-10 dataset, and Table 2 shows the results of VGG and ResNet-32 on the
ImageNet-10 dataset. In the evaluations, two pruning configuration is utilized. In prune A and A-
L1, a small amount of filters are pruned and the original accuracy can be completely recovered by
retraining. prune B and B-L1 indicates the scenarios that filters are pruned aggressively to maximize
the FLOPs reduction with optimal accuracy. The pruning rate is the percentage of the pruned over
the total filters in a neural network model, and the comparison is executed on the same pruning rate.

Table 1 and Table 2 demonstrates that our proposed method introduce less accuracy degradation
than the previous `1 based method. In addition, the accuracy caused by the proposed pruning can
be easier recovered through retraining with better accuracy. For example, in the evaluations of VGG
on the CIFAR-10 dataset, the proposed method can achieve 41% FLOPs reduction with retraining
accuracy even higher than the original value, however, the accuracy loss caused in the `1 based
pruning can not be well recovered. As is shown in Table 2, large accuracy loss occurs in the VGG
on the ImageNet-10 dataset in the two pruning methods. And the proposed method induces less
accuracy degradation and higher retraining accuracy compared with the `1 based pruning. Table 2
also shows that it is hard to recover the accuracy drop through retraining in the pruning of the ResNet
on the ImageNet-10 dataset, and hence acceptable pruning rate in this scenario is relatively small.

5.5 NETWORK RETRAINING ANALYSIS

In most state-of-the-art works for neural network compression, the retraining is a necessary oper-
ation to compensate the inaccurately pruned filters and enhance the network performance. In this
section, we evaluate the retraining operation quantitatively and qualitatively.

In Fig. 6, we first quantitatively explore the retraining process in terms of the model accuracy re-
covery. As shown in Fig. 6, the soiled lines represent the pruned model accuracy recovery based on
our proposed method whereas the dot lines represent the `1 based method. We can observed that:
(1) The models pruned by our method always demonstrate more quickly accuracy recovery. (2) To
recover to the same accuracy, our method requires less retraining iterations.

Meanwhile, we also qualitatively explore the retraining process by the AM. Here we mainly focus
on the functionality transition during network retraining process. As shown in Fig. 7, we randomly
select one filter that has not been pruned by both our method and `1 based method and its original
function analysis pattern is showed in the first column. Then we use the same visualization methods
to visualize the pattern during different retraining iterations, e.g. every 100 iterations. The AM
patterns show that, regardless the retraining iterations, the remained filter function of our proposed
pruning method remains unchanged. However, the `1 based method changes the original filter func-
tionality during retraining process. This means that the retraining process of the `1 based method
rebuilds the filter functionality, which therefore needs more retraining iterations to restore the model
accuracy. The reasons behind that are `1 based method may partially destruct the original neural

Table 2: ImageNet-10 Pruning Configuration

Pruning FLOPs FLOPs prune retrain
network Rate (x1010) reduction accuracy accuracy

VGG-16 0 1.54 98.6%*
prune A 28.3% 0.84 45% 51.9% 96.8%
A-L1 28.3% 0.84 45% 40.7% 95.7%
prune B 40.9% 0.57 63% 25.1% 94.3%
B-L1 40.9% 0.57 63% 21.2% 93.2%
ResNet-32 0 2.31 97.12%*
prune A 21.5% 1.73 25% 94.75% 97.50%
A-L1 21.5% 1.73 25% 92.87% 96.25%
prune B 30.2% 1.55 33% 91.25% 96.25%
B-L1 30.2% 1.55 33% 90.37% 94.75 %

*Baseline accuracy
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Figure 6: Pruned model accuracy recovery by retraining.

network’s functionality composition, which then need more iterations to reconstruct and balance the
functionality composition.

That’s also the reason why our pruning method causes significantly less accuracy drop and requires
less retraining efforts since our pruning method induces less influence to the neural network func-
tionality composition. Therefore, with more interpretable and accurate redundant filter functionality
identification and pruning in our method, the costly retraining process will become less necessary,
as our retraining analysis results demonstrate.

6 CONCLUSION

In this work, through activation maximization based visualization and gradient based filter function-
ality analysis, we firstly show that convolutional neural network filter redundancy exists in the form
of functionality repetition. In other words, the functional repetitive filters could be effectively pruned
from neural network to provide computation redundancy. Based on such motivation, in this paper,
we propose an interpretable filter pruning method by first clustering filters with same functions to-
gether and then reducing the repetitive filters with smallest significance and contribution. Extensive
experiments on CIFAR and ImageNet demonstrate the superior performance of our interpretable
pruning method over state-of-the-art method, e.g. `1 ranking based pruning. By further analyzing
the functionality changing of remaining filters in the retraining process, we show that `1 ranking
based pruning actually partially destructs original neural network’s functionality composition. By
contrast, our method shows consistent neuron functionality during retraining process, denoting less
harm to original network composition. This reveals the underlying reasons of our methods’ better
performance than L1 method.

Retrain Iterations 
400 500 600 700 800 900 1000

Cat

0 300

Figure 7: Filter functionality transformation during retraining.
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7 APPENDIX

7.1 NETWORK CONFIGURATION

Table 3 and Table 4 show the detailed network structure and pruning configuration of our ConvNet
and the VGG-16 on CIFAR10 respectively. The cluster distribution is the total number of clusters in
each convolutional layers.

Table 3: ConvNet on CIFAR10 Pruning Configuration

cluster base prune A A-`1 prune B B-`1
layer output distribution filter filter filter filter filter

Pr 0.5 - 2.5 -
Conv1 1 32x32 15 64 19 19 36 36
Conv2 1 16x16 20 128 8 8 38 38
Conv3 1 8x8 26 256 21 21 64 64
Conv4 1 4x4 27 512 146 146 329 329
Conv5 1 2x2 46 512 398 398 483 483

Table 4: VGG-16 on CIFAR10 Pruning Configuration

cluster base prune A A-`1 prune B B-`1
layer output distribution filter filter filter filter filter

Pr 0.5 - 1 -
Conv1 1 32x32 15 64 19 19 36 36
Conv1 2 32x32 17 64 3 3 19 19
Conv2 1 16x16 20 128 8 8 38 38
Conv2 2 16x16 31 128 17 17 26 26
Conv3 1 8x8 26 256 21 21 64 64
Conv3 2 8x8 24 256 18 18 64 64
Conv3 3 8x8 14 256 36 36 77 77
Conv4 1 4x4 27 512 146 146 329 329
Conv4 2 4x4 28 512 313 313 424 424
Conv4 3 4x4 38 512 223 223 438 438
Conv5 1 2x2 46 512 398 398 483 483
Conv5 2 2x2 61 512 395 395 432 432
Conv5 3 2x2 40 512 218 218 384 384

7.2 FILTER FUNCTIONALITY TRANSITION DURING RETRAINING
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Figure 8: Filter functionality transition during retraining.

12


	Introduction
	Related work
	Convolutional Filter Functionality Interpretation    and Filter Redundancy Analysis
	Interpretable Convolutional Filter Functionality Analysis
	Function Similarity based Filter Redundancy Analysis

	Hierarchical Filter Functionality-Oriented Pruning
	Pruning Method Overview
	Hierarchical Filter Pruning Scheme

	Experiments
	Experiment Setup
	Layer-wise Pruning Analysis
	Model-wise Pruning Analysis
	Overall Performance Evaluation
	Network Retraining Analysis

	Conclusion
	Appendix
	Network configuration
	Filter Functionality Transition During Retraining


