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ABSTRACT

Learning programs with neural networks is a challenging task, addressed by a
long line of existing work. It is difficult to learn neural networks which will gen-
eralize to problem instances that are much larger than those used during training.
Furthermore, even when the learned neural program empirically works on all test
inputs, we cannot verify that it will work on every possible input. Recent work has
shown that it is possible to address these issues by using recursion in the Neural
Programmer-Interpreter, but this technique requires a verification set which is diffi-
cult to construct without knowledge of the internals of the oracle used to generate
training data. In this work, we show how to automatically build such a verification
set, which can also be directly used for training. By interactively querying an
oracle, we can construct this set with minimal additional knowledge about the
oracle. We empirically demonstrate that our method allows automated learning
and verification of a recursive NPI program with provably perfect generalization.

1 INTRODUCTION

In recent years, the use of larger datasets and bigger models with greater representational capacity has
led to significant advances in many applications such as object recognition in images and machine
translation. Inspired by this progress, many researchers have used neural networks for program
induction, especially through the development of novel neural network architectures which feature
components such as a variable-size memory (Sukhbaatar et al., 2015; Kurach et al., 2016; Graves et al.,
2014; Joulin & Mikolov, 2015b). Compared to baseline approaches like recurrent neural networks
and LSTMs, these architectures are able to learn more effectively from input-output examples on
tasks such as addition, sorting, and permutation of sequences, as measured by their empirical accuracy
on a held-out test set of input-output examples.

For program induction, there typically exists a parsimonious underlying program to solve the problem
which has been specified using input-output example pairs. However, as the space of all programs is
extremely large, it is often difficult for neural networks to learn the correct underlying program just
using input-output examples. Indeed, many of the prior works report that the learned neural network
empirically fails to generalize to significantly larger inputs than those in the training data, which
indicates that the neural network has learned spurious dependencies on irrelevant idiosyncrasies of
the training data (such as length of each training example). These failures occur despite the use of
approaches like curriculum learning (Bengio et al., 2009), where the training data initially consists
of easy examples and gradually becomes more complicated as training progresses. Furthermore,
the neural network architectures may be very sensitive to hyperparameter settings, with the best
generalization results only achieved in a fraction of a percent of the hyperparameter space (Kaiser &
Sutskever, 2016).

Even when a learned neural program exhibits empirical generalization to arbitrarily complicated
inputs, a more fundamental issue remains: while the learned neural program may empirically produce
the correct result on every input example attempted, we cannot show that the neural network will
operate correctly on every other possible input. Without actually running the neural network on a
given input, it is quite difficult to predict or otherwise characterize its behavior on that single input, let
alone a large (often infinitely large) class of inputs. Nevertheless, we would like a proof of correctness
that the learned neural network has learned the right underlying program, and will therefore operate
correctly on any input.

Prior work by Cai et al. (2017) addresses the problem of proving correctness of a learned neural
network program by introducing recursion to the Neural Programmer-Interpreter (NPI) architec-
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ture (Reed & de Freitas, 2016). Unlike most other architectures designed for learning programs and
solving algorithmic tasks, the Neural Programmer-Interpreter emphasizes the compositional nature of
programs, solving a problem through functions which can call other functions. Both the original work
by Reed & de Freitas (2016) and the later work by Cai et al. (2017) train the architecture not with
just input-output pairs, but with execution traces which describe in detail the role of each function
in solving a given input problem. Cai et al. (2017) ensured that these traces are recursive: each
function only takes a finite, bounded number of actions. To solve problems where the number of
actions needed grows with the size of the problem, the function calls itself to perform the necessary
repetition. This property not only led to empirically better generalization compared to the earlier
work, but enabled the authors to formally verify that the learned neural programs would generalize to
any input.

Problem statement and proposed approach. For any of the prior neural program architectures,
the goal is to train a neural network to duplicate the behavior of an oracle which can solve any
instance of the problem at hand. In this work, we seek to answer the question of how to generate
a suitable training set for learning such a neural program architecture so that it can successfully
duplicate the behavior of the oracle. In other words, what is the set of input examples for which we
should demand labels from the oracle? To our knowledge, prior work does not explicitly address this
question: the usual practice has been to use a “large enough” training set in the hope that the resulting
learned neural program will be good enough.

Indeed, prior work usually assumes that a fixed set of data is available, and treats the task as learning
something from this fixed set. Our goal is to learn the true underlying program—if we are only given
a fixed set of data, it could easily be that this data does not demonstrate all of the behaviors of the
latent program (see Section B for more discussion). To overcome this issue, the setting in this paper
is closer to active learning, where we assume that we can query an oracle with previously unlabeled
data points to obtain more labels. Many past works, through their combination of curriculum learning
Bengio et al. (2009), and dynamic generation of new problem instances then solving them with an
oracle to obtain each mini-batch of training data, also use a setting similar to active learning (see
Section C).

We work with recursive NPI oracles from Cai et al. (2017), as they provide a detailed execution
trace that describes how to solve a problem in terms of smaller functions. We iteratively explore all
possible behaviors of the oracle in a breadth-first manner, and the bounded nature of the recursive
oracle ensures that our procedure reaches a fixed point in finite time. This method automatically
identifies a sufficient training set for fully learning the behavior of the oracle, and perfect accuracy on
this training set provides a proof that the learned neural program will generalize to any input.

Furthermore, once we have a complete training set which fully describes the behavior of the oracle,
we can identify and remove redundant information in each trace of the set, to significantly reduce the
set’s size and enable faster training. The minimized set also allows for provably perfect duplication
of the oracle.

Contributions of this work. We make the following contributions:

• We provide an algorithm for automatically generating a sufficiently large and diverse NPI
training set which, by construction, allows us to exactly mimic the oracle’s behavior on any
valid input.

• We provide a formal proof of correctness that this algorithm, for a bounded-length NPI
oracle adhering to some mild conditions, will produce execution traces which cover all of
the possible behaviors of the oracle.

• We also demonstrate a method for removing irrelevant observations in each trace, which
allows us to significantly reduce the size of a NPI training set needed to mimic an oracle
through deduplication of the simplified traces.

• As a consequence of the above, we automate the process of showing provably perfect
generalization (Cai et al., 2017) for a learned recursive NPI program; we automatically
generate a training set, such that achieving perfect accuracy on this set guarantees perfect
generalization.
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We empirically validate our methods on the addition, bubblesort, and topological sort tasks from
Cai et al. (2017). Our experimental results show that, with only black-box access to the oracle, we
can automatically generate a small training set. A neural program learned from this training set
empirically generalizes to all attempted inputs; furthermore, we show that a neural program which
achieves perfect accuracy on the training set is guaranteed to give correct results on any input.

As shown in Section B of the appendix, manually creating a suitable training set can take trial and
error. Manually creating a verification set for provable generalization (Cai et al., 2017) requires
careful reasoning about the internal mechanisms of the oracle. In contrast, our approach provides a
complete and automated solution to the problem of learning a neural program with provably perfect
generalization, with only black-box access to the oracle, for our target domain of recursive NPI
oracles.

2 BACKGROUND: NEURAL PROGRAMMER-INTERPRETER

In this section, we review the Neural Programmer-Interpreter architecture by Reed & de Freitas
(2016), with an emphasis on the aspects that are most salient for our contributions.

The Neural Programmer-Interpreter architecture consists of three components: a core module shared
across all tasks, learned function embeddings which direct the core module, and domain-specific
encoders which summarize the environment into a fixed-size representation and provides it as an
input to the core module.

The core module is recurrent and implemented as an LSTM (Hochreiter & Schmidhuber, 1997). At
each step, it receives the embeddings for the current function being executed (p) and its arguments (a),
the domain-specific encoder’s (fenc) observation of the environment (et), and the previous hidden
state (ht−1); it produces the next function to run (and arguments for the function) using content-based
addressing (kt), whether to return control to the caller function in the next step (rt; 0 ≤ rt ≤ 1), and
the next hidden state (ht). More formally, we write

ht = LSTM(fenc(et), p, a, ht−1)

rt = fend(ht), p
′ = fprog(ht), a

′ = farg(ht)

The LSTM applies a small neural network, e.g. with two hidden layers, to merge the inputs for the
current timestep.

If p′ is a primitive function, we follow its (hardcoded) definition to manipulate the environment.
Otherwise, if p′ is not a primitive function, we suspend the execution of the current function p and
transfer control to p′: the current hidden state ht is set aside, and in the next step of execution, the
NPI core receives 0 as the previous hidden state and p′ as the current function being executed. When
p′ returns control to the caller (when rt > 0.5), we restore the set-aside hidden state and the program
embedding for the caller p in the next step of execution.

Conceptually, we can view the Neural Programmer-Interpreter as producing a long sequence of
primitive function calls, each of which manipulate the environment in some way, until the environment
reaches a desired state. The observations (produced by fenc summarizing an environment) inform
the core module which functions to invoke.

Example task: bubblesort. For the purpose of exposition, we will examine the bubblesort task
from Reed & de Freitas (2016) and Cai et al. (2017) throughout the paper.

In this task, the environment is a one-hot encoded scratch pad Q ∈ RN×K where N is the array
length and K is the one-hot encoding dimension (number of possibilities for each array entry). We
will sort decimal digits, so K = 10. The environment also contains three pointers called p1, p2, and
p3. We initialize the environment with the array we wish to sort, and the pointers at location 0. We
will sort arbitrarily large arrays, so the environment can also have unbounded size.

fenc encodes the values at p1 and p2, and whether p3 is within bounds or beyond the length of the
array. Therefore, the observation is a fixed-size tuple of these three values, whereas the environment
can have arbitrary size depending on the length of the array.

Figure 1 shows an example execution trace. The primitive function PTR moves a pointer by one
location left or right, as specified by the arguments; SWAP switches the array values pointed to by
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Figure 1: A partial execution trace for the bubblesort task. Ellipses denote elided portions of the trace.
The dashed arrows show the environment at various points of execution. Primitive functions are bold.

Input Output

Function Conditions on
⋃

n∈NOn Function rt

BSTEP

n = 1 ∧ o1[p2] = end NOP 1
n = 1 ∧ o1[p2] 6= end COMPSWAP 0
n = 2 RSHIFT 0
n = 3 BSTEP 1

COMPSWAP n = 1 ∧ o1[p1] ≤ o1[p2] NOP 1
n = 1 ∧ o1[p2] > o1[p2] SWAP 1 2 0

Table 1: Tabular representation of Oracle for BSTEP and COMPSWAP.

two pointers; NOP does nothing. The (non-primitive) function BUBBLESORT performs one sorting
pass through the array. BUBBLE performs one sweep left to right, BSTEP performs one step in this
sweep, RESET returns the pointers back to their original locations, and COMPSWAP conditionally
swaps two elements.

Execution traces and the oracle. In order to train the NPI architecture, we use an oracle to obtain
an execution trace that describes the behavior of each function. The oracle can be described by a
function1

Oracle : F ×A×
(⋃

n∈NO
n
)
→ (F ∪ P )×A× {0, 1} (1)

where F is the set of non-primitive functions, P is the set of primitive functions, A is the set of all
arguments, O is the set of all observations (i.e., the range of fenc(·)), and

⋃
n∈NOn is the set of all

sequences of observations. The last part of the output {0, 1} corresponds to rt: whether to return
control to the caller function.

Table 1 shows a subset of Oracle for the bubblesort task, for the BSTEP and COMPSWAP functions.
Each row represents a possible output of Oracle, and columns 1 and 2 show the conditions for
when it would have that output.

Oracle is not defined over all of F × A× (
⋃

n∈NOn) because not all combinations of F and A
are allowed, and also because most functions will not execute for an arbitrary number of steps. For
example, in Table 1, BSTEP executes for at most three steps (1 ≤ n ≤ 3) and COMPSWAP only for
one step.

While past work using NPI did not explicitly define an oracle in this way, we would like to emphasize
that the training data used by past work nevertheless needs to have originated from a generative

1 Without loss of generality, we consider each function to only take one argument.
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process which can be described by such a function. Otherwise, it would not be feasible for the NPI
model to learn the behavior of the oracle accurately, because there is not enough information provided
to the NPI core at inference time to unambiguously reproduce the oracle’s response.

3 CREATING A TRAINING SET FROM AN NPI ORACLE

Now that we have formally defined the Neural Programmer-Interpreter and the oracle, we will now
discuss how to automatically generate a training set of execution traces by querying the oracle. In
summary, we build trees describing all possible behaviors of the oracle. We expand them breadth-first
in an iterative manner, as we learn about the oracle’s response to each observation sequence. Our
procedure reaches a fixed point due to the boundedness of the oracle. After completion, traversals of
the trees form a complete training and verification set for the oracle.

3.1 ENUMERATING THE ORACLE’S BEHAVIOR

So that we can train the NPI core LSTM to duplicate the oracle’s behavior on any input, we would like
to record the oracle’s response to all possible combinations of functions, arguments, and observation
sequences that may arise during execution on a valid problem instance. However, it is untenable to
query the oracle for all elements in F ×A× (

⋃
n∈NOn), with an immediate obstacle being that this

set is infinitely large. Even if we know that all functions in the oracle only execute for a bounded
number of steps, we may not know the precise bound.

Instead, we will assume that we know the set of possible initial observations and the entry function
that begins every execution trace. In our bubblesort example, the entry function is BUBBLESORT (as
seen in Figure 1) and the set of initial observations is {(p1 = i,p2 = i,p3 in bounds = 1) : i ∈
{0, 1, · · · , 9}} since p1 and p2 initially point to the same position in the array.

The initial observations and the entry function form a subset of F ×A× (
⋃

n∈NOn), which we shall
call Q0. By querying the oracle on Q0, we can obtain Q1 ⊂ F ×A× (

⋃
n∈NOn); query the oracle

on Q1 to create Q2; and so on, until we observe no growth in Q (i.e.
⋃

i≤n−1Qi =
⋃

i≤nQi). Then
by taking

⋃
iQi and the corresponding responses of the oracle, we obtain the training data needed to

clone the oracle’s behavior.

More specifically, let us denote an arbitrary element of (f, a, [o0, · · · , oi]) ∈ Qi. We can then query
the oracle on this element to obtain (f ′, a′, ri) = Oracle(p, a, [o0, · · · , oi]). If f ′ is a non-primitive
function, then (f ′, a′, [oi]) ∈ Qi+1. If f ′ is a primitive function, we compute f̂ ′(oi) = Oi+1 ⊂ O,
the set of observations we can obtain after invoking f ′, and add (f, a, [o0, · · · , oi, oi+1]) to Qi+1 for
each oi+1 ∈ Oi+1. The next section discusses f̂ ′ in greater depth.

Please refer to Algorithm 1 in the appendix for a full description of the procedure and proof of its
correctness and termination.

Bubblesort example. In bubblesort, an element of Q0 is (BUBBLESORT, (), [(p1 = 3,p2 =
3,p3 in bounds = 1)]). As shown in line 2 of Figure 1, Oracle(BUBBLESORT, (), [(p1 =
3,p2 = 3,p3 in bounds = 1)]) = (BUBBLE, (), 0). Therefore, we can add (BUBBLE, (), [(p1 =
3,p2 = 3,p3 in bounds = 1)]) to Q1.

3.2 EXECUTING OVER OBSERVATIONS INSTEAD OF STATES

Normally, we execute the instructions from the oracle (or from an NPI core after it has been trained)
on a concrete environment. Each primitive function call directly transforms a given environment to a
different environment. A non-primitive function also indirectly transforms a given environment to a
particular different environment (a single one, assuming determinism of the oracle) through making a
series of primitive function calls.

However, the set of valid environments can be infinitely large, because the initial environment must
encode the input problem exactly and there is an infinite number of input problems (e.g. sorting of
arbitrarily long arrays). Furthermore, sequences of observations determine the oracle’s behavior,
not the environments themselves. Therefore, we base our analysis on observations, even though
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Return: 1
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p3 < len: true …
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(a) OracleBSTEP,() and OracleCOMPSWAP,()

generated by Algorithm 1 for the bubblesort task.
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(b) The crossed-out text corresponds to the observa-
tion dimensions which are irrelevant for deciding the
next action.

Figure 2: The main outputs of our proposed methods, in the form of trees. See Sections 3.3 and 4 for
more details.

environments represent the actual state of execution. This is similar to abstract interpretation (Cousot
& Cousot, 1977). We replace the environments (in bubblesort: the entire array being sorted) which
are concrete states with observations (bubblesort: value at p1, value at p2, and whether p3 is within
bounds) as abstract states.

For this, we need a correspondence to primitive functions which operate over observations instead of
environments. Consider a primitive function f : A× E → E, which operates on some environment
ei and transforms it into a different environment ej . We will now define f̂ : A × O → 2O as the
following:

f̂(a, o) = {o′ ∈ O | ∃ei, ej ∈ E. f(a, ei) = ej ∧ fenc(ej) = o′}.

Informally, f̂(a, o) gives the set of all observations o′ we could obtain if we run the primitive function
f with argument a from all possible environments e where fenc(e) = o. We assume that f̂ is given
for each primitive function f .

Bubblesort example. We have two primitive functions: PTR moves a pointer to the left or right,
and SWAP swaps the value under two pointers. Then we have

f̂PTR((p,LEFT or RIGHT), (p1 = v1,p2 = v2,p3 in bounds = v3)) =
{(p1 = i,p2 = v2,p3 in bounds = v3) | i ∈ {0, · · · , 9}} if p = 1

{(p1 = v1,p2 = i,p3 in bounds = v3) | i ∈ {0, · · · , 9}} if p = 2

{(p1 = v1,p2 = v2,p3 in bounds = i) | i ∈ {0, 1}} if p = 3

f̂SWAP((1, 2), (p1 = v1,p2 = v2,p3 in bounds = v3)) = {(p1 = v2,p2 = v1,p3 in bounds = v3)}

Intuitively, f̂PTR((dir, p), o) produces a set of observations where the dimension corresponding to p
is allowed to vary arbitrarily from o, and f̂SWAP swaps the observed values for the given pointers.

3.3 CREATING THE TRAINING SET

Our method (Algorithm 1 in the appendix) outputs trees corresponding to elements of F ×A, which
we label Oraclef,a. Each node (except the root) of Oraclef,a corresponds to an element in
(F ∪ P )×A× {0, 1}, and each edge corresponds to an element in O. Oracle(f, a, [o1, · · · , on])
can be computed by starting at the root of Oraclef,a and traversing the edges for o1, · · · , on in
turn. Each element in

⋃
iQi (from Section 3.1) maps to a similar traversal of Oraclef,a. Figure 2a

shows a partial example for bubblesort.
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For training the NPI core LSTM, we extract sequences of the form
((o1, f1, a1, r1), · · · , (on, fn, an, rn)) by performing root-to-leaf traversals on each of Oraclef,a;
oi come from the edges, and fi, ai, ri from the nodes. If the NPI core gets 100% accuracy on these
sequences, then it is guaranteed to match the oracle’s behavior in any setting.

However, due to the approximations made in considering observations instead of environments,
some of these sequences may never arise during execution of the oracle on a concrete problem. For
example, consider PTR 1 RIGHT in RSHIFT of Figure 1. Before, p1 points to one location left of
p2; after, they point to the same location, so the value for p1 and p2 must match in the observation.
f̂PTR cannot account for this as it is unaware of the pointer locations. Nevertheless, every sequence of
observations that the oracle may produce from its operations will be present in the set.

4 DETECTING AND REMOVING IRRELEVANT OBSERVATIONS

In the NPI architecture, the NPI core receives an observation o ∈ O at each step of execution, and
the set O from which the observation is drawn is identical across all functions and all steps. In
theory, it is possible to take a different action for each of the possible sequences of observations
up to that point in the execution of the function. However, practical NPI functions typically have
simple behavior, with many parts of the observation sequence irrelevant for execution and therefore
unneeded. For example, the LSHIFT and RSHIFT functions in bubblesort should always execute
the same sequence of actions no matter which observation sequence is given.

Therefore, we propose to instead provide the NPI core with observations õ ∈ Õ(c1,··· ,cn)
f,a , where

Õ(c1,··· ,cn)
f,a is a family of sets indexed by a function f , argument a, and the sequence of actions ci

taken so far (ci ∈ (F ∪ P )×A× {0, 1}). There exists a function µ(c1,··· ,cn)
f,a : O 7→ Õ(c1,··· ,cn)

f,a for

each set in the family; in other words, every element in O maps to an element in Õ(c1,··· ,cn)
f,a , but the

mapping is many-to-one.

At the beginning of executing function f with argument a, we obtain observation o1. We will then
compute µ()

f,a(o1) = õ1, and provide õ1 to the NPI core, producing c1 as the first action. After c1
completes, we obtain the next observation o2, compute µ(c1)

f,a (o2) = õ2, provide it to the NPI core,

and so on. Even though µ(c1,··· ,cn)
f,a is a many-to-one mapping, õ1, · · · , õn should contain the salient

information from o1, · · · , on necessary to exactly specify the next action cn+1.

By performing this transformation, training and verifying the NPI core requires much less data and
computation, since there are not as many behaviors that it needs to learn. This reduction is particularly
beneficial for the automatically generated training sets of Section 3.3, because it mostly removes the
extraneous execution traces they contain. We also obtain a more parsimonious explanation for the
behavior of the oracle.

Multi-dimensional observations. In the tasks and oracles considered by Cai et al. (2017) (includ-
ing the two algorithmic tasks from Reed & de Freitas (2016)), the observation exposed through the
domain-specific encoder has a natural multi-dimensional structure. For example, in the bubblesort
task, an observation consists of three dimensions: two digits (value at p1 and p2) and a boolean value
(whether p3 is within bounds).

This provides a natural method for constructing Õ(c1,··· ,cn)
f,a : ifO = X ×Y ×Z, then we can exclude

some of the dimensions to form Õ(c1,··· ,cn)
f,a = X × Y or Õ(c1,··· ,cn)

f,a = Z for instance. We can

also exclude all dimensions, in which case Õ(c1,··· ,cn)
f,a would be a singleton set (a nullary Cartesian

product). µ(c1,··· ,cn)
f,a (o) simply drops the excluded dimensions of o.

Detecting irrelevant observation dimensions. Section 3.3 describes trees where the nodes corre-
spond to NPI actions ((F ∪ P )×A× {0, 1}) and the edges correspond to observations, to describe
the behavior of the oracle. To determine which observation dimensions are irrelevant and can be
excluded in Õ(c1,··· ,cn)

f,a , for each (f, a), we build a tree with actions as edges and nodes as branching
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points which describe the set of observations dimensions necessary to determine the branch to take.
Example trees for BSTEP and COMPSWAP are illustrated in Figure 2b.

We construct these trees from a complete training or verification set which describes all of the possible
behaviors of the oracle on any input. We can use the automated method described in Section 3 to
obtain this set. Each execution trace of a function f with argument a is a sequence of the form
(o1, f1, a1, r1), · · · , (on, fn, an, rn). In the tree for (f, a), we ensure that a path exists from the
root to a leaf where the ith edge along this path is labeled with (fi, ai, ri) (without any duplicates,
i.e., each node does not have more than one outgoing edge with the same label). Each edge also
contains a set of observations, and we add each observation from the execution trace to the set in the
corresponding edge. For example, when processing the above execution trace, we add o1 to the edge
for (f1, a1, r1) at depth 1; we traverse the edge to reach n1, and add o2 to the outgoing edge of n1
corresponding to (f2, a2, r2), and so on.

Afterwards, we examine each node with more than one outgoing edge, and then decide which subset
of observation dimensions would have been sufficient to decide which of the branches to take. For
example, in Figure 2b’s tree for (BSTEP, ()), the root node has two children: for (NOP, (), 1) and
(COMPSWAP, (), 0). By looking at the values of o attached to each edge, we can determine that only
p1 is relevant for deciding between the two.

Using information about irrelevant observation dimensions. To obtain µ(c1,··· ,cn)
f,a , we start at

the root of the tree for f, a and traverse the edges labeled with c1, · · · , cn. We apply µ to replace all
o with õ in our training set of execution traces. This replacement typically results in many redundant
traces, and removing them significantly shrinks the set’s size. We can then exclusively use õ for
training and evaluating the neural network.

5 EXPERIMENTAL RESULTS

We re-implemented three tasks from Cai et al. (2017): addition, bubblesort, and topological sort. We
defined our oracles exactly as described in their paper, automatically generated suitable training sets
by making queries to the oracle per Section 3, and minimized them following Section 4.

5.1 ARCHITECTURAL DETAILS

For all experiments, we used a 2-layer LSTM with 256 units in each layer as the NPI core. at has 64
dimensions, pt has 256 dimensions, and kt has 32 dimensions. The LSTM accepts each timestep’s
input through a 3-layer MLP, where the 1st layer receives fenc and at as input, and the second layer
additionally receives pt (concatenated with the output of the first layer).

5.2 EMPIRICAL RESULTS OF USING ABSTRACT INTERPRETER TRAINING SET

On all three of the listed tasks, we trained the NPI model with the automatically generated then
minimized training sets. We continue training each model until it achieves 100% accuracy on the
training set. The automatically generated training sets are also verification sets (as defined in Cai
et al. (2017)),2 and so 100% accuracy on the training set indicates that the neural network has learned
to copy the oracle perfectly.

The resulting models show empirically perfect generalization. Specifically:

• Addition: 100% accuracy on 80 random problems consisting of 2, 4, 8, 16 digits.
• Bubblesort: 100% accuracy on 100 random arrays of length 2, 4, 8, 20, 50.
• Topological sort: 100% accuracy on 100 random graphs of 5, 6, 7, 8, 70 nodes.

Furthermore, we obtain 100% accuracy on conventional verification sets constructed through manual
analysis of the oracle, following the methodology described in Cai et al. (2017).

2 However, unlike Cai et al. (2017), our training set directly contain execution traces for each non-primitive
function (such as BSTEP and COMPSWAP in bubblesort); we do not identify each execution trace as created for
a particular input problem (in bubblesort, a concrete array to sort).

8
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Without minimization, we reached 100% training accuracy on the automatically generated training
set for topological sort, but not for bubblesort and addition. As explained in Section 3.3, the
approximations made due to our method means that many of the generated traces for each function
would never occur while running the oracle on an input problem. Different hyperparameters may
enable leaning of the un-minimized set, but we did not investigate further.

5.3 EFFECT OF REMOVING IRRELEVANT OBSERVATIONS

Removing irrelevant observations can significantly reduce the size of the automatically generated
training set.

• Addition: originally 10129737 unique traces in the automatically generated training set,
reduced to 704 traces.

• Bubblesort: originally 325622 unique traces, reduced to 137 traces.

• Topological sort: originally 831 unique traces, reduced to 16 traces.

As a point of comparison, we also tried randomly sampling the same number of traces as would be
chosen by the minimization, and training the neural network on those training datasets. As expected,
these models do not succeed at solving any of the test problems. As such, they also fail to achieve
full accuracy on the verification sets.

5.4 COMPARISON AGAINST PREVIOUS WORK

We also generated training sets for the three problems, using methodology similar to that used
by previous work. Specifically, we consider the systematic approach of generating all problems
containing a certain number of digits/elements/nodes, and also randomly generating problems of a
certain size. We also generated conventional verification sets using the methodology described by
Cai et al. (2017).

The appendix includes the detailed results. To summarize them here: we often fail to learn a verified
NPI neural program from many of the training sets, and it is tricky to figure out what a training set
should contain to ensure success.

The procedure of Section 4 for removing irrelevant observations allows us to learn correct programs
with smaller training sets, by excluding many possible spurious behaviors of the oracle and therefore
simplifying learning. However, detecting irrelevant observation dimensions requires a dataset which
exhibits all of the possible behaviors of the oracle (such as one generated per Section 3).

In the previous work of Cai et al. (2017), the creation of a verification set was a manual process
based on a careful analysis of the oracle. Our work allows us to create a training and verification set
automatically, with only black-box queries to the oracle and without any manual analysis needed.

6 RELATED WORK

Active learning. In semi-supervised learning, we have a set of examples where some are labeled
and others are not, and we would like to learn a function from the example to the label. Active
learning extends this setting by allowing the system to query the data provider for labels of some
of the unlabeled points (Settles, 2010). The goal, then, is to learn the best possible classifier while
minimizing the number of queries which need to be made.

Our work is similar in that we assume the existence of an oracle which can provide the correct answer
for any example. However, unlike most past work in active learning, our querying does not depend
on the status of a machine learning model under training. By assuming a structured oracle which can
provide execution traces, we also do not explicitly work in the space of input examples, but rather in
terms of the observations which (by assumption) the oracle uses to make its decisions.

Software testing. Given a piece of software, we would like to characterize its behavior as com-
pletely as possible to ensure that it will not misbehave under any input. In the field of software
engineering and programming languages research, many approaches have been developed towards

9
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achieving this goal. Techniques such as symbolic execution (King, 1976), concolic testing (Godefroid
et al., 2005), and model checking (Clarke et al., 1999) try to uncover all of the states and behaviors
exhibited by a program for the purpose of discovering bugs and security vulnerabilities.

In our work, we also seek to comprehensively describe all of the possible behaviors of an NPI oracle.
However, we only assume black-box access to the oracle, unlike many software testing techniques
which make direct use of the code of the target program. Network protocol inference and fuzz testing
are some software testing applications with similar assumptions.

7 CONCLUSION

Generalization to complex inputs and inability to provide a proof of correctness have been two
challenges faced by most previous work in the space of learning algorithmic tasks with neural
networks. While previous work by Cai et al. (2017) provides an approach to address these challenges
in the Neural Programmer-Interpreter framework, it assumes the existence of training sets manually
designed to contain sufficient diversity and complexity in order to fully describe the task. In this work,
we showed how to entirely automate the process of learning NPI programs with provably perfect
generalization, through automatic generation of the necessary training and verification sets for the
Neural Programmer-Interpreter with only black-box access to an oracle. Furthermore, we discuss
how to detect and remove irrelevant observations from execution traces which enables faster and
easier learning of the oracle’s behavior.
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Algorithm 1 Iterative algorithm for computing Oraclef,a

queue← [∀o ∈ initial observations : ((o), initialFunction, initialArg)]
nextQueue← Queue() . queue and nextQueue allow each element to be added only once
callers← {} . Mapping from F ×A×O to 2F×A×[O]

obsMap← {} . Mapping from F ×A×O to 2O

oracleTree← TreeNode()
for all f, a ∈ F ×A do

oracleTree.addChild((f, a), ∅)
end for
repeat

while queue 6= [] do
(o1, · · · , on), f, a← queue.popLeft()
node← oracleTree.traverse((f, a), o1, · · · , on−1)
g, a′, toReturn← Oracle(f, a, [o1, · · · , on]) . g ∈ F ∪ P ; a′ ∈ A
node.addChild(on, (g, a

′, toReturn)) . Record the oracle’s response to
(f, a), o1, · · · , on.

if g is a primitive function then
nextObs← ĝ(a′, on)

else if g is a non-primitive function then
nextObs← obsMap(g, a′, on)
nextQueue.enqueue(((on), g, a

′))
callers(g, a′, on).add((f, a, (o1, · · · , on)))

end if
for all ô ∈ nextObs do

queue.enqueue(((o1, · · · , on, ô), f, a))
end for
if toReturn then

for all ô ∈ nextObs do
obsMap(f, a, o1).add(ô) . Function f , run with argument a and initial

observation o1, can finish with observation ô.
end for
for all f̂ , â, (ô1, · · · , ôn) ∈ callers(f, a, o1) do

queue.enqueue(((ô1, · · · , ôn), f̂ , â)) . Re-analyze all callers of f, a, o1.
end for

end if
end while
queue← nextQueue; nextQueue← Queue()

until no changes made to obsMap and oracleTree
return obsMap, oracleTree

A FULL ALGORITHM USED IN SECTION 3

Algorithm 1 describes the method of Section 3 in detail. We use the following notation:

• oracleTree is a tree where the subtrees rooted at each child of the root correspond to
Oraclef,a from Section 3.3. Let us consider the root node to have depth 0. For each
element of (f, a) ∈ F × A, there exists a node at depth 1 (a child node of the root node),
and the edge from the root to that node is labeled with (f, a). All nodes at depth 2 or below
are labeled with an element of (F ∪ P )×A× {0, 1}. All edges from a node at depth d to a
child node at depth d+ 1, for d ≥ 1, are labeled with an observation (an element from O).
For a given node of depth 1 or greater, its outgoing edge labels are unique, and so it has at
most |O| outgoing edges.

• obsMap : F × A × O → 2O is an equivalent to f̂ defined in Section 3.2. However, the
domain of obsMap is over non-primitive functions instead of primitive functions.

• TreeNode represents a node in a tree and all of its descendants. Each node and edge has a
label. It has the following interface:
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– node.traverse(x1, · · · , xn): Follow the edges labeled with x1, · · · , xn and return the
resulting node, which will have depth n.

– node.addChild(o, v) adds an outgoing edge labeled with o, connecting to a (new)
node labeled with v. It does nothing if there already exists an outgoing edge labeled
with o.

• callers and obsMap are multimaps. callers(k) and obsMap(k) returns the set of values
with given key from the map. callers(k).add(...) and obsMap(k).add(...) adds a value to
this set.
• queue.popLeft() removes and returns the leftmost element of queue. queue.enqueue(x)

adds a new element to the right end of queue. However, if x has already been added to
queue, then enqueue does nothing, even if x was already returned by popLeft().

Theorem. Assuming that each function of the oracle always executes for at most k steps for some
fixed k, and the possible number of observations is finite, Algorithm 1 terminates.

Proof. Consider traversing the path from the root of oracleTree to an internal node, and reading the
labels of edges present along the path. We obtain an element of F ×A×O≤k, where F ×A comes
from the first edge, and O≤k comes from all subsequent edges (≤ k because the tree would have at
most k depth).

ξ : oracleTree→ 2F×A×O
≤k

performs this traversal over all such paths, and returns their combined
result: a set where each element is from F ×A×O≤k.

Let us denote the the effect of the outer loop of Algorithm 1 on oracleTree as xi+1 = f(xi), where
xi is the old value of oracleTree and xi+1 is the new value. ξ(x) ⊆ ξ(f(x)), because f can only
add new nodes and edges to oracleTree, and does not delete nodes or change their labels.

We can consider a partial ordering over 2F×A×O
≤k

. Then ξ(x) ≤ ξ(f(x)), and 2F×A×O
≤k

has a
maximal element with respect to this partial ordering (the set of all elements of F ×A×O≤k, so x
cannot grow indefinitely.

Similarly, we can treat possible states of obsMap as elements of 2F×A×O×2
O

. Like oracleTree,
the loop in Algorithm 1 only adds new elements to obsMap. Following the same argument as in the
previous paragraph, obsMap cannot grow indefinitely either.

When oracleTree and obsMap eventually stops growing, the outer loop in Algorithm 1 will termi-
nate, as specified in the pseudocode.

Theorem. When Algorithm 1 terminates, oracleTree contains all possible behaviors of the oracle,
including all sequences of observations and actions which might occur when the oracle runs on any
valid input problem.

Proof. We will first prove the theorem for a less efficient version of Algorithm 1, where each item
removed from queue is also added to nextQueue. In this version, there exists a corresponding
item in queue or nextQueue for each node in oracleTree, because each item removed from queue
creates at most one new node in oracleTree. By the previous theorem, there exists an iteration
where the algorithm terminates because no changes have been made to obsMap and oracleTree. In
this iteration, there exists an item in queue for each node in oracleTree, and we want to show that
oracleTree already contains all possible behaviors of the oracle (since we will not be modifying
oracleTree further before returning).

For the purposes of the proof, we will assign a generation to each entry in each set contained
within obsMap. Since obsMap is finite, the number of generations is also finite. To reiterate,
obsMap(f, a, o) ∈ 2O gives, when executing non-primitive function f with argument a and initial
observation o, the set of resulting observations after f returns. If obsMap(f, a, o) is empty, it means
that execution of (f, a, o) never terminates, no matter which observation is selected at each node in
the execution tree (we assume that our oracles are well-behaved, and has no such functions).

At the start of the algorithm, we initialize queue with tuples containing initialFunction,
initialArgument, and observations in the set of initial observations. We assign generation 0
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to the final observations in obsMap produced by execution traces starting at some (f, a, o) that (1)
are reachable from the initial queue without using obsMap, and (2) contain only calls to primitive
functions. To clarify, satisfying (1) means (i) (f, a, o) either needs to be in the initial queue; or (ii)
invoked within an execution trace of a function in the initial queue before any non-primitive functions
have been called in that trace; (iii) invoked within an execution trace of a function satisfying (ii)
before any non-primitive functions have been called in that trace; and so on recursively.

Generation n is assigned to the final observations produced by execution traces starting at some
(f, a, o) that (1) are reachable from the initial queue using only entries in obsMap belonging to
generations i < n, and (2) when encountering a node corresponding to a non-primitive function
call while traversing the execution tree, chose an outgoing edge for an observation corresponding to
generation i (for both, i < n; we choose the the smallest possible n).

In the final idempotent iteration of the modified version of Algorithm 1, we will consider every node
inside oracleTree, but make no changes to obsMap or oracleTree. Using induction on n, we will
now show that at the start of this iteration, obsMap(f, a, o) is an overcomplete approximation to the
true behavior of the oracle.

• At termination, all items which should belong to generation 0 are present in obsMap.

There are two parts to check. First, queue contains each (f, a, o) that has a final observa-
tion in generation 0; second, for those (f, a, o), obsMap(f, a, o) actually contains those
generation 0 final observations.

To check the first part: each (f, a, o) for generation 0 is either in the initial queue, in
which case it should still be in queue; otherwise, we can see it would have been added to
nextQueue through some path of function invocations starting at an initial entry of queue.

For the second part, we assumed that ĝ specifies the behavior of primitive functions in
an overcomplete way. Since the final iteration is idempotent by assumption, we can be
confident we have already explored all the possible execution traces consisting only of
primitive function calls, and therefore the corresponding entries in obsMap are also present.

• Assuming generations 0, · · · , n− 1 are present in obsMap, generation n is also present.

The argument is similar to the base case, except we are now allowed to use parts of obsMap
which we have shown are present. For the first part of the argument, those parts of obsMap
allow us to reach more (f, a, o) tuples that are only called from execution traces containing
more than one non-primitive function call. For the second part, we use not only ĝ but also
the parts of obsMap we have already assumed presence.

Now we have shown that obsMap is complete, it is straightforward to see oracleTree is also
complete in this iteration; as if it were not, we would necessarily end up modifying oracleTree to
add something from obsMap (or ĝ).

We can also see that we do not need to make the modification to Algorithm 1 assumed at the beginning
of the proof in order for it to be correct. After an entry has appeared on and been processed from
queue, it is only relevant for that entry to be placed upon queue again if its renewed presence on it
will lead to some change in oracleTree. This only happens when obsMap changes, and indeed we
keep track of callers to re-add items to queue at that time.

A.1 REQUIREMENTS AND ASSUMPTIONS

We list the requirements on the oracle used throughout the paper. The oracles for the tasks evaluated
in our paper (addition, bubblesort, and topological sort from Cai et al. (2017)) meet all of the
requirements.

Oracle is deterministic. We assume that Oracle will always give the same output on the same
input.
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No. of function traces Success with

Orig. Mini. Orig. Mini.

Systematic, 2 digits; 9900 problems 108900 647 N N
Systematic, 2 + 3 digits; 162000 problems 2145240 692 N N
Random, 4 digits; 10000 problems 149656 704 N Y
Random, 4 digits; 200000 problems 2994804 704 Y Y

Table 2: Conventional training sets for addition.

No. of function traces Success with

Orig. Mini. Orig. Mini.

Systematic, length 2; 100 problems 2100 127 Y Y
Systematic, length 2 + 3; 1100 problems 45100 127 Y Y
Systematic, length 2 + 3 + 4; 11100 problems 775100 127 Y Y
Random, length 5; 100 problems 11100 126 Y Y
Random, length 5; 1100 problems 122100 127 Y Y
Random, length 5; 11100 problems 1232100 127 N Y

Table 3: Conventional training sets for bubblesort.

O, the set of observations, is finite. We need to be able to enumerate the set of possible observa-
tions. This is not a hurdle for the computational problems as considered in Cai et al. (2017), but
poses a challenge for tasks like 3D model canonicalization from Reed & de Freitas (2016), where the
observation was a bitmap image.

Primitive functions are deterministic, and we can compute f̂ . A primitive function f : A×E →
E, operates on some environment ei and transforms it into a different environment ej .

In Section 3.2, we defined the corresponding f̂ : A×O → 2O, which maps from observations to
sets of observations.

In order to use our method, we must know enough about the environment and defined primitive
functions so that we can efficiently compute f̂ for each primitive function f .

Set of initial observations is known. An oracle which can solve a problem like addition or sorting
will require that the input be encoded in the environment in a particular way. If the domain of inputs
is known, it is straightforward to then determine the set of possible observations that would arise
once we have encoded each possible input into the environment as demanded.

Each function always executes for a bounded number of steps. Assuming only black-box access
to the oracle, describing all of the possible behaviors of a function finitely is impossible unless each
function only executes for a bounded number of steps. The oracles considered in Cai et al. (2017)
satisfy this assumption, but the ones in Reed & de Freitas (2016) do not, as those contain functions
which execute for a variable number of steps depending on the size of the input.

Oracle terminates on at least one input. We assume that the oracle will complete on at least one
problem within a bounded number of steps. Most useful oracles will terminate in finite time for any
input, not just at least one.

B RESULTS WITH CONVENTIONAL TRAINING SETS

Tables 2, 3, 4 show results when we train the NPI model on conventionally created training sets. In
these tables, ‘mini.” denotes application of the procedure in Section 4.
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No. of function traces Success with

Orig. Mini. Orig. Mini.

Systematic, 2 + 3 nodes; 10 problems 174 14 N Y
Systematic, 2 + 3 + 4 nodes; 74 problems 1846 14 Y Y
Systematic, 2 + 3 + 4 + 5 nodes; 1098 problems 36726 14 Y Y
Random, 5 nodes; 10 problems 341 14 N Y
Random, 5 nodes; 100 problems 3413 14 Y Y
Random, 5 nodes; 1000 problems 34078 14 Y Y

Table 4: Conventional training sets for topological sort.

To determine whether we could learn a correct NPI program with a given dataset, we ran the training
procedure for at least as many iterations as we needed to obtain a verified model when training on
any other dataset.

We generated problems systematically in the following way:

• Addition: all pairs of numbers where at least one number is 2 digits long (with no leading
0s), or all pairs of numbers where one number is 2 digits long and the other is 3 digits long.
• Bubblesort: all arrays of given length, where each element in the array can be one of the

digits between 0 and 9.
• Topological sort: all DAGs with a given number of nodes. We number all nodes, and

generate a complete DAG by adding an edge from node i to j if i < j. We consider all
DAGs created by removing some set of edges from this complete DAG.

These tables show that it can be difficult to figure out what demonstrations need to be provided in
the training set in order to learn the correct NPI program. To generate a suitable training set without
trial and error, the creator needs to have a full understanding of how the oracle functions internally,
which is counter to the original goal of automatically learning the behavior of a given program. The
methods in our paper can fully automate this process.

C SAMPLE COMPLEXITY OF PAST WORK IN NEURAL PROGRAM LEARNING

Paper Tasks Training data

Grefenstette et al. (2015) Sequence copying, sequence reversal Dynamic
Joulin & Mikolov (2015a) Counting, memorization, binary addition Dynamic
Zaremba & Sutskever (2015) Repeated copy, sequence reversal Dynamic
Kaiser & Sutskever (2016) Binary addition, binary multiplication, copying,

reversing, duplicating, counting
200,000

Reed & de Freitas (2016) Decimal addition, bubblesort 640/1216
Kurach et al. (2016) BST traversal, array merge, linked list search,

etc.
Dynamic

Zaremba et al. (2016) Copy, reverse, walk, addition, multiplication Dynamic
Graves et al. (2016) Graph traversal, shortest path, logical inference,

mini-SHRDLU
Dynamic

Price et al. (2016) Multiplication Dynamic
Freivalds & Liepins (2017) Multiplication 200,000

In the above table, we summarize the number of training examples that past works in neural program
learning reported using for their experiments. “Dynamic” indicates that, to the best of our knowledge
from reading the papers and also any available code, the training data used for each step of training
was generated randomly on-the-fly. In other words, the training data is equivalent to the set of all
possible problems of a given complexity, and the training procedure samples from this set with
replacement. Often, the complexity of the problems in each mini-batch will be adjusted dynamically
through the use of curriculum learning.
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