Sequence stacking using dual encoder Seq2Seq
recurrent networks

Alessandro Bay Biswa Sengupta*
Cortexica Vision Systems Ltd. Imperial College London
London, UK London, UK
Abstract

A widely studied non-polynomial (NP) hard problem lies in finding a route between
the two nodes of a graph. Often meta-heuristics algorithms such as A* are employed
on graphs with a large number of nodes. Here, we propose a deep recurrent neural
network architecture based on the Sequence-2-Sequence model, widely used, for
instance in text translation. Particularly, we illustrate that utilising a context vector
that has been learned from two different recurrent networks enables increased
accuracies in learning the shortest route of a graph. Additionally, we show that one
can boost the performance of the Seq2Seq network by smoothing the loss function
using a homotopy continuation of the decoder’s loss function.

1 Introduction

In the intersection of discrete optimization and graph theory lies an age-old problem of finding
shortest routes between two nodes of a graph. Many theoretical properties of such shortest path
algorithms can be understood by posing them on a graph [Sedgewick and Wayne, 2011]. Such graphs
can be an inventory delivery algorithm posed on a road network graph (transportation) to a clustering
of similar images and videos (computer vision). Traditionally, such discrete non-polynomial hard
optimisation problems are studied using meta-heuristics algorithms such as the A* algorithm. Other
algorithms of notable mention are the Dantzig-Fulkerson-Johnson algorithm [Dantzig et al., 1954],
branch-and-cut algorithms [Naddef and Rinaldi, 2001], neural networks [Ali and Kamoun, 1993], etc.
Recent work [Bay and Sengupta, 2017] have proposed that recurrent neural networks can also be
utilised in approximating the shortest routes produced by an A* algorithm.

The primary problem surrounding the recurrent neural network’s approximation of the shortest
route problem is the difficulty of the network to encode longer sequences. This problem has been
partly alleviated with network architectures such as long short-term memory (LSTM, Hochreiter and
Schmidhuber [1997]) and the gated recurrent units (GRU, Cho et al. [2014]). Efforts have also been
put towards a Neural Turing Machines [Graves et al., 2014] and a differentiable neural computer
[Graves et al., 2016] that act as an augmented RNN with a (differentiable) external memory which
can selectively be read or written to.

In this paper, we formulate a novel recurrent network based on the Sequence-to-Sequence (Seq2Seq,
Sutskever et al. [2014]) architecture for increasing the fidelity of meta-heuristic approximations.
Particularly, we show that using context vectors that have been generated by two different recurrent
networks can facilitate the decoder to have an increased accuracy in approximating the shortest route
estimated by the A* algorithm.

*b.sengupta@imperial.ac.uk

2 Methods

In this section, we describe the data-sets, the procedure for generating the routes for training/test
datasets, and the architecture of the dual encoder Seq2Seq network that forms the novel contribution
of this paper:

2.1 Datasets

The graph is based on the road network of Minnesota’. Each node represents the intersections of
roads while the edges represent the road that connects the two points of intersection. Specifically, the
graph we considered has 376 nodes and 455 edges, as we constrained the coordinates of the nodes to
be in the range [—97, —94] for the longitude and [46, 49] for the latitude, instead of the full extent
of the graph, i.e., a longitude of [—97, —89] and a latitude of [43, 49], with a total number of 2,642
nodes.

2.2 Algorithms
The A* meta-heuristics

The A* algorithm is a best-first search algorithm wherein it searches amongst all of the possible paths
that yield the smallest cost. This cost function is made up of two parts — particularly, each iteration
of the algorithm consists of first evaluating the distance travelled or time expended from the start
node to the current node. The second part of the cost function is a heuristic that estimates the cost
of the cheapest path from the current node to the goal. Without the heuristic part, this algorithm
operationalises the Dijkstra’s algorithm [Dijkstra, 1959]. There are many variants of A*; in our
experiments, we use the vanilla A* with a heuristic based on the Euclidean distance. Other variants
such as Anytime Repairing A* has been shown to give superior performance [Likhachev et al., 2004].

Paths between two randomly selected nodes are calculated using the A* algorithm. On an average,
the paths are 19 hops long and follow the distribution represented by the histogram in Figure 1.

120

100 r

80 r

60 r

40

number of paths

20

0 10 20 30 40 50
length of paths

Figure 1: Distribution of path lengths. After selecting two nodes uniformly at random, we compute
the shortest paths using the A* algorithm. The average path length is 19 hops.

Recurrent deep networks

We utilised a variety of Sequence-to-Sequence recurrent neural networks for shortest route path
predictions:

Zhttps://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl

https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl

o An LSTM2RNN, where the encoder is modelled by an LSTM, i.e.
i(t) = logistic (Aix(t) + B;h(t—1) + bi)
j(t) = tanh (Ajm(t) + Bjh(t—1)+ bj>
f(t) = logistic (Afx(t) + Bsh(t—1)+ bf)

o(t) = logistic (Aoaz(t) + Boh(t —1) + bo>
o(t) = f(t) ©c(t — 1) +i(t) ©j(t)
h(t) = o(t) ® tanh (c(t)),
while the decoder is a vanilla RNN, i.e.
h(t) = tanh(Ax(t) + Bh(t — 1) + b))
y(t) = logsoftmax(Ch(t) + c) '
o A GRU2RNN, where the encoder is modelled by a GRU, i.e.

z(t) = logistic (Azx(t) +B.h(t—1)+ bz>
r(t) = logistic (Arx(t) + Byh(t—1) + br>

h(t) = tanh (Ahx(t) + By (r(t) © h(t — 1)) + bh>

h(t) = 2(t) © h(t — 1) + (1 — 2(t)) © h(t),
while the decoder is again a vanilla RNN, as in Equation (1).

e A dual context Seq2Seq model, where two different latent representations are learnt using
two different encoders (one LSTM and one GRU). The context vector takes the form of a
stacked latent encoding. In Figure 2, we show the two context vectors stacked in a matrix for
each path in the training set. For both encoders, their respective matrices are full rank and

also the stacked one is of full rank. This means that GRU and LSTM encode very different
context vectors and it is worth considering them both for an accurate encoding.

|
0.8
0.6
GRU 0.4
0.2
256 0

0.2
0.4
LSTM 06

-0.8

500 1000 1500 2000
number of training paths

Figure 2: Context vectors for GRU and LSTM encoders. Matrices with training context vectors
for GRU and LSTM. Their individual and composite rank are full.

e A dual context Seq2Seq model, where two different latent representations are learnt using
two different encoders (one LSTM and one GRU) and the decoder is represented by a vanilla
RNN, trained with homotopy continuation [Vese, 1999]. This is done by convolving the loss
function with a Gaussian kernel — for more details please refer to Bay and Sengupta [2017].
Our novel contribution lies in extending the framework of Mobahi [2016] by obtaining an
analytic approximation of the log softmax function. Table 1 illustrates the diffused forms of
the most popular activation functions.

function original diffused
error erf(ax) erf <\/W
tanh tanh(z) tanh <W

+1 ifx>0
sign 0 ifz=0 erf(\;%a)

-1 ifz<0

2

relu max(x,0) J=exp (55:2) + iz (1 +erf (ﬁ))

logsoftmax z — log <Eexp(x)> < (1—L)exp (—mo?) + }r>x —log (> (exp(z)))

Table 1: List of diffused forms (Weierstrass transform). We report the most popular non-linear
activation functions along with their diffused form. This is obtained by convolving the function with
the heat kernel K (x, o). This table extends the work in Mobahi [2016] by an analytic approximation
of the log softmax function. For more details please refer to Bay and Sengupta [2017].

- e e

Holborn Bank

RNN/LSTM/GRU RNN/LSTM/GRU
RNN/LSTM/GRU RNN/LSTM/GRU Encoder Decoder
E Decoder

ncoder

(a) Seq2Seq network (b) Dual-context Seq2Seq network

Figure 3: Dual-context Sequence-to-Sequence architecture for approximating the A* meta-
heuristics. For both networks, the first two modules on the left are the encoder while the last four
represent the decoded output, representing the shortest route between Holborn and Bank. The network
is trained using shortest route snippets that have been generated using an A* algorithm. w represents
the context vector.

For all networks, as shown in Figure 3, the input is represented by the [source, destination] tuple,
which is encoded in a context vector (w) and subsequently decoded into the final sequence to obtain
the shortest path connecting the source to the destination. Moreover, during the test phase, we
compute two paths, one from the source to the destination node and the other from the destination to
the source node, that forms an intersection to result in the shortest path.

3 Results

For the graph of Minnesota with 376 nodes and 455 edges, we generated 3,000 shortest routes
between two randomly picked nodes using the A* algorithm. We used these routes as the training set
for the Seq2Seq algorithms using a 67-33% training-test splits.

For the two encoders involved, we choose a hidden state with 256 units, such that the joint latent
dimension of the two neural networks is 512. In our experiments, we compare the standard Seq2Seq
with either 256 or 512 hidden units. We run the training for 400 epochs, updating the parameters with
an Adam optimisation scheme [Kingma and Ba, 2014], with parameters $; = 0.9 and 83 = 0.999,
starting from a learning rate equal to 1073, On the other hand, for the diffused loss function, we
smooth the cost function using a Gaussian kernel of standard deviation s = {30, 5,1,0.0001}. The
training iterates converged after 100 epochs for each value of s.

The prediction accuracy on the test data-set is reported in Table 2. As we can see, doubling the hidden
state dimension marginally increases the percentage of shortest paths (1%) and the successful paths,
that are not necessarily the shortest (0.2% and 1.6% for GRU and LSTM encoders, respectively).
Alternatively, our proposed dual encoder achieves improvement on the shortest paths (almost 58%).
If trained with diffusion (homotopy continuation), it turns out to be the best performing algorithm
with about 60% of accuracy on the shortest paths and more than 78% on the successful cases.

method shortest successful
LSTM2RNN (256) 47% 69.5%
LSTM2RNN (512) 48% 71.1%
GRU2RNN (256) 48% 73.1%
GRU2RNN (512) 49% 73.3%
dual encoder 57.7% 77.1%

dual encoder with diffusion 59.6% 78.3%

Table 2: Results on the Minnesota graph. Percentage of shortest path and successful paths (that
are not necessarily shortest) are shown for a wide-variety of Seq2Seq models, with context vector
dimension equal to either 256 or 512. All scores are relative to an A* algorithm, that achieves a
shortest path score of 100%.

4 Discussion

It is clear that using two context vectors instead of one improves the decoder’s accuracy in approxi-
mating the A* algorithm. What we have proposed in this paper is akin to feature stacking wherein
two different sets of features are stacked to increase classification accuracy. Our experiments that
control the embedding dimension of the latent context vector (256 or 512) show that the increased
number of successful routes produced by the neural network is due to the encoding dynamics, not the
encoding dimension. Indeed, a homotopy continuation induced diffusion increases the accuracy by
~ 2%, it still falls short in improving the temporal memory of the encoder.

In future, we foresee using a sequential probabilistic model of the latent context vector that might
afford to learn the structure of the sub-route’s temporal congruency.
Acknowledgments

BS is thankful to the Issac Newton Institute for Mathematical Sciences for hosting him during the
“Periodic, Almost-periodic, and Random Operators" workshop.

References

M. K. M. Ali and F. Kamoun. Neural networks for shortest path computation and routing in computer networks.
IEEE Transactions on Neural Networks, 4(6):941-954, Nov 1993. ISSN 1045-9227.

A. Bay and B. Sengupta. Approximating meta-heuristics with homotopic recurrent neural networks. ArXiv
e-prints: 1709.02194, September 2017.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

G Dantzig, R Fulkerson, and S Johnson. Solution of a large-scale traveling-salesman problem. Operations
Research, 2:393-410, 1954.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269-271,
1959.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska,
Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing
using a neural network with dynamic external memory. Nature, 538(7626):471-476, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput., 9(8), November 1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. ARA*: Anytime A* with provable bounds on
sub-optimality. In Advances in Neural Information Processing Systems, pages 767-774, 2004.

Hossein Mobahi. Training recurrent neural networks by diffusion. arXiv preprint arXiv:1601.04114, 2016.

D. Naddef and G. Rinaldi. The vehicle routing problem. chapter Branch-and-cut Algorithms for the Capacitated
VRP, pages 53-84. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. ISBN
0-89871-498-2.

Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional, 4th edition, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104-3112, 2014.

Luminita Vese. A method to convexify functions via curve evolution. Communications in partial differential
equations, 24(9-10):1573-1591, 1999.

	Introduction
	Methods
	Datasets
	Algorithms

	Results
	Discussion

