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Abstract

The aim of our work is to develop an algorithm for the classification of lung cancer
as T1–T2 or T3–T4 on staging fluorodeoxyglucose positron emission tomography
(FDG-PET)/CT images. We retrospectively selected a cohort of 632 patients
from patients submitted to FDG-PET/CT, over a 6-year period, for the purpose of
staging a suspected lung lesion, within 60 days before biopsy or surgical procedure.
Post-acquisition processing was performed to generate an adequate dataset for the
convolution neural network (CNN) analyses. The input of CNNs in this study
was a bounding box on both PET and CT images, cropped around the lesion
centre identified by two nuclear medicine physicians. The algorithm developed
and tested in the present work achieved an accuracy of 83.9%, 76.2% and 69.8%
in the training, validation and test set, respectively, for the identification of T1–T2
and T3–T4 lung cancer. We obtained proof of concept that CNNs can be used as a
tool to assist in the staging of patients affected by NSCLC. Further research in this
field is already being addressed by our group.

1 Introduction

In recent years, advanced analysis of medical imaging using radiomics and machine and deep
learning, including approaches using convolutional neural networks (CNNs), has been explored.
These approaches offer great promise for future applications for both diagnostic and predictive
purposes. CNNs are non-explicitly programmed algorithms that identify relevant features on the
images that allow them to classify an input object. They have been applied in various tasks such as
detection (e.g. breast lesions on mammographic scans), segmentation (e.g. liver and liver lesions
on computed tomography CT) and diagnosis (e.g. lung lesions on screening low-dose CT) [1]. In
the field of lung imaging, CNNs have been tested in nodule segmentation from CT images. Average
dice scores of 82% and 80% for the training and test datasets, respectively, have been reported [2].
Moreover, a model for assessment of cancer probability in patients with pulmonary nodules has been
proposed. The area under the curve (AUC) was found to be 0.90 and 0.87 for the training and test
sets, respectively [3]. Stage assessment has not yet been described. The present study, as a first step
towards complete TNM parameter assessment, aimed to develop an algorithm for the classification
of lung cancer as T1–T2 or T3–T4 on staging fluorodeoxyglucose positron emission tomography
(FDG-PET)/CT images.
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Figure 1: CNN architecture

2 Methods & Experiments

In this retrospective single-centre investigation, we screened all patients who underwent FDG-PET/CT
for the purpose of staging a suspected lung lesion, within 60 days before biopsy or surgical procedure.
The inclusion criteria were: (a) age >18 years and (b) histological diagnosis of primary lung cancer.
The exclusion criteria were: (a) inconclusive histology due to inadequate biopsy sample, (b) diagnosis
of non-malignancy. From the institutional database, a cohort of 632 patients (T1-T2 = 432, T3-T4 =
200) was selected applying the above-mentioned criteria. FDG-PET/CT was performed according to
standard institutional procedures, previously detailed [4].

The original CT and PET image size is 512× 512×Nslices and 128× 128×Nslices respectively,
where Nslices is the number of slices in which the lesion appears. The CT images were clipped
between −1000 and 400 Hounsfield units, PET images were resampled in the CT space and both
images were re-scaled to lie between 0 and 1. After that, this study’s dataset consists of 3D bounding
boxes on both PET and CT images, performing crops around the lesion’s centre, identified by two
nuclear medicine physicians (M.S. and M.K.) with dimension 128× 128×Nslices.

The algorithm is composed of two networks: a feature extractor and a classifier. The feature extractor
is a CNN that takes an CT-PET image patch of 128× 128 pixels as input and performs classification
(T1–T2 with label = 0 and T3–T4 with label = 1) according to the appearance of the image patch.
The aim of this network is to extract the most relevant features from a single patch. The classifier
takes as input the mean of the second-last layer of features extracted from all slices of a single patient
and aims to perform a classification (T1–T2 vs T3–T4) for it. The softmax function is applied to
the last layer of both networks, in order obtain the probability of being T1–T2 and T3–T4. The
class having the highest probability is assigned to each patient. The architecture for both of the
models is represents in Figure 1. We trained both models with the Adam algorithm [5]. We used an
initial learning rate of 1e−6 for the feature extractor and 1e−3 for the classifier and applied the cross
entropy loss function for both cases. For what concerns data augmentation during the model training,
image patches were rotated in 2D space around the lesion centre on the z axis by a randomly selected
angle in the range [−10◦, 10◦]. All code is written in Python, using the PyTorch deep learning library
(http://pytorch.org/).

3 Results & Conclusions

All results are summarized in Table 1 and Figure 2 shows examples of patients classified by CNNs as
T1–T2 and T3–T4. The algorithm developed and tested in the present work achieved an accuracy of
83.9%, 76.2% and 69.8% in the training, validation and test sets, respectively, for the identification
of T1–T2 and T3–T4 lung cancer.

Some limitations of this study have to be acknowledged. Firstly, the limited number of patients
precluded design of a network for a classification task with four outputs (T1, T2, T3 and T4).
Moreover, better performance is expected in larger datasets. In future work, we plan to include a
larger number of cases in a multicentre framework. Secondly, the reference to define the T parameter
was based on the pathological assessment in surgically treated patients (62% of cases), while in
patients not suitable for surgery, clinical assessment was used as the standard. A homogeneous
clinical assessment will be considered for future studies. In conclusion, the key result in the present
preliminary investigation is the feasibility and promising performance of CNNs in assessing the
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Table 1: Results

Accuracy (%) Recall (%) Specificity (%)

Train (n = 405) 83.9 78.9 86.3
Validation (n = 101) 76.2 62.5 82.6
Test (n = 126) 69.8 62.5 73.3

Figure 2: (A) Axial PET-CT images of a patient affected by lung adenocarcinoma (T1-T2) and its
prediction as belonging to the class T1-T2 with 99% probability. (B) Axial PET-CT images of a
patient affected by lung adenocarcinoma (T3-T4) and its prediction as belonging to the class T3-T4
with 91% probability.

T parameter in lung cancer. Further investigations are needed to develop robust algorithms for
complete TNM assessment. Compared with radiomics, CNNs have the advantage of eliminating
the need for tumour segmentation, feature calculation and selection, which are even more critical
issues in small lesions. Still, the possibility of a complementary role of radiomics and artificial
intelligence techniques should be addressed. Moreover, improvement in risk stratification is foreseen
with the incorporation of patients’ clinical features in the neural network algorithm. The development
of an automated system based on neural networks that is able to perform a complete stage and
risk assessment will ensure more accurate and reproducible use of imaging data and allow deeper
integration of this information in the therapeutic plan for each individual patient.
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