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ABSTRACT

The biological plausibility of the backpropagation algorithm has long been
doubted by neuroscientists. Two major reasons are that neurons would need to
send two different types of signal in the forward and backward phases, and that
pairs of neurons would need to communicate through symmetric bidirectional
connections. We present a simple two-phase learning procedure for fixed point
recurrent networks that addresses both these issues. In our model, neurons per-
form leaky integration and synaptic weights are updated through a local mecha-
nism. Our learning method extends the framework of Equilibrium Propagation to
general dynamics, relaxing the requirement of an energy function. As a conse-
quence of this generalization, the algorithm does not compute the true gradient of
the objective function, but rather approximates it at a precision which is proven
to be directly related to the degree of symmetry of the feedforward and feedback
weights. We show experimentally that the intrinsic properties of the system lead
to alignment of the feedforward and feedback weights, and that our algorithm
optimizes the objective function.

1 INTRODUCTION

Deep learning (LeCun et al., 2015) is the de-facto standard in areas such as computer vision
(Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012) and machine translation (Bah-
danau et al., 2015). These applications deal with different types of data and share little in common
at first glance. Remarkably, all these models typically rely on the same basic principle: optimization
of objective functions using the backpropagation algorithm. Hence the question: does the cortex in
the brain implement a mechanism similar to backpropagation, which optimizes objective functions?

The backpropagation algorithm used to train neural networks requires a side network for the prop-
agation of error derivatives, which is vastly seen as biologically implausible (Crick, 1989). One
hypothesis, first formulated by Hinton & McClelland (1988), is that error signals in biological net-
works could be encoded in the temporal derivatives of the neural activity and propagated through the
network via the neuronal dynamics itself, without the need for a side network. Neural computation
would correspond to both inference and error back-propagation. This work also explores this idea.

The framework of Equilibrium Propagation (Scellier & Bengio, 2017) requires the network dynam-
ics to be derived from an energy function, enabling computation of an exact gradient of an objective
function. However, in terms of biological realism, the requirement of symmetric weights between
neurons arising from the energy function is not desirable. The work presented here extends this
framework to general dynamics, without the need for energy functions, gradient dynamics, or sym-
metric connections.

Our approach is the following. We start from classical models in neuroscience for the dynamics of
the neuron’s membrane voltage and for the synaptic plasticity (section 3). Unlike in the Hopfield
model (Hopfield, 1984), we do not assume pairs of neurons to have symmetric connections. We then
describe an algorithm for supervised learning based on these models (section 4) with minimal extra
assumptions. Our model is based on two phases: at prediction time, no synaptic changes occur,
whereas a local update rule becomes effective when the targets are observed. The proposed up-
date mechanism is compatible with spike-timing-dependent plasticity (Bengio et al., 2017), which
supposedly governs synaptic changes in biological neural systems. Finally, we show that the pro-
posed algorithm has the desirable machine learning property of optimizing an objective function
(section 5). We show this experimentally (Figure 3) and we provide the beginning for a theoretical
explanation.
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2 MOVING BEYOND ENERGY-BASED MODELS AND GRADIENT DYNAMICS

Historically, models based on energy functions and/or gradient dynamics have represented a key
subject of neural network research. Their mathematical properties often allow for a simplified anal-
ysis, in the sense that there often exists an elegant formula or algorithm for computing the gradient
of the objective function (Ackley et al., 1985; Movellan, 1990; Scellier & Bengio, 2017). However,
we argue in this section that

1. due to the energy function, such models are very restrictive in terms of dynamics they can
model - for instance the Hopfield model requires symmetric weights,

2. machine learning algorithms do not require computation of the gradient of the objective
function, as shown in this work and the work of Lillicrap et al. (2016).

In this work, we propose a simple learning algorithm based on few assumptions. To this end, we
relax the requirement of the energy function and, at the same time, we give up on computing the
gradient of the objective function.

We believe that, in order to make progress in biologically plausible machine learning, dynamics
more general than gradient dynamics should be studied.

As discussed in section 6, another motivation for studying more general dynamics is the possible
implementation of machine learning algorithms, such as our model, on analog hardware: analog
circuits implement differential equations, which do not generally correspond to gradient dynamics.

2.1 GRADIENT DYNAMICS ARE NOT GENERIC DYNAMICS

Most dynamical systems observed in nature cannot be described by gradient dynamics. A gradient
field is a very special kind of vector field, precisely because it derives from a primitive scalar func-
tion. The existence of a primitive function considerably limits the “number of degrees of freedom”
of the vector field and implies important restrictions on the dynamics.

In general, a vector field does not derive from a primitive function. In particular, the dynamics of
the leaky integrator neuron model studied in this work (Eq. 1) is not a gradient dynamics, unless
extra (biologically implausible) assumptions are made, such as exact symmetry of synaptic weights
(Wij = Wji) in the case of the Hopfield model.

2.2 MACHINE LEARNING DOES NOT REQUIRE GRADIENT COMPUTATION

Machine learning relies on the basic principle of optimizing objective functions. Most of the work
done in deep learning has focused on optimizing objective functions by gradient descent in the
weight space (thanks to backpropagation). Although it is very well known that following the gradient
is not necessarily the best option – many optimization methods based on adaptive learning rates
for individual parameters have been proposed such as RMSprop Tieleman & Hinton (2012) and
Adagrad Duchi et al. (2011) – almost all proposed optimization methods rely on computing the
gradient, even if they do not follow the gradient. In the field of deep learning, “computing the
gradient” has almost become synonymous with “optimizing”.

In fact, in order to optimize a given objective function, not only following the gradient unnecessary,
but one does not even need to compute the gradient of that objective function. A weaker sufficient
condition is to compute a direction in the parameter space whose scalar product with the gradient is
negative, without computing the gradient itself.

A major step forward was achieved by Lillicrap et al. (2016). One of the contributions of their work
was to dispel the long-held assumption that a learning algorithm should compute the gradient of an
objective function in order to be sound. Their algorithm computes a direction in the parameter space
that has at first sight little to do with the gradient of the objective function. Yet, their algorithm
“learns” in the sense that it optimizes the objective function. By giving up on the idea of com-
puting the gradient of the objective function, a key aspect rendering backpropagation biologically
implausible could be fixed, namely the weight transport problem.

The work presented here is along the same lines. We give up on the idea of computing the gradient
of the objective function, and by doing so, we get rid of the biologically implausible symmetric
connections required in the Hopfield model. In this sense, the “weight transport” problem in the
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backpropagation algorithm appears to be similar, at a high level, to the requirement of symmetric
connections in the Hopfield model.

We suggest that in order to make progress in biologically plausible machine learning, it might be
necessary to move away from computing the true gradients in the weight space. An important
theoretical effort to be made is to understand and characterize the dynamics in the weight space that
optimize objective functions. The set of such dynamics is of course much larger than the tiny subset
of gradient dynamics.

3 CLASSICAL DYNAMICS IN NEUROSCIENCE

We denote by si the averaged membrane voltage of neuron i across time, which is continuous-valued
and plays the role of a state variable for neuron i. We also denote by ρ(si) the firing rate of neuron i.
We suppose that ρ is a deterministic function (nonlinear activation) that maps the averaged voltage
si to the firing rate ρ(si). The synaptic strength from neuron j to neuron i is denoted by Wij .

3.1 LEAKY INTEGRATOR NEURON MODEL

In biological neurons a classical model for the time evolution of the membrane voltage si is the
rate-based leaky integrator neuron model, in which neurons are seen as performing leaky temporal
integration of their past inputs Dayan & Abbott (2001):

dsi
dt

=
∑
j

Wijρ(sj)− si. (1)

Unlike energy-based models such as the Hopfield model (Hopfield, 1984) that assume symmetric
connections between neurons, in the model studied here the connections between neurons are not
tied. Thus, our model is described by a directed graph, whereas the Hopfield model is best regarded
as an undirected graph (Figure 1).

(a) The network model studied here is best
represented by a directed graph.

(b) The Hopfield model is best represented
by an undirected graph.

Figure 1: From the point of view of biological plausibility, the symmetry of connections in the
Hopfield model is a major drawback (1b). The model that we study here is, like a biological neural
network, a directed graph (1a).

3.2 SPIKE-TIMING DEPENDENT PLASTICITY

Spike-Timing Dependent Plasticity (STDP) is considered a key mechanism of synaptic change in
biological neurons (Markram & Sakmann, 1995; Gerstner et al., 1996; Markram et al., 2012). STDP
is often conceived of as a spike-based process which relates the change in the synaptic weight Wij

to the timing difference between postsynaptic spikes (in neuron i) and presynaptic spikes (in neuron
j) (Bi & Poo, 2001). In fact, both experimental and computational work suggest that postsynaptic
voltage, not postsynaptic spiking, is more important for driving LTP (Long Term Potentiation) and
LTD (Long Term Depression) (Clopath & Gerstner, 2010; Lisman & Spruston, 2010).

Similarly, Bengio et al. (2017) have shown in simulations that a simplified Hebbian update rule
based on pre- and post-synaptic activity can functionally reproduce STDP:

dWij ∝ ρ(sj)dsi. (2)
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Throughout this paper we will refer to this update rule (Eq. 2) as “STDP-compatible weight change”
and propose a machine learning justification for such an update rule.

3.3 VECTOR FIELD µ IN THE STATE SPACE

Let s = (s1, s2, . . .) be the global state variable and parameter W the matrix of connection weights
Wij . We write µ(W, s) the vector whose components are defined as

µi(W, s) :=
∑
j

Wijρ(sj)− si (3)

defining a vector field over the neurons state space, indicating in which direction each neuron’s
activity changes:

ds

dt
= µ(W, s). (4)

Since ρ(sj) = ∂µi
∂Wij

(W, s), the weight change Eq. 2 can also be expressed in terms of µ in the form

dWij ∝ ∂µi
∂Wij

(W, s)dsi. Note that for all i′ 6= i we have ∂µi′
∂Wij

= 0 since to each synapse Wij

corresponds a unique post-synaptic neuron si. Hence dWij ∝ ∂µ
∂Wij

(W, s) · ds. We rewrite the
STDP-compatible weight change in the more concise form

dW ∝ ∂µ

∂W
(W, s) · ds. (5)

4 A BIOLOGICALLY PLAUSIBLE LEARNING ALGORITHM FOR FIXED POINT
RECURRENT NETWORKS WITHOUT TIED WEIGHTS

The framework and the algorithm in their general forms are described in Appendix A.

To illustrate our algorithm, we consider here the supervised setting in which we want to predict
an output y given an input x. We describe a simple two-phase learning procedure based on the
dynamics Eq. 4 and Eq. 5 for the state and the parameter variables. This algorithm is similar to the
one proposed by Scellier & Bengio (2017), but here we do not assume symmetric weights between
neurons. Note that similar algorithms have also been proposed by O’Reilly (1996); Hertz et al.
(1997) or more recently by Mesnard et al. (2016). Our contribution in this work are theoretical
insights into why the proposed algorithm works.

4.1 TRAINING OBJECTIVE

In the supervised setting studied here, the units of the network are split in two sets: the inputs
x whose values are always clamped, and the dynamically evolving units h (the neurons activity,
indicating the state of the network), which themselves include the hidden layers (h1 and h2 here)
and an output layer (h0 here), as in Figure 2. In this context the vector field µ is defined by its
components µ0, µ1 and µ2 on h0, h1 and h2 respectively, as follows:

µ0(W, x, h) = W01 · ρ(h1)− h0, (6)
µ1(W, x, h) = W12 · ρ(h2) +W10 · ρ(h0)− h1, (7)
µ2(W, x, h) = W23 · ρ(x) +W21 · ρ(h1)− h2. (8)

Here the scalar function ρ is applied elementwise to the components of the vectors. The neurons h
follow the dynamics

dh

dt
= µ(W, x, h). (9)

In this section and the next we use the notation h rather than s for the state variable.

The layer h0 plays the role of the output layer where the prediction is read. The target outputs,
denoted by y, have the same dimension as the output layer h0. The discrepancy between the output
units h0 and the targets y is measured by the quadratic cost function

C(h, y) :=
1

2
‖y − h0‖2 . (10)
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Unlike in the continuous Hopfield model, here the feed-forward and feedback weights are not tied,
and in general the state dynamics Eq. 9 is not guaranteed to converge to a fixed point. However we
observe experimentally that the dynamics almost always converges. We will see in section 5 that, for
a whole set of values of the weight matrix W . the dynamics of the neurons h converges. Assuming
this condition to hold, the dynamics of the neurons converge to a fixed point which we denote by h0
(beware not to confuse with the notation for the output units h0). The prediction h00 is then read out
on the output layer and compared to the actual target y. The objective function (for a single training
case (x, y)) that we aim to minimize is the cost at the fixed point h0, which we write

J := C
(
h0, y

)
. (11)

Note that this objective function is the same as the one proposed by Almeida (1987); Pineda (1987).
Their method to optimize J is to compute the gradient of J thanks to an algorithm which they call
“Recurrent Backpropagation”. Other methods related to Recurrent Backpropagation exist to com-
pute the gradient of J - in particular the “adjoint method”, “implicit differentiation” and “Backprop
Through Time”. These methods are biologically implausible, as argued in Appendix B.

Here our approach to optimize J is to give up on computing the true gradient of J and, instead,
we propose a simple algorithm based only on the leaky integrator dynamics (Eq. 4) and the STDP-
compatible weight change (Eq. 5). We will show in section 5 that our algorithm computes a proxy
for the gradient of J . Also, note that in its general formulation, our algorithm applies to any vector
field µ and cost function C (Appendix A)

4.2 EXTENDED DYNAMICS

The idea of Equilibrium Propagation (Scellier & Bengio, 2017) is to see the cost function C (Eq. 10)
as an external potential energy for the output units h0, which can drive them towards their target y.
Following the same idea we define the “extended vector field” µβ as

µβ := µ− β ∂C
∂h

, (12)

and we redefine the dynamics of the state variable h as

dh

dt
= µβ(W, x, h, y). (13)

The real-valued scalar β ≥ 0 controls whether the output h0 is pushed towards the target y or not,
and by how much. We call β the “influence parameter” or “clamping factor”.

The differential equation of motion Eq. 13 can be seen as a sum of two “forces” that act on the
temporal derivative of the state variable h. Apart from the vector field µ that models the interactions
between neurons within the network, an “external force” −β ∂C∂h is induced by the external potential
βC and acts on the output neurons:

−β ∂C
∂h0

= β(y − h0), (14)

−β ∂C
∂hi

= 0, ∀i ≥ 1. (15)

The form of Eq. 14 suggests that when β = 0, the output units h0 are not sensitive to the targets
y from the outside world. In this case we say that the network is in the free phase (or first phase).
When β > 0, the “external force” drives the output units h0 towards the target y. When β & 0
(small positive value), we say that the network is in the weakly clamped phase (or second phase).
Also, note that the case β →∞, not studied here, would correspond to fully clamped outputs.

4.3 TWO-PHASE ALGORITHM AND BACKPROPAGATION OF ERROR SIGNALS

We propose a simple two-phase learning procedure, similar to the one proposed by Scellier & Bengio
(2017). In the first phase of training, the inputs are set (clamped) to the input values. The state
variable (all the other neurons) follows the dynamics Eq. 9 (or equivalently Eq. 13 with β = 0) and
the output units are free. We call this phase the free phase, as the system relaxes freely towards the
free fixed point h0 without any external constraints on his output neurons. During this phase, the
synaptic weights are unchanged.
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(a) The supervised network studied
here has directed connections.

(b) In the framework of Equilibrium
Propagation with the Hopfield energy,
the network is assumed to have sym-
metric connections.

Figure 2: Input x is clamped. Neurons h include “hidden layers” h2 and h1, and “output layer”
h0 that corresponds to the layer where the prediction is read. Target y has the same dimension as
h0. The clamping factor β scales the “external force” −β ∂C∂h that attracts the output h0 towards the
target y.

In the second phase, the influence parameter β takes on a small positive value β & 0. The state
variable follows the dynamics Eq. 13 for that new value of β, and the synaptic weights follow the
STDP-compatible weight change Eq. 5. This phase is referred to as the weakly clamped phase.
The novel “external force” −β ∂C∂h in the dynamics Eq. 13 acts on the output units and drives them
towards their targets (Eq. 14). This force models the observation of y: it nudges the output units
h0 from their free fixed point value in the direction of their targets. Since this force only acts
on the output layer h0, the other hidden layers (hi with i > 0) are initially at equilibrium at the
beginning of the weakly clamped phase. The perturbation caused at the output layer will then
propagate backwards along the layers of the network, giving rise to “back-propagating” error signals.
The network eventually settles to a new nearby fixed point, corresponding to the new value β & 0,
termed weakly clamped fixed point and denoted hβ .

4.4 VECTOR FIELD ν IN THE WEIGHT SPACE

Our model assumes that the STDP-compatible weight change (Eq. 5) occurs during the second phase
of training (weakly clamped phase) when the network’s state moves from the free fixed point h0 to
the weakly clamped fixed point hβ . Normalizing by a factor β and letting β → 0, we get the update
rule ∆W ∝ ν(W ) for the weights, where ν(W ) is the vector defined as

ν(W ) :=
∂µ

∂W

(
W, x, h0

)
· ∂h

β

∂β

∣∣∣∣
β=0

. (16)

The vector ν(W ) has the same dimension as W . Formally ν is a vector field in the weight space.

It is shown in section 5 that ν(W ) is a proxy to the gradient ∂J
∂W . The effectiveness of the proposed

method is demonstrated through experimental studies (Figure 3).

5 THE VECTOR FIELD ν AS A PROXY FOR THE GRADIENT

In this section, we attempt to understand why the proposed algorithm is experimentally found to
optimize the objective function J (Figure 3). We say that W is a “good parameter” if:

1. for any initial state for the neurons, the state dynamics dh
dt = µ (W, x, h) converges to a

fixed point - a condition required for the algorithm to be correctly defined,
2. the scalar product ∂J

∂W · ν(W ) at the point W is negative - a desirable condition for the
algorithm to optimize the objective function J .
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Experiments show that the dynamics of h (almost) always converges to a fixed point and that J
consistently decreases (Figure 3). This means that, during training, as the parameter W follows the
update rule ∆W ∝ ν(W ), all values of W that the network takes are “good parameters”. In this
section we attempt to explain why.

5.1 EXPLICIT FORMULAS FOR ∂J
∂W AND ν

Theorem 1. The gradient of J can be expressed in terms of µ and C as

∂J

∂W
= −∂C

∂h
·
(
∂µ

∂h

)−1
· ∂µ
∂W

. (17)

Similarly, the vector field ν (Eq. 16) is equal to

ν(W ) =
∂C

∂h
·

((
∂µ

∂h

)T)−1
· ∂µ
∂W

. (18)

In these expressions, all terms are evaluated at the fixed point h0.

Theorem 1 is proved in Appendix A. Note that the formulas show that ν(W ) is related to ∂J
∂W

and that the angle between these two vectors is directly linked to the “degree of symmetry” of the
Jacobian of µ.

An important particular case is the setting of Equilibrium Propagation (Scellier & Bengio, 2017),
in which the vector field µ is a gradient field µ = −∂E∂h , meaning that it derives from an energy
function E. In this case the Jacobian of µ is symmetric since it is the Hessian of E. Indeed ∂µ

∂h =

−∂
2E
∂h2 =

(
∂µ
∂h

)T
. Therefore, Theorem 1 shows that ν is also a gradient field, namely the gradient

of the objective function J , that is ν = − ∂J
∂W . Note that in this setting the set of “good parameters”

is the entire weight space - for all W , the dynamics dh
dt = −∂E∂h (W,h) converges to an energy

minimum, and W converges to a minimum of J since ∆W ∝ − ∂J
∂W .

We argue that the set of “good parameters” covers a large proportion of the weight space and that
they contain the matricesW that present a form of symmetry or “alignment”. In the next subsection,
we discuss how this form of symmetry may arise from the learning procedure itself.
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Figure 3: Example system trained on the MNIST dataset, as described in Appendix C. The objective
function is optimized: the training error decreases to 0.00% in around 70 epochs. The generaliza-
tion error is about 2%. Right: A form of symmetry or alignment arises between feedforward and
feedback weights Wk,k+1 and Wk+1,k in the sense that tr(Wk,k+1 ·Wk+1,k) > 0. This architecture
uses 3 hidden layers each of dimension 512.

5.2 A FORM OF SYMMETRY ARISES

Experiments show that a form of symmetry between feedforward and feedback weights arises from
the learning procedure itself (Figure 3). Although the causes for this phenomenon aren’t understood
very well yet, it is worth pointing out that similar observations have been made in previous work
and different settings.
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A striking example is the following one. A major argument against the plausibility of backpropa-
gation in feedforward nets is the weight transport problem: the signals sent forward in the network
and those sent backward use the same connections. Lillicrap et al. (2016) have observed that, in the
backward pass, (back)propagating the error signals through fixed random feedback weights (rather
than the transpose of the feedforward weights) does not harm learning. Moreover, the learned feed-
forward weightsWk,k+1 tend to ’align’ with the fixed random feedback weightsWk+1,k in the sense
that the trace of Wk,k+1 ·Wk+1,k is positive.

Denoising autoencoders without tied weights constitute another example of learning algorithms
where a form of symmetry in the weights has been observed as learning goes on (Vincent et al.,
2010).

The theoretical result from Arora et al. (2015) also shows that, in a deep generative model, the
transpose of the generative weights perform approximate inference. They show that the symmetric
solution minimizes the autoencoder reconstruction error between two successive layers of rectifying
linear units.

6 POSSIBLE IMPLEMENTATION ON ANALOG HARDWARE
Our approach provides a basis for implementing machine learning models in continuous-time sys-
tems, while requirements regarding the actual dynamics are reduced to a minimum. This means that
the model applies to a large class of physical realizations of vectorfield dynamics, including analog
electronic circuits. Implementations of recurrent networks based on analog electronics have been
proposed in the past, e.g. Hertz et al. (1997), however, these models typically required circuits and
associated dynamics to adhere to an exact theoretical model. With our framework, we provide a way
of implementing a learning system on a physical substrate without even knowing the exact dynamics
or microscopic mechanisms that give rise to it. Thus, this approach can be used to analog electronic
system end-to-end, without having to worry about exact device parameters and inaccuracies, which
inevitably exist in any physical system. Instead of approximately implementing idealized computa-
tions, the actual analog circuit, with all its individual device variations, is trained to perform the task
of interest. Thereby, the more direct implementation of the dynamics might result in advantages in
terms of speed, power, and scalability, as compared to digital approaches.

7 CONCLUSION
Our model demonstrates that biologically plausible learning in neural networks can be achieved with
relatively few assumptions. As a key contribution, in contrast to energy-based approaches such as
the Hopfield model, we do not impose any symmetry constraints on the neural connections. Our
algorithm assumes two phases, the difference between them being whether synaptic changes occur
or not. Although this assumption begs for an explanation, neurophysiological findings suggest that
phase-dependent mechanisms are involved in learning and memory consolidation in biological sys-
tems. Theta waves, for instance, generate neural oscillatory patterns that can modulate the learning
rule or the computation carried out by the network Orr et al. (2001). Furthermore, synaptic plasticity,
and neural dynamics in general, are known to be modulated by inhibitory neurons and dopamine re-
lease, depending on the presence or absence of a target signal. Frémaux & Gerstner (2016); Pawlak
et al. (2010).

In its general formulation (Appendix A), the work presented in this paper is an extension of the
framework of Scellier & Bengio (2017) to general dynamics. This is achieved by relaxing the re-
quirement of an energy function. This generalization comes at the cost of not being able to compute
the (true) gradient of the objective function but, rather a direction in the weight space which is
related to it. Thereby, precision of the approximation of the gradient is directly related to the “align-
ment” between feedforward and feedback weights. Even though the exact underlying mechanism
is not fully understood yet, we observe experimentally that during training the weights symmetrize
to some extent, as has been observed previously in a variety of other settings (Lillicrap et al., 2016;
Vincent et al., 2010; Arora et al., 2015). Our work shows that optimization of an objective func-
tion can be achieved without ever computing the (true) gradient. More thorough theoretical analysis
needs to be carried out to understand and characterize the dynamics in the weight space that opti-
mize objective functions. Naturally, the set of all such dynamics is much larger than the tiny subset
of gradient-based dynamics.

Our framework provides a means of implementing learning in a variety of physical substrates, whose
precise dynamics might not even be known exactly, but which simply have to be in the set of sup-
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ported dynamics. In particular, this applies to analog electronic circuits, potentially leading to faster,
more efficient, and more compact implementations.
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Appendix
A GENERAL FORMULATION

In this Appendix, we present the framework and the algorithm in their general formulations and we
prove the theoretical results.

A.1 PRELIMINARY DEFINITIONS

We consider a physical system specified by a state variable s and a parameter variable θ. The system
is also influenced by an external input v, e.g. in the supervised setting v = (x, y) where y is the
target that the system wants to predict given x.

Let s 7→ µ(θ, v, s) be a vector field in the state space and C(θ, v, s) a cost function. We assume
that the state dynamics induced by µ converges to a stable fixed point s0θ,v, corresponding to the
“prediction” from the model and characterized by

µ
(
θ, v, s0θ,v

)
= 0. (19)

The objective function that we want to optimize is the cost at the fixed point

J(θ, v) := C
(
θ, v, s0θ,v

)
. (20)

Note the distinction between J and C: the cost function is defined for any state s whereas the
objective function is the cost at the fixed point. The training objective (for a single data sample v) is

find arg min
θ

J(θ, v). (21)

Equivalently, the training objective can be reformulated as a constrained optimization problem:

find arg min
θ,s

C(θ, v, s) (22)

subject to µ (θ, v, s) = 0, (23)

where the constraint µ (θ, v, s) = 0 is the fixed point condition.

All traditional methods to compute the gradient of J (adjoint method, implicit differentiation, Recur-
rent Backpropagation and Backpropagation Through Time or BPTT) are thought to be biologically
implausible. Our approach is to give up on computing the gradient of J and let the parameter vari-
able θ follow a vector field ν in the parameter space which is “close” to the gradient of J .

Before defining ν we first introduce the “extended vector field”

µβ(θ, v, s) := µ(θ, v, s)− β ∂C

∂s
(θ, v, s), (24)

where β is a real-valued scalar called “influence parameter”. Then we extend the notion of fixed
point for any value of β. For any β we define the β-fixed point sβθ,v such that

µβ
(
θ, v, sβθ,v

)
= 0. (25)

Under mild regularity conditions on µ and C, the implicit function theorem ensures that, for a fixed
data sample v, the funtion (θ, β) 7→ sβθ,v is differentiable.

Now for every θ and v we define the vector ν(θ, v) in the parameter space as

ν(θ, v) := −∂C
∂θ

(
θ, v, s0θ,v

)
+
∂µ

∂θ

(
θ, v, s0θ,v

)
·
∂sβθ,v
β

∣∣∣∣∣
β=0

. (26)

As shown in section 4, the second term on the right hand side can be estimated in a biologically
realistic way thanks to a two-phase training procedure.
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As compared to section 4, the definition of the vector ν(θ, v) contains another term−∂C∂θ
(
θ, v, s0θ,v

)
in the general case where the cost function C also depends on the parameter θ. This extra term can
be measured in a biologically realistic way at the fixed point s0θ,v at the end of the free phase. For
example ifC includes a regularization term such as 1

2λ ‖θ‖
2, then ν(θ, v) will include a backmoving

force −λθ modelling a form of synaptic depression.

A.2 MAIN RESULT AND EXPLICIT FORMULAS

Lemma 2. Let s 7→ µβ(θ, s) be a differentiable vector field, and sβθ a fixed point characterized by

µβ
(
θ, sβθ

)
= 0. (27)

Then the partial derivatives of the fixed point are given by

∂sβθ
∂θ

= −
(
∂µβ

∂s

(
θ, sβθ

))−1
· ∂µ

β

∂θ

(
θ, sβθ

)
(28)

and
∂sβθ
∂β

= −
(
∂µβ

∂s

(
θ, sβθ

))−1
· ∂µ

β

∂β

(
θ, sβθ

)
. (29)

Proof of Lemma 2. First we differentiate the fixed point equation Eq. 27 with respect to θ:

d

dθ
(27) ⇒ ∂µβ

∂θ

(
θ, sβθ

)
+
∂µβ

∂s

(
θ, sβθ

)
·
∂sβθ
∂θ

= 0. (30)

Rearranging the terms we get Eq. 28. Similarly we differentiate the fixed point equation Eq. 27 with
respect to β:

d

dβ
(27) ⇒ ∂µβ

∂β

(
θ, sβθ

)
+
∂µβ

∂s

(
θ, sβθ

)
·
∂sβθ
∂β

= 0. (31)

Rearranging the terms we get Eq. 29.

Theorem 3. The gradient of the objective function is equal to

∂J

∂θ
=
∂C

∂θ
− ∂C

∂s
·
(
∂µ

∂s

)−1
· ∂µ
∂θ

(32)

and the vector field ν is equal to

ν = −∂C
∂θ

+
∂C

∂s
·

((
∂µ

∂s

)T)−1
· ∂µ
∂θ
. (33)

All the factors on the right-hand sides of Eq. 32 and Eq. 33 are evaluated at the fixed point s0θ.

Proof of Theorem 3. Let us compute the gradient of the objective function with respect to θ. Using
the chain rule of differentiation we get

∂J

∂θ
=
∂C

∂θ
+
∂C

∂s
· ∂s

0
θ

∂θ
. (34)

Hence Eq. 32 follows from Eq. 28 evaluated at β = 0. Similarly, the expression for the vector field
ν (Eq. 33) follows from its definition (Eq. 26), the identity Eq. 29 evaluated at β = 0 and the fact
that ∂µ

β

∂β = −∂C∂s .

We finish by stating and proving a last result. Consider the setting introduced in section 4 with the
quadratic cost function C = 1

2 ‖y − h0‖
2. In the weakly clamped phase, the “external influence”

−β (y − h0) added to the vector field µ (with β & 0) slightly attracts the output state h0 to the
target y. It is intuitively clear that the weakly clamped fixed point is better than the free fixed point
in terms of prediction error. Proposition 5 below generalizes this property to any vector field µ and
any cost function C.

12
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Proposition 4. Let s0 be a stable fixed point of the vector field s 7→ µ(s), in the sense that
(
s− s0

)
·

µ (s) < 0 for s in the neighborhood of s0 (i.e. the vector field at s points towards s0). Then the
Jacobian of µ at the fixed point ∂µ∂s

(
s0
)

is negative, in the sense that

∀v, v · ∂µ
∂s

(
s0
)
· v ≤ 0. (35)

Proof. Let v be a vector in the state space, α > 0 a positive scalar and let s := s0 +αv. For α small
enough, the vector s is in the region of stability of s0. Using a first order Taylor expansion and the
fixed point condition µ

(
s0
)

= 0 we get

0 >
(
s− s0

)
· µ (s) (36)

= αv · µ
(
s0 + αv

)
(37)

= αv · ∂µ
∂s

(
s0
)
· αv + o

(
α2
)

(38)

as α→ 0. Hence the result.

The following proposition shows that, unless the free fixed point s0θ,v is already optimal in terms
of cost value, for β > 0 small enough, the nudged fixed point sβθ,v achieves lower cost value than
the free fixed point. Thus, a small perturbation due to a small increment of β nudges the network
towards a configuration that reduces the cost value.

Proposition 5. Let sβθ be a stable fixed point of the extended vector field µβ = µ− β ∂C∂s . Then the
derivative of the function

β 7→ C
(
θ, sβθ

)
(39)

at β = 0 is non-positive.

Proof of Proposition 5. Multiplying both sides of Eq. 31 on the left by −
(
∂sβθ
∂β

)T
and rearranging

the terms, we get

−

(
∂sβθ
∂β

)T
· ∂µ

β

∂β
=

(
∂sβθ
∂β

)T
· ∂µ

β

∂s
·
∂sβθ
∂β
≤ 0. (40)

The inequality holds because ∂µβ

∂s

(
θ, sβθ

)
is negative as sβθ is a stable fixed point of µβ (Eq. 35).

Since ∂µβ

∂β = −∂C∂s , the left-hand side, for β = 0, represents the derivative of

β 7→ C
(
θ, sβθ

)
. (41)

B ADJOINT METHOD AND RELATED ALGORITHMS

Earlier work have proposed various methods to compute the gradient of the objective function J
(Eq. 20). One common method is the “adjoint method”. In the context of fixed point recurrent neural
networks studied here, the adjoint method leads to Backpropagation Through Time (BPTT) and
“Recurrent Backpropagation” (Almeida, 1987; Pineda, 1987). BPTT is the method of choice today
for deep learning but its biological implausibility is obvious - it requires the network to store all its
past states for the propagation of error derivatives in the second phase. Recurrent Backpropagation
corresponds to a special case of BPTT where the network is initialized at the fixed point. This
algorithm does not need to store the past states of the network (the state at the fixed point suffices)
but it still requires neurons to send a different kind of signals through a different computational path
in the second phase, which seems therefore less biologically plausible than our algorithm.

Our approach is to give up on the idea of computing the gradient of the objective function. Instead
we show that the STDP-compatible weight change computes a proxy to the gradient in a more
biologically plausible way.
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B.1 CONTINUOUS-TIME BACKPROPAGATION

For completeness, we state and prove a continuous-time version of Backpropagation Through Time
and Recurrent Backpropagation. The formulas for the propagation of error derivatives (Theorem 6
and Corollary 7) will make it obvious that our algorithm is more biologically plausible than both of
these algorithms.

To keep notations simple, we omit to write dependences in the data sample v. We consider the
dynamics ds

dt = µ(θ, s) and denote by st the state of the system at time t ≥ 0 when it starts from an
initial state s0 at time t = 0. Note that st converges to the fixed point s0θ as t→∞. We then define
a family of objective functions

L(θ, s0, T ) := C (θ, sT ) (42)
for every couple (s0, T ) of initial state s0 and duration T ≥ 0. This is the cost of the state at time
t = T when the network starts from the state s0 at time t = 0. Note that L(θ, s0, T ) tends to J(θ)
as T →∞ (Eq. 20).

We want to compute the gradient ∂L∂θ (θ, s0, T ) as T → ∞. For that purpose, we fix T to a large
value and we consider the following quantity

∂L

∂sT−t
:=

∂L

∂s
(θ, sT−t, t) , (43)

which represents the “partial derivative of the cost with respect to the state at time T − t”. In
other words this is the “partial derivative of the cost with respect to the (T − t)-th hidden layer”
if one regards the network as unfolded in time (though time is continuous here). The formulas in
Theorem 6 below correspond to a continuous-time version of BPTT for the propagation of the partial
derivatives ∂L

∂sT−t
backward in time.

Theorem 6 (Continuous-Time Backpropagation Through Time). The process of “partial deriva-
tives” ∂L

∂sT−t
is such that

d

dt

∂L

∂sT−t
=

(
∂µ

∂s
(θ, sT−t)

)T
· ∂L

∂sT−t
, (44)

and the gradient ∂L∂θ (θ, sT−t, t) is such that

d

dt

∂L

∂θ
(θ, sT−t, t) =

(
∂µ

∂θ
(θ, sT−t)

)T
· ∂L

∂sT−t
. (45)

Computing ∂L
∂sT−t

and ∂L
∂θ (θ, sT−t, t) thanks to Eq. 44 and Eq. 45 is biologically infeasible since it

requires storing the past states sT−t.

In the particular case where the network is initialized at the fixed point, then we have sT−t = s0θ for
all t and we get a continuous-time version of “Recurrent Backpropagation” (Almeida, 1987; Pineda,
1987).
Corollary 7 (Continuous-Time Recurrent Backpropagation). The process ∂L

∂s

(
θ, s0θ, t

)
for t ≥ 0

satisfies the differential equation

d

dt

∂L

∂s

(
θ, s0θ, t

)
=

(
∂µ

∂s

(
θ, s0θ

))T
· ∂L
∂s

(
θ, s0θ, t

)
. (46)

and the process ∂L
∂θ

(
θ, s0θ, t

)
for t ≥ 0 satisfies

d

dt

∂L

∂θ

(
θ, s0θ, t

)
=

(
∂µ

∂θ

(
θ, s0θ

))T
· ∂L
∂s

(
θ, s0θ, t

)
. (47)

Here the notation ∂L
∂θ represents the partial derivative with respect to the first argument, which does

not include the path through s0θ.

Recurrent Backpropagation does not require the state s go backward in time in the second phase.
The state of the network stays at the fixed point s0θ. However we still need a special computational
path for the computation of ∂L∂s

(
θ, s0θ, t

)
. From the point of view of biological plausibility, it is not

clear how this can be done and how the transpose of the Jacobian
(
∂µ
∂s

(
θ, s0θ

))T
can be measured.

14
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Proof of Theorem 6. To keep notations simple, we omit to write the dependence in θ. First we show
that for all s and t we have

∂L

∂t
(s, t) =

∂L

∂s
(s, t) · µ(s). (48)

To this end note that
L(su, t− u) = L(s0, t) (49)

is independent of u. Therefore

d

du
L(su, t− u) = 0 (50)

=− ∂L

∂t
(su, t− u) +

∂L

∂s
(su, t− u) · µ(su). (51)

Here we have used the chain rule of differentiation and the differential equation of motion. Evaluat-
ing this expression for u = 0 we get Eq. 48 since the initial point s0 is arbitrary. Then, differentiating
Eq. 48 with respect to s, we get

∂2L

∂t∂s
(s, t) =

∂2L

∂s2
(s, t) · µ(s) +

(
∂µ

∂s
(s)

)T
· ∂L
∂s

(s, t) = 0. (52)

Now let us differentiate ∂L
∂s (sT−t, t) with respect to t. Using the chain rule of differentiation, the

differential equation of motion and Eq. 52 (at the point s = sT−t) we get

d

dt

∂L

∂s
(sT−t, t) (53)

=
∂2L

∂t∂s
(sT−t, t)−

∂2L

∂s2
(sT−t, t) · µ(sT−t) (54)

=

(
∂µ

∂s
(sT−t)

)T
· ∂L
∂s

(sT−t, t). (55)

Hence Eq. 44. We derive Eq. 45 similarly by differentiating ∂L
∂θ (θ, sT−t, t) with respect to t.

C IMPLEMENTATION DETAILS OF THE MODEL

Our model is a recurrently connected neural network without any constraint on the feedback weight
values. We train multi-layered networks with 2 or 3 hidden layers, with no skip-layer connections
and no lateral connections within layers.

Rather than doing the weight updates at all time steps, we use a single update at the end of the
weakly clamped phase:

∆W ∝ ∂µ

∂h

(
h0
)
· h

β − h0

β
. (56)

The prediction is made on the last layer at the free fixed point h00 at the end of the first phase
relaxation. The predicted value hpred is the index of the output unit whose activation is maximal
among the 10 output units:

hpred := arg max
i

h00,i. (57)

Implementation of the differential equation of motion. We start by clamping x to the data values.
Then, to implement Eq. 13, we use the Euler method. We discretize time into short time lapses of
duration ε and update the state variable h thanks to the following equation:

h← h− εµβ(W, x, h, y). (58)

For our experiments, we choose the hard sigmoid activation function ρ(hi) = 0 ∨ hi ∧ 1, where ∨
denotes the max and ∧ the min. For this choice of ρ, since ρ′(hi) = 0 for hi < 0, it follows from
Eq. 1 and Eq. 14 that if hi < 0 then ∂F

∂hi
(θ, v, β, s) = −hi > 0. This force prevents the hidden

unit hi from going in the range of negative values. The same is true for the output units. Similarly,
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hi cannot reach values above 1. As a consequence hi must remain in the domain 0 ≤ hi ≤ 1.
Therefore, rather than the standard gradient descent (Eq. 58), we will use a slightly different update
rule for the state variable h:

h← 0 ∨ h− εµβ(W, x, h, y) ∧ 1. (59)

This little implementation detail turns out to be very important: if the i-th hidden unit was in some
state hi < 0, then Eq. 58 would give the update rule hi ← (1 − ε)hi, which would imply again
hi < 0 at the next time step (assuming ε < 1). As a consequence hi would remain in the negative
range forever.

We use different learning rates for the different layers in our experiments. We do not have a clear
explanation for why this improves performance, but we believe that this is due to the finite precision
with which we approach the fixed points.

The hyperparameters chosen for each model are shown in Table 1 and the results are shown in Figure
3. We initialize the weights according to the Glorot-Bengio initialization (Glorot & Bengio, 2010).
For efficiency of the experiments, we use minibatches of 20 training examples.

Architecture Iterations Iterations ε β α1 α2 α3 α4

(first phase) (second phase)
784− 512− 512− 10 200 100 0.001 1.0 0.4 0.1 0.01 −−

784− 512− 512− 512− 10 200 100 0.001 1.0 1.0 0.1 0.04 0.002

Table 1: Hyperparameters. for both the 2 and 3 layered MNIST. Example system trained on the
MNIST dataset, as described in Appendix C. The objective function is optimized: the training error
decreases to 0.00%. The generalization error lies between 2% and 3% depending on the architecture.
The learning rate ε is used for iterative inference (Eq. 59). β is the value of the clamping factor in
the second phase. αk is the learning rate for updating the parameters in layer k.

We were also able to train on MNIST using a Convolutional Neural Network (CNN). We got around
2% generalization error. The hyperparameters chosen to train this Convolutional Neural Network
are shown in Table 2.

Operation Kernel Strides Feature Maps Non Linearity
Convolution 5 x 5 1 32 Relu
Convolution 5 x 5 1 64 Relu

Table 2: Hyperparameters for MNIST CNN experiments.
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