Specifying and Executing User Agent Behaviour with

Condition-Action Rules*

Andreas Harth Tobias Kafer
Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany

Abstract

The paper outlines a rule-based language for specifying and executing user agents operating over
decentralised networked components. We draw on experience gained in projects around data integration
and system interoperation with both academic and industrial partners, and from lessons learned during
the development of several prototypes. We have identified architectural mismatches that require mapping
and integration before user agents can access and manipulate the state of network-accessible components
in a uniform manner. We tackle mismatches along the following dimensions: network protocol, data
format and data semantics. Our system architecture builds on ideas from Representational State Transfer
and uses standards around Linked Data. For discovery we assume that network-accessible components
provide hyperlinks to other components. On top of the standardised interfaces we use a rule-based agent
application model based on the sense-act cycle. We use derivation rules to integrate state representations,

and condition-action request rules to follow links and specify application behaviour.

1 Introduction

Modern software systems have to incorporate an increasingly diverse set of components, both in terms of
hardware (sensors, actuators) and software (APIs, services). The heterogeneity of the components leads
to a high cost for building applications. Performing the integration in a monolithic application requires
glue code to access and manipulate the state of each component. Similarly, performing the integration in a
decentralised application also requires glue code in the form of wrappers to access and manipulate the state
of each component. A way to reduce the integration cost per application is to provide common interfaces to
components, and to reuse the common interfaces in multiple applications.

When integrating different components, one can employ various strategies for deciding on the features of
the common interface. One strategy is to use the union of the feature sets of the source interfaces; another
strategy is to use the intersection of the feature sets of the source interfaces; yet another strategy is to pick and
choose among the feature sets. However, as the components use different, sometimes inherently incompatible,
paradigms for accessing and manipulating component state, the specification of uniform interfaces remains
a challenge. In addition, the requirements for interfaces are very broad: interfaces should be simple and

easy to use and implement, yet at the same time they should satisfy the requirements of very different

*A preliminary version of the paper has been presented at the (not peer-reviewed) Workshop on IoT Semantic/Hypermedia
Interoperability, July 15-16, 2017, Prague, Czechia.



scenarios. Often, the requirements of the various scenarios are not made explicit, as they are completely
clear to anybody who is part of a particular community. However, once one tries to create applications that
access interfaces of devices and components from different communities, the various unspoken assumptions
cause problems.

We build on Web Architecture! and Representational State Transfer? to keep the uniform interface
specification manageable. We dictate constraints to limit the degree of freedom in the way that interfaces
can be implemented. Minimal interfaces make cost-effective interoperation possible. At the same time, the
interfaces should be sufficiently high-level and be building on a universal model for computation to put as
little restrictions as possible on what can be theoretically achieved. There is always a trade-off, and different
people have different tastes and styles. Our proposal is to build on standards that have proven to work
in the past: internet technologies have been successfully deployed on a global scale. However, we think
that the abstraction that the core internet technologies provide (basically a channel where packets can be
send and received) is too low-level. Web technologies and the resource abstraction with request/response
communication between user agents and origin servers provide a higher level abstraction, including error
handling, which has been successfully deployed on the web.

Another useful feature of the web are hyperlinks to allow for decentralised publication and discovery. To
leverage the full power of hyperlinks, which allow for applications to discover new things at runtime, the
newly discovered things have to be self-described. In such an environment, applications could then follow
hyperlinks and use arbitrary data and functionality from hitherto unknown components. At least that is
the vision; the realisation of that vision has been proven to be challenging, not the least because developers
have to create applications which operate on data with arbitrary schema unknown at design-time of the
application. Semantic technologies help mitigating the challenge by providing the means for expressing
mappings and integrating data with different schema.

In the following we present the architectural mismatches we have identified in our work on academic and
industrial data integration and system interoperation applications [3], [6], [7], [5]. We describe mismatches
concerning network protocol, data format and data semantics that preclude applications from accessing
data and functionality of components in a uniform manner. To overcome the mismatches, we assume a
uniform addressing scheme (URIs?), uniform network protocol (HTTP*) and uniform data format (RDF?),
on top of which applications operate. The behaviour of applications is specified using rules. These rule-
based applications can access and integrate resource state, follow links to discover new resources, and change
resource state to implement application behaviour. While we have an eye on elaborate functionality such
as artificial intelligence planning and model checking, the focus on our work so far has been on optimised
execution of application behaviour specifications. Due to space constraints, we can only briefly introduce

the rule-based language, but we provide pointers to further material.

Ihttps://www.w3.org/standards/webarch/
?https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Shttps://tools.ietf.org/html/rfc3986
4nttps://tools.ietf.org/html/rfc7230
Shttps://www.w3.org/TR/rdf11-concepts/



Network

protocol
Message
semantics
Agent
architecture
Interface
descriptions
Knowledge
representation

Figure 1: Dimensions of system architecture.

2 Architectural Choices

We start with describing the dimensions of the choices for the system architecture. Next, we subject the

dimensions to constraints, followed by an overview of the application model within the system architecture.

2.1 Dimensions

The diagram in figure 1 illustrates the dimensions on which we can make a choice regarding interfaces and

application architecture.

e Network protocol: assuming a REST-based protocol such as HTTP (1.1 or 2.0) and COAP, the choice
is between supporting read, update, delete, create and observe operations. Yet completely different
options are network architectures building on a centralised message bus, which would require an inter-
face to create and manage subscriptions. Finally, one could assume a general query interface, as for

example database mediator systems assume (albeit only on read operations).

e Message semantics: we can either assume a simple retrieve operation (for GET) and overwrite oper-
ation (for PUT), which in each case the message body is the entire resource state. Other choices are

transmitting deltas between resource states or patch instructions.

e Interface descriptions: starting with no dedicated interface descriptions and just assuming the HTTP



(or COAP) semantics for operations, we could layer additional descriptions on top, starting with the
input (request message body) and output (response message body) messages, and adding descriptions
related to the resource state (precondition and effects). Finally, assuming query interfaces, the interface
descriptions could cover access restrictions related to the shape and structure of queries, e.g., query

variables that have to be bound.

e Knowledge representation: assuming an RDF-based knowledge representation format, we could layer
ontology languages with progressively more expressive power on top, starting with RDFS, OWL LD
and then the more expressive OWL 2 profiles.

e Agent architecture: finally, we could assume different agent architectures [8], ranging from simple reflex

agents, model-based reflex agents, goal-based agents, utility-based agent to learning agents.

The initial reaction is to go for the most expressive choice in the area (or areas) one is familiar with,
while not considering the areas one does not know about or care. For readers interested in approaches that
maximise the feature set along almost every dimension we recommend to consult the extensive work on

semantic web services.

2.2 Constraints on the Dimensions

To reduce the effort for integrated access to component state, we assume the following constraints for the

uniform interfaces to components and the application model:

e Network protocol: we assume a REST-based abstraction, where each component provides resources
that are identified via URIs. Components provide a HTTP server interface and allow for read (GET)
and write (PUT) operations on the provided resources using HTTP. These constraints relate to RMM
level 26. RMM level 2 roughly means that we regard things as resources and identify the resources
with URIs. Communication on RMM level 2 is done using HTTP requests preferring HTTP methods
that match the kind of communication act (e.g. reading with GET and updating with PUT, instead
of using POST for both).

e Message semantics: we assume information about the state of resources to be transferred in successful
GET and PUT requests.

e Interface descriptions: we do not assume any interface descriptions, but require that the interfaces
actually follow the HT'TP semantics.

e Knowledge representation: we assume that the resource state is represented in RDF and support
RDFS and a small subset of OWL called OWL LD, which works well together with SPARQL, the
query language for RDF. We assume that the RDF documents provide hyperlinks to other resources.
In addition, we assume that there exists an index resource on each component as entry point, and that

the index resource links to other resources on the same component.

Shttp://martinfowler.com/articles/richardsonMaturityModel.html



e Agent architecture: we assume simple reflex agents. Straightforward should be an extension to model-
based reflex agents that know about the semantics of HT'TP operations. We do not consider goal-based
agents, as those would require expressive interface descriptions as input for the automated planning

procedure.

Roughly, for the interfaces to components we assume an interface adhering to the Linked Data principles’,
modulo the fact that Linked Data is read-only, that is, supports HTTP GET only. Read-Write Linked Data®
and the Linked Data Platform specification® explain how to support full CRUD operations in conjunction
with Linked Data.

2.3 A Constrained Application Model

In the following we present an application model following the outlined constraints. We call an outgoing
HTTP request an action, and an incoming HTTP request an event. For each request/response pair, we say
that a user agent emits an action (the outgoing HTTP request), and an origin server receives an event (the
incoming HTTP request) [1].

We limit the number of active components per application to one, similar to an orchestration in web
services; that active component is a HTTP user agent that polls resource state and issues unsafe requests
where applicable. The requirement for one user agent per application could be relaxed, but is useful in the
beginning to reduce complexity. Also, one could add a server interface to the controlling component in an
application. However, the same argument regarding reduced complexity applies.

Please note that the constraints are not minimal, that is, component providers are free to include support
for additional features, for example HT'TP 2.0 server push or COAP observe, or expressive OWL 2 knowledge
representation.

We require uniform interfaces for two reasons: first, to be able to reuse components between applications
and thus drive the overall integration cost down; second, we want to specify application behaviour over
different networked components using high-level executable specifications. Applications could be seen as
simple reflex agents with behaviour specified in condition-action rules. The applications are structured

around a sense-act cycle:

e In the sense step, the interpreter acquires the current state of the relevant resources, including the
following of links to discover new resources and fetch their state. How to follow links is specified
using condition-action rules. Conditions are evaluated over the current resource state as known by the
interpreter (optionally taking into account the semantics of RDFS and OWL LD terms), and actions
are HT'TP GET requests to fetch new data. Optionally, the interpreter can evaluate a query over the

integrated resource state at the end of the sense cycle.

e In the act step, the interpreter applies condition-action rules to decide on which unsafe requests (re-
quests that change the state of resources) should be carried out. Conditions are evaluated over the
current resource state as known by the interpreter, and actions are HTTP PUT, POST, DELETE,

PATCH requests to manipulate resource state.

"https://waw.w3.org/Designlssues/LinkedData.html
8https://wuw.w3.org/Designlssues/ReadWritelinkedData.html
https://www.w3.org/TR/1dp/



The interpreter could run applications in two modes:

e Time-triggered: the sense-act cycle runs at specified times.

e Event-triggered: the sense-act cycle runs whenever a specified event (incoming request) has taken

place.

Given that our agents do not provide a server interface, the agents cannot receive events and hence all

our applications are time-triggered.

3 Resolving Mismatches Between Architectures

We now consider how to resolve mismatches that may occur when integrating components from different
system architectures. We distinguish between protocol mismatches, syntax mismatches, and semantic mis-
matches.

Some of the mismatches occur because the source components support more features than our minimal
constraints. However, even if all source components stay within the set out constraints, some mismatches

may occur.

3.1 Mapping Different Protocols

Because not all components implement the constrained interface, we require wrappers (a.k.a. shims, admin-
istration shell, lifting/lowering) to bring the components to the same level. Next to syntax and semantics of
resource representations (covered in the following sections), we might need to map fundamentally different
networking protocol paradigms.

The constrained interface assumes a HTTP server interface access, with the components being passive
and waiting for incoming requests.

Some networking environments assume active components, i.e., components that emit data at intervals.
To be able to include those components in our system architecture, we require a wrapper that provides the
current resource state via GET on HTTP URIs. That is, the wrapper has to receive the messages from an
active component and store the resource state internally, and make the resource state (passively) accessible
via GET on URIs. Analogously, changing resource state (via PUT, POST or DELETE) has to be converted
to the appropriate messaging format and then sent on to the final destination.

We have implemented such a protocol mapping between the Robot Operating System (ROS) message
bus and our Read-Write Linked Data interface abstraction. The potential drawback is that polling is out of
sync with the arrival of events, and that the application might miss state changes due to a polling frequency

that is out of sync with the update frequency.

3.2 Mapping Different Representation Syntax

Even if all components provide HTTP server interface, the representation of the data might still differ
(for example, binary formats, CSV, TSV, JSON or XML). Hence, the wrapper (sometimes also called

“administration shell” or “adaptor”) needs to lift the data model of the different components to a common



data model. We assume the RDF data model. Given that RDF can be serialised into different surface
syntaxes, the wrappers can choose to support different serialisations, for example RDF /XML, JSON-LD or
Turtle.

3.3 Mapping Different Representation Semantics

Even if all sources use the RDF data model consisting of subject/predicate/object triples, data from different
providers might be structured and represented differently. We survey the different ways to represent data
even within the RDF data model in the following.

3.3.1 Different Terminology

Different ontologies have been defined with different assumptions. SOSA'Y, for example, assumes that
we want to model a way to represent a journal of sensing and actuating activities. SOSA includes a
sosa:0bservation and a sosa:Actuation class. Instances of these classes represent results from obser-
vation and actuation events. The communication protocol is unspecified. However, the modellers assume
implicitly some service-oriented architecture.

SOSA is not directly applicable to RMM level 2 architectures. Performing a GET on a resource that
returns an instance of (the latest) sosa:Observation could be seen as adhering to the defined HTTP
GET semantics (intuitively, return the current resource state upon GET). The result of a PUT (in SOA
terminology the postcondition or effect) is an instance of sosa:Actuation, which could be sent in a response
message to a PUT. However, it is unclear what the message body should be for a PUT request if we received
a sosa:0Observation in the response to a GET request.

Web of Things Thing Description (TD), on the other hand, has a more immediate state-based represen-
tation. State representations include the “writable” flag, which indicates whether a representation (such the
current temperature reading or the state of a switch) can be written.

If the mental models (concerning the resources) of different vocabulary terms are similar, then different
terms can be easily mapped using RDF-based technologies. For example, TD could be mapped to SSN using
the following triple:

td:Thing rdfs:subClass0f ssn:System .

Please note that both SSN/SOSA and TD are still being specified, so any text in this paper related to

these vocabularies could be outdated at the time of reading.

3.3.2 Different Modelling Granularity

Modelling granularity refers the meaning of resources. Consider two datasets about cities. One dataset uses
a resource to identify the city of Berlin, whereas another dataset uses a resource to identify the metropolitan
region of Berlin. As the different sources use different modelling granularity, one has to careful when mapping

resources from different sources.

Onttps://w3c.github.io/sdw/ssn/



3.3.3 Different Assumptions about Time and Aspect

Another mismatch on the level of semantics is that of aspect (related to linguistic aspect). Messages could
be represented as current state (for example, lat/long of the position of a person), or using a higher-level
description (for example, stating that the person is walking from A to B). Integration of the different aspects

(resource-based vs. event-based) is an open challenge.

4 Building User Agent Applications Under our Constraints

The goal of our prototypes was to have executable specifications of user agent application behaviour. Given
that we wanted to reduce complexity as much as possible for our minimal system architecture, we wrote
application behaviour using directly executable condition-action rules. That is, we implemented simple reflex
agents as opposed to goal-based agents.

Some people in our projects were not comfortable with specifying rule-based agents, so they access the
component state with code in imperative programming languages. We first briefly discuss such an approach,

before introducing the sense-act cycle and finally discussing goal-based agents.

4.1 Accessing Component State using Imperative Programming Languages

Another scenario emerged in one of our projects where partners wanted to interface with components in
procedural programming languages (rather than using condition-action rules). They needed to generate
messages from programming language objects. To that end, the open world assumption in RDFS and
OWL turned out to be problematic, as validation of incoming and outgoing messages was not possible (for
serialisation and deserialisation). Hence, the vocabulary descriptions in RDFS and OWL were augmented

with descriptions in SHACL!! to specify request (input) and response (output) message bodies.

4.2 Safe Requests and Link Following (Sense)

To have resource state available locally, an application has to specify some initial resources that form the
basis for further processing. For example, the following two RDF triples encode a HTTP GET request to

an index resource of an IoT device.

[] http:mthd httpm:GET;
http:requestURI <http://raspi.example.org/index.ttl> .

We can also write rules that follow links. We use condition-action request rules encoded in Notation3
syntax with request templates in the rule heads. Notation3 is a superset of Turtle, and extends the RDF
data model with variables and graph quoting, so that subject and object of triples can be entire graphs.

The following rule specifies that “next” links should be followed (for example, to fetch all data from a

paged representation):

{ ?x :next 7next . } => { [] http:mthd httpm:GET;
http:requestURI 7next . } .

Mhttps://wuw.w3.org/TR/shacl/



Such rules allow for specifying that certain links to URIs should be followed.
URI templates are another way to specify links:

{ ?x :latitude 7lat ; :longitude 7long . 3 =
{ [] http:mthd httpm:GET;
http:requestURI "http://geo.example.org/?la={lat}&lo={long}" . } .

The evaluation of rules works as follows. The interpreter starts with carrying out the initial requests.
The combined resource state forms the basis over which the conditions in the condition-action rules are
evaluated. The interpreter applies these condition-action rules to exhaustion, that is, until now new data
(or requests) can be generated anymore and a fixpoint is reached.

After carrying out the GET requests (the sense part of a cycle), the local dataset contains all relevant
sources. We can optionally take into account the semantics of RDFS terms and a subset of OWL terms
encoded in derivation rules. We can also evaluate a SPARQL query on the local dataset containing the (more
or less) current resource state. Depending on the size of the data and response times of the components, we

can run 10 to 50 sense procedures per second.

4.3 Unsafe Requests (Act)

To issue unsafe requests, we allow for unsafe request templates in the head of rules:

{ ?x :temperature 7temp .
7temp :greaterThan 20 . } =>
{ [1 http:mthd httpm:PUT;
http:requestURI "http://raspi.example.org/r/heating" ;
http:body { [] a :State ; :state :0ff . } } .

As our immediate goal is to provide high-level executable specifications based on rules, we assume that
people who write rules know the interface and the required payload and hence do not need descriptions.

The interpreter executes the unsafe requests in the act procedure only after the sense procedure has been
concluded. The rule application could be non-deterministic, as there could be multiple rules that overwrite
the state of the same resources. If one cannot get rid of non-determinism by changing the condition of the
relevant rules, different conflict resolution strategies could be applied.

In a sense, the input description (which parameters to supply) is in the rule heads (the action part). A
description of the parameters is in the rule body (the condition part). With enough applications specifying
rules similar to the one above, it would be possible to extract input descriptions from these rule-based

programs.

4.4 A Model of Computation for our Architecture

For a formal grounding for our rule-based user agent applications, we seek a model of computation to
estimate the power of the approach, and to formally align the application architecture with other behaviour
description works such as programming and workflow languages. In theoretical computer science, Abstract

State Machines have been developed as a formal approach to specify semantics in the context of computation.



Abstract State Machines are defined using model theoretic structures, where the interpretation of symbols
changes over time governed by transitions given in rules. Hence, Abstract State Machines is concerned
with the dynamics of interpretations. In RDF model theory however, static structures are in the focus,
with elaborate semantic conditions on the interpretations. For dynamics in the context of RDF, HTTP
requests are employed (Read-Write Linked Data). Currently, we are investigating that the combination of
technologies in our architecture, namely of RDF, Linked Data, and condition-action rules on the one side,
with the theoretical foundation in Abstract State Machines on the other side, consists in network-accessible

data employing elaborate knowledge representation with a Turing-complete model of computation.

4.5 Why Not Have Goal-based Agents?

The rules specifying application behaviour could also be generated using an Al planning approach, based on
IOPE descriptions'? and a goal specification. Approaches such as RESTdesc [11] provide a way to encode
such descriptions in N3 syntax'?, and, in conjunction with a planning algorithm, would yield executable
plans. In contrast, we use N3 rules to write down executable plans directly.

In earlier version of our prototypes we have included descriptions of the input and output of services [9].
For example, the required parameter for GET requests (encoded in the URI), and the output of the response
message. However, for our simple reflex agents we wrote rules directly encoding the parameters in URI tem-
plates and did not make use of the descriptions. The descriptions, because they were manually constructed
and did not serve a purpose (not even for generating documentation), soon became outdated, as developers
changed the API but did not change the descriptions. Thus, due to the high modelling effort for providing
descriptions that specify input, output, precondition and effect, we have reserved such approaches for future
work.

Goal-based agents would have required elaborate descriptions of the interfaces to the components, and
a goal specification that serves as input to the automated planning algorithm. The automated planning
algorithm would then figure out which components to arrange in which way to achieve the goal, and output
essentially a close equivalent to simple reflex agents. Please observe that taking the shortcut of directly
specifying the simple reflex agent does not preclude us from using a more elaborate goal-based approach in
an additional layer.

In a sense, you can find very basic descriptions in the rules. Both safe and unsafe requests in our examples
contain input descriptions (which parameters to supply) in the rule heads (the action part). A description
of the parameters is in the rule body (the condition part). With enough applications specifying rules similar

to the one above, it would be possible to extract input descriptions from our rule-based programs.

5 Conclusion

Data integration and system interoperation are complex problems. We believe that in order to at least
solve some of the problems there have to be restrictions in place that (some would say severely) constrain
the features of the source components. The idea is to keep things simple. We have presented a system

architecture that provides integrated access to networked decentralised components following a constrained

2https://scholar.google.com/scholar?hl=en&q=iope+descriptions
Bhttps://wuw.w3.org/Designlssues/Notation3.html

10



interface in conjunction with a rule-based condition-action language to access resource state, integrate data
and specify application behaviour. We believe that the standardisation of interfaces can benefit from the
knowledge of which applications are supposed to make use of the interfaces, and how these applications are
going to be developed.

The system architecture synthesises network protocol, knowledge representation and agent architectures
into a unified approach. While each of the parts provide very powerful features, the synthesis requires to
reduce the feature set of each part to keep the complexity of the combination manageable. Each additional
feature imposes a higher implementation effort. While there is nothing wrong with the vision of having
goal-based, utility-based learning agents that get from components real-time push updates encoded in an
expressive OWL2 profile, our approach was to try to identify a minimally viable architecture that can form
the basis for more elaborate systems.

We have implemented the described interfaces and applications in several prototypes in the areas of
geospatial data integration [3] as well as industrial applications around product design and validation [5]. Our
prototypes achieve update rates sufficient for industrial requirements. For example, we have achieved update
rates of around 30 Hertz in virtual reality /augmented reality applications. We believe that the encountered
problems and the proposed solutions generalise to other application areas in the area of Industry 4.0 [2] and
the Internet of Things [4].

We have begun to work on a formalism based on state transition systems and mathematical logic to
provide a rigorous foundation for accessing components and specifying application behaviour [10], [1]. Our
short-term goal for the formalism is to find a way to specify application behaviour in a form way that is
directly executable. On top of the formalism we can layer additional functionality, for example to model
systems that detect conditions on integrated resource state described in RDF or to simplify application

development for casual users based on a workflow language.

References

[1] A. Harth and T. Kéfer. Towards specification and execution of linked systems. In Proceedings of the
28th Workshop Grundlagen von Datenbanken (GuD), pages 62—67, 2016.

[2] A. Harth, T. Kéafer, F. L. Keppmann, D. Rubinstein, R. Schubotz, and C. Vogelgesang. Flexible
industrielle vt-anwendungen auf basis von webtechnologien. In VDE Kongress 2016, Internet der Dinge,
2016.

[3] A. Harth, C. A. Knoblock, S. Stadtmiiller, R. Studer, and P. A. Szekely. On-the-fly integration of static
and dynamic sources. In Proceedings of the Fourth International Workshop on Consuming Linked Data,
2013.

[4] T. Kéfer, S. R. Bader, L. Heling, R. Manke, and A. Harth. Exposing internet of things devices on
rest and linked data interfaces. In Proceedings of the 2nd International Workshop on Interoperability &
Open Source Solutions for the Internet of Things at the 6th International Conference on the Internet of
Things, 2016.

11



[5]

T. Kéfer, A. Harth, and S. Mamessier. Towards declarative programming and querying in a distributed
cyber-physical system: The i-vision case. In Proceedings of the 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPSData) at the 9th CPS week, pages 1-6, 2016.

F. L. Keppmann, T. Kéfer, S. Stadtmiiller, R. Schubotz, and A. Harth. High performance linked data
processing for virtual reality environments. In Proceedings of P&D at the 13th International Semantic
Web Conference (ISWC), 2014.

F. L. Keppmann, T. Kéfer, S. Stadtmiiller, R. Schubotz, and A. Harth. Integrating highly dynamic
restful linked data apis in a virtual reality environment (demo). In Proceedings of the 14th International
Symposium on Mized and Augmented Reality (ISMAR), pages 347-348, 2014.

S. J. Russell and P. Norvig. Artificial intelligence - a modern approach: the intelligent agent book.

Prentice Hall series in artificial intelligence. Prentice Hall, 1995.

S. Speiser and A. Harth. Integrating linked data and services with linked data services. In Proceedings
of 8th Extended Semantic Web Conference (ESWC), 2011.

S. Stadtmiiller, S. Speiser, A. Harth, and R. Studer. Data-fu: A language and an interpreter for
interaction with Read/Write Linked Data. In Proceedings of the 22nd International Conference on
World Wide Web (WWW), pages 1225-1236, 2013.

R. Verborgh, T. Steiner, D. V. Deursen, R. V. de Walle, and J. G. Valls. Efficient Runtime Service
Discovery and Consumption with Hyperlinked RESTdesc. In The 7th International Conference on Next

Generation Web Services Practices, 2011.

12



