
Under review as a conference paper at ICLR 2018

EFFICIENTLY APPLYING ATTENTION
TO SEQUENTIAL DATA WITH THE
RECURRENT DISCOUNTED ATTENTION UNIT

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent Neural Networks architectures excel at processing sequences by mod-
elling dependencies over different timescales. The recently introduced Recurrent
Weighted Average (RWA) unit captures long term dependencies far better than
an LSTM on several challenging tasks. The RWA achieves this by applying at-
tention to each input and computing a weighted average over the full history of
its computations. Unfortunately, the RWA cannot change the attention it has as-
signed to previous timesteps, and so struggles with carrying out consecutive tasks
or tasks with changing requirements. We present the Recurrent Discounted Atten-
tion (RDA) unit that builds on the RWA by additionally allowing the discounting
of the past.
We empirically compare our model to RWA, LSTM and GRU units on several
challenging tasks. On tasks with a single output the RWA, RDA and GRU units
learn much quicker than the LSTM and with better performance. On the mul-
tiple sequence copy task our RDA unit learns the task three times as quickly as
the LSTM or GRU units while the RWA fails to learn at all. On the Wikipedia
character prediction task the LSTM performs best but it followed closely by our
RDA unit. Overall our RDA unit performs well and is sample efficient on a large
variety of sequence tasks.

1 INTRODUCTION

Many types of information such as language, music and video can be represented as sequential data.
Sequential data often contains related information separated by many timesteps, for instance a poem
may start and end with the same line, a scenario which we call long term dependencies. Long term
dependencies are difficult to model as we must retain information from the whole sequence and this
increases the complexity of the model.

A class of model capable of capturing long term dependencies are Recurrent Neural Networks
(RNNs). A specific RNN architecture, known as Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), is the benchmark against which other RNNs are compared. LSTMs have
been shown to learn many difficult sequential tasks effectively. They store information from the past
within a hidden state that is combined with the latest input at each timestep. This hidden state can
carry information right from the beginning of the input sequence, which allows long term dependen-
cies to be captured. However, the hidden state tends to focus on the more recent past and while this
mostly works well, in tasks requiring equal weighting between old and new information LSTMs can
fail to learn.

A technique for accessing information from anywhere in the input sequence is known as attention.
The attention mechanism was introduced to RNNs by Bahdanau et al. (2014) for neural machine
translation. The text to translate is first encoded by a bidirectional-RNN producing a new sequence
of encoded state. Different locations within the encoded state are focused on by multiplying each of
them by an attention matrix and calculating the weighted average. This attention is calculated for
each translated word. Computing the attention matrix for each encoded state and translated word
combination provides a great deal of flexibility in choosing where in the sequence to attend to, but

1

Under review as a conference paper at ICLR 2018

the cost of computing these matrices grows as a square of the number of words to translate. This
cost limits this method to short sequences, typically only single sentences are processed at a time.

The Recurrent Weighted Average (RWA) unit, recently introduced by Ostmeyer and Cowell (2017),
can apply attention to sequences of any length. It does this by only computing the attention for each
input once and computing the weighted average by maintaining a running average up to the current
timestep. Their experiments show that the RWA performs very well on tasks where information is
needed from any point in the input sequence. Unfortunately, as it cannot change the attention it
assigns to previous timesteps, it performs poorly when asked to carry out multiple tasks within the
same sequence, or when asked to predict the next character in a sample of text, a task in which new
information is more important than old.

We introduce the Recurrent Discounted Attention (RDA) unit, which extends the RWA by allowing it
to discount the attention applied to previous timesteps. As this adjustment is applied to all previous
timesteps at once, it continues to be efficient. It performs very well both at tasks requiring equal
weighting over all information seen and at tasks in which new information is more important than
old.

The main contributions of this paper are as follows:

1. We analyse the Recurrent Weighted Average unit and show that it cannot output certain
simple sequences.

2. We propose the Recurrent Discounted Attention unit that extends the Recurrent Weighted
Average by allowing it to discount the past.

3. We run extensive experiments on the RWA, RDA, LSTM and GRU units and show that the
RWA, RDA and GRU units are well suited to tasks with a single output, the RDA performs
best on the multiple sequence copy task while the LSTM unit performs better on the Hutter
Prize Wikipedia dataset.

Our paper is setout as follows: we present the analysis of the RWA (sections 3 and 4) and propose
the RDA (section 5). The experimental results (section 6), discussion (section 7) and conclusion
follow (section 8).

2 RELATED WORK

Recently many people have worked on using RNNs to predict the next character in a corpus of
text. Sutskever et al. (2011) first attempted this on the Hutter Prize Wikipedia datasets using the
MRNN archtecture. Since then many architectures (Graves, 2013; Chung et al., 2015; Kalchbrenner
et al., 2015; Rocki, 2016; Zilly et al., 2016; Ha et al., 2016; Chung et al., 2016) and regularization
techniques (Ba et al., 2016; Krueger et al., 2016) have achieved impressive performance on this task,
coming close to the bit-per-character limits bespoke compression algorithms have attained.

Many of the above architectures are very complex, and so the Gated Recurrent Unit (GRU) is a much
simpler design that achieves similar performance to the LSTM. Our experiments confirm previous
literature (Chung et al., 2014) that reports it performing very well.

Attention mechanisms have been used in neural machine translation by Bahdanau et al. (2014). Xu
et al. (2015) experimented with hard-attention on image where a single location is selected from
a multinomial distribution. Xu et al. (2015) introduced the global and local attention to refer to
attention applied to the whole input and hard attention applied to a local subset of the input.

An idea related to attention is the notion of providing additional computation time for difficult inputs.
Graves (2016) introduce shows that this yields insight into the distribution of information in the input
data itself.

Several RNN architectures have attempted to deal with long term dependencies by storing informa-
tion in an external memory (Graves et al., 2014; 2016).

2

Under review as a conference paper at ICLR 2018

3 RECURRENT WEIGHTED AVERAGE

At each timestep the Recurrent Weighted Average model uses its current hidden state ht−1 and the
input xt to calculate two quantities:

1. The features zt of the current input:

ut =Wu · xt + bu

gt =Wg · [xt, ht−1] + bg

zt = ut � tanh gt

where ut is an unbounded vector dependent only on the input xt, and tanh gt is a bounded
vector dependent on the input xt and the hidden state ht−1.
Notation: W are weights, b are biases, (·) is matrix multiplication, and � is the element-
wise product.

2. The attention at to pay to the features zt:

at = eWa·[xt,ht−1]+ba

The hidden state ht is then the average of of the features zt, weighted by the attention at, and
squashed through the hyperbolic tangent function:

ht = tanh

(∑t
i=1 zi � ai∑t
i=1 ai

)

This is implemented efficiently as a running average:

nt = nt−1 + zt � at
dt = dt−1 + at

ht = tanh

(
nt
dt

)
where nt is the numerator and dt is the denominator of the average.

4 PROPERTIES OF THE RECURRENT WEIGHTED AVERAGE

The RWA shows superior experimental results compared to the LSTM on the following tasks:

1. Classifying whether a sequence is longer than 500 elements.

2. Memorising short random sequences of symbols and recalling them at any point in the
subsequent 1000 timesteps.

3. Adding two numbers spaced randomly apart on a sequence of length 1000.

4. Classifying MNIST images pixel by pixel.

All of these tasks require combining the full sequence of inputs into a single output. It makes perfect
sense that an average over all timesteps would perform well in these tasks.

On the other hand, we can imagine tasks where an average over all timesteps would not work effec-
tively:

1. Copying many input sequences from input to output. It will need to forget sequences once
they have been output.

2. Predicting the next character in a body of text. Typically, the next character depends much
more on recent characters than on those from the beginning of the text.

3. Outputting the parity of an input sequence ht = −1tc for 0 < c < 1.

3

Under review as a conference paper at ICLR 2018

All of these follow from the property that dt is monotonically increasing in t, which can be seen
from at > 0 and dt = dt−1+at. As dt becomes larger, the magnitude of at must increase to change
the value of ht. This means that it becomes harder and harder to change the value of ht to the point
where it almost becomes fixed. In the specific case of outputting the sequence ht = −1tc we can
show that at must grow geometrically with time.

Lemma 1 Let the task be to output the sequence ht = −1tc for 0 < c < 1. Let ht be defined by
the equations of the Recurrent Weighted Average, and let zt be bounded and fh be a continuous,
monotonically increasing surjection from R→ (−1, 1).
Then, at grows geometrically with increasing t.

Proof. Provided in Appendix A. �

Corollary 2 If at is also bounded then it cannot grow geometrically for all time and so the RWA
cannot output the sequence ht = −1tc.
Corollary 2 suggests that the Recurrent Weighted Average may not actually be Turing Complete.

Overall, these properties suggest the the RWA is a good choice for tasks with a single result, but not
for sequences with multiple results or tasks that require forgetting.

5 THE RECURRENT DISCOUNTED ATTENTION UNIT

The RDA uses its current hidden state ht−1 and the input xt to calculate three quantities:

1. The features zt of the current input are calculated identically to the RWA:

ut =Wu · xt + bu

gt =Wg · [xt, ht−1] + bg

zt = ut � tanh gt

2. The attention at to pay to the features: zt

at = fa(Wa · [xt, ht−1] + ba)

Here we generalize attention to allow any function fa which is non-negative and monoton-
ically increasing. If we choose fa = exp, then we recover the RWA attention function.

3. The discount factor γt to apply to the previous values in the average

γt = σ(Wγ · [xt, ht−1] + bγ)

where σ is the sigmoid/logistic function defined as σ(x) = 1
1+e−x .

We use these values to calculate a discounted moving average. This discounting mechanism is
crucial in remediating the RWA’s inability to forget the past

nt = nt−1 � γt + zt � at
dt = dt−1 � γt + at

ht = fh

(
nt
dt

)
Here we generalize RWA further by allowing fh to be any function, and we also introduce a final
transformation to the hidden state ht to produce the output

ot = fo(ht)

5.1 CHOICES FOR THE ATTENTION FUNCTION fa , HIDDEN STATE FUNCTION fh AND OUTPUT
FUNCTION fo

The attention function fa(x) is a non-negative monotonically increasing function of x. There are
several possible choices:

4

Under review as a conference paper at ICLR 2018

• fa(x) = ex - This is used in the RWA.

• fa(x) = max(0, x) - Using a ReLU allows the complete ignoring of some timesteps with
linearly increasing attention for others.

• fa(x) = ln(1 + ex) - The softplus function is a smooth approximation to the ReLU.

• fa(x) = σ(x) - Using the sigmoid limits the maximum attention an input can be given.

The domain of the hidden activation function fh is the average nt

dt
. This average is bounded by the

minimum and maximum values of zt. Possible choices of fh include:

• fh(nt

dt
) = tanh(nt

dt
) - This is used in the RWA. We observed that the range of nt

dt
mostly

remained in the linear domain of tanh centred around 0, suggesting that using this was
unneccessary.

• fh(nt

dt
) = nt

dt
- The identity is our choice for fh in the RDA.

Possible choices for the output function fo are:

• fo(ht) = ht - The RWA uses the identity as its hidden state has already been transformed
by tanh.

• fo(ht) = tanh(ht) - The output can be squashed between [−1, 1] using tanh.

6 EXPERIMENTS

We ran experiments to investigate the following questions:

1. Which form of the RDA works best? (Section 6.2)

2. The RWA unit works remarkably well for sequences with a single task. Does the RDA unit
retain this strength? (Section 6.3)

3. We expect the RWA unit to struggle with consecutive independent tasks. Does this happen
in practice and does the RDA solve this problem? (Section 6.4)

4. How does the RDA unit scale up to very long sequences? We test character prediction on
the Hutter Prize Wikipedia dataset. (Section 6.5)

5. How does the RDA unit compare to RWA, LSTM and GRU units? Are some units more
suited to certain types of tasks than others? (Section 7)

We provide plots of the training process in Appendix B.

6.1 IMPLEMENTATION DETAILS

For all tasks except the Wikipedia character prediction task, we use 250 recurrent units. Weights
are initialized using Xavier initialization (Glorot and Bengio, 2010) and biases are initialized to
0, except for forget gates and discount gates which are initialized to 1 (Gers, Schmidhuber, and
Cummins, 2000). We use mini-batches of 100 examples and backpropagate over the full sequence
length. We train the models using Adam Kingma and Ba (2014) with a learning rate of 0.001.
Gradients are clipped between -1 and 1.

For the Wikipedia task, we use a character embedding of 64 dimensions, followed by a single layer
of 1800 recurrent units, and a final softmax layer for the character prediction. We apply truncated
backpropagation every 250 timesteps, and use the last hidden state of the sequence as the initial
hidden state of the next sequence to approximate full backpropagation.

All of our experiments are implemented in TensorFlow (Abadi et al., 2016).

6.2 EMPIRICAL EVALUATION OF RDA ACTIVATION FUNCTIONS

We ran our experiments with different combinations of fa and fo and found the following:

5

Under review as a conference paper at ICLR 2018

Addition

Model Steps until loss < 0.001

GRU 2036
LSTM > 10000

RDA-exp-tanh 1781
RDA-sigmoid-id 2016

RWA 1735

Table 1: Addition: steps until loss < 0.001.

Classify Length

Model Steps until accuracy = 1.0.

GRU 71
LSTM 776

RDA-exp-tanh 164
RDA-sigmoid-id 414

RWA 133

Table 2: Classify: steps until accuracy = 1.0.

MNIST

Model Test Set Accuracy

GRU 0.985
LSTM 0.114

RDA-exp-tanh 0.985
RDA-sigmoid-id 0.987

RWA 0.979

Table 3: MNIST test set accuracy.

MNIST permuted

Model Permuted Test Set Accuracy

GRU 0.944
LSTM 0.915

RDA-exp-tanh 0.905
RDA-sigmoid-id 0.913

RWA 0.899

Table 4: MNIST permuted test set accuracy.

• Using a ReLU for the attention function fa almost always fails to train. Using a Softplus
for fa is much more stable than a ReLU. However, it doesn’t perform as well as using
sigmoid or exponential attention.

• Exponential attention performs well in all tasks, and works best with the tanh output func-
tion fo(ht) = tanh(ht). We refer to this as RDA-exp-tanh.

• Sigmoid attention performs well in all tasks, and works best with the identity output func-
tion fo(ht) = ht. We refer to this as RDA-sigmoid-id.

• It is difficult to choose between RDA-exp-tanh and RDA-sigmoid-id. RDA-exp-tanh often
trains faster, but it sometimes diverges with NaN errors during training. RDA-sigmoid-id
trains slower but is more stable, and tends to have better loss.
We include results for both of them.

6.3 SINGLE TASK SEQUENCES

Here we investigate whether sequences with a single task can be performed as well with the RDA as
with the RWA.

Each of the four tasks detailed below require the RNN to save some or all of the input sequence
before outputting a single result many steps later.

1. Addition - The input consists of two sequences. The first is a sequence of numbers each
uniformly sampled from [0, 1], and the second consists of all zeros except for two ones
which indicate the two numbers of the first sequence to be added together. (Table 1)

2. Classify length - A sequence of length between 1 and 1000 is input. The goal is to classify
whether the sequence is longer than 500.
All RNN architectures could learn their initial hidden state for this task, which improved
performance for all of them. (Table 2)

3. MNIST - The task is supervised classification of MNIST digits. We flatten the 28x28 pixel
arrays into a single 784 element sequence and use RNNs to predict the digit class labels.
This task challenges networks’ ability to learn long-range dependencies, as crucial pixels
are present at the beginning, middle and end of the sequence. We implement two variants
of this task:

(a) Sequential - the pixels are fed in from the top left to the bottom right of the image.
(Table 3)

6

Under review as a conference paper at ICLR 2018

Copy

Model Steps until accuracy > 0.999

GRU 5329
LSTM > 20000

RDA-exp-tanh 11831
RDA-sigmoid-id 9840

RWA 5660

Table 5: Copy: steps until accuracy > 0.999

Multicopy

Model Steps until accuracy > 0.99

GRU 3984
LSTM 4048

RDA-exp-tanh 1114
RDA-sigmoid-id 1316

RWA > 10000

Table 6: Multicopy: steps until accuracy > 0.99

Hutter Prize Wikipedia

Model BPC

Stacked LSTM (Graves, 2013) 1.67
MRNN (Sutskever et al., 2011) 1.60
GF-LSTM (Chung et al., 2015) 1.58

Grid-LSTM (Kalchbrenner et al., 2015) 1.47
MI-LSTM (Wu et al., 2016) 1.44

Recurrent Memory Array Structures (Rocki, 2016a) 1.40
HyperNetworks (Ha et al., 2016) 1.35

LayerNorm HyperNetworks (Ha et al., 2016) 1.34
Recurrent Highway Networks (Zilly et al., 2016) 1.32

LayerNorm LSTM† 1.39
HM-LSTM 1.34

LayerNorm HM-LSTM 1.32

GRU (our implementation) 1.535
LSTM (our implementation) 1.492

RDA-exp-tanh N/A
RDA-sigmoid-id 1.529

RWA 5.067

PAQ8hp12 (Mahoney, 2005) 1.32
decomp8 (Mahoney, 2009) 1.28

Table 7: Bits per character on the Hutter Prize Wikipedia test set

(b) Permuted - the pixels of the image are randomly permuted before the image is fed in.
The same permutation is applied to all images. (Table 4)

4. Copy - The input sequence starts with randomly sampled symbols. The rest of the input is
blanks except for a single recall symbol. The goal is to memorize the starting symbols and
output them when prompted by the recall symbol. All other output symbols must be blank.
(Table 5)

6.4 MULTIPLE SEQUENCE COPY TASK

Here we investigate whether the different RNN units can cope with doing the same task repeatedly.

The tasks consists of multiple copying tasks all within the same sequence. Instead of having the
recall symbol randomly placed over the whole sequence it always appears a couple of steps after
the sequence being memorized. This gives room for 50 consecutive copying tasks in a length 1000
input sequence. (Table 6)

6.5 WIKIPEDIA CHARACTER PREDICTION TASK

The standard test for RNN models is character-level language modelling. We evaluate our models on
the Hutter Prize Wikipedia dataset enwik8, which contains 100M characters of 205 different symbols
including XML markup and special characters. We split the data into the first 90M characters for
the training set, the next 5M for validation, and the final 5M for the test set. (Table 7)

7

Under review as a conference paper at ICLR 2018

7 DISCUSSION

We start our discussion by describing the performance of each individual unit.

Our analysis of the RWA unit showed that it should only work well on the single task sequences and
we confirm this experimentally. It learns the single sequence tasks quickly but is unable to learn the
multiple sequence copy task and Wikipedia character prediction task.

Our experiments show that the RDA unit is a consistent performer on all types of tasks. As expected,
it learns single task sequences slower than the RWA but it actually achieves better generalization on
the MNIST test sets. We speculate that the cause of this improvement is because the ability to forget
effectively allows it to compress the information it has previously processed, or perhaps discounting
the past should be considered as changing the attention on the past and the RDA is able to vary its
attention on previous inputs based on later inputs. On the multiple sequence copy task the RDA
unit was far superior to all other units learning three times as fast as the LSTM and GRU units.
On the Wikipedia character prediction task the RDA unit performed respectably, achieving a better
compression rate than the GRU but worse than the LSTM.

The LSTM unit learns the single task sequences slower than all the other units and often fails to
learn at all. This is surprising as it is often used on these tasks as a baseline against which other
archtectures are compared. On the multiple sequence copy task it learns slowly compared to the
RDA units but solves the task. The Wikipedia character prediction task is where it performs best,
learning much faster and achieving better compression than the other units.

The GRU unit works very well on single task sequences often learning the fastest and achieving
excellent generalization on the MNIST test sets. On the multiple sequence copy task it has equal
performance to the LSTM. On the Wikipedia character prediction task it performs worse than the
LSTM and RDA units but still achieves a good performance.

We now look at how our results show that different neural network architectures are suited for
different tasks.

For our single output tasks the RWA, RDA and GRU units work best. Thus for similar real work
applications such as encoding a molecule into a latent representation, classification of genomic
sequences, answering questions or language translation, these units should be considered before
LSTM units. However, our results are yet to be verified in these domains.

For sequences that contain an unknown number of independent tasks the RDA unit should be used.

For the Wikipedia character prediction task the LSTM performs best. Therefore we can’t recom-
mend RWA, RDA or GRU units on this or similar tasks.

8 CONCLUSION

We analysed the Recurrent Weighted Average (RWA) unit and identified its weakness as the inability
to forget the past. By adding this ability to forget the past we arrived at the Recurrent Discounted
Attention (RDA). We implemented several varieties of the RDA and compared them to the RWA,
LSTM and GRU units on several different tasks. We showed that in almost all cases the RDA should
be used in preference to the RWA and is a flexible RNN unit that can perform well on all types of
tasks.

We also determined which types of tasks were more suited to each different RNN unit. For tasks
involving a single output the RWA, RDA and GRU units performed best, for the multiple sequence
copy task the RDA performed best, while on the Wikipedia character prediction task the LSTM
unit performed best. We recommend taking these results into account when choosing a unit for real
world applications.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Gre-
gory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. CoRR, abs/1603.04467,
2016. URL http://arxiv.org/abs/1603.04467.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/
abs/1409.0473.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. 2014. URL http://arxiv.org/
abs/1412.3555.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Gated feedback recurrent
neural networks. In International Conference on Machine Learning, pages 2067–2075, 2015.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. CoRR, abs/1609.01704, 2016. URL http://arxiv.org/abs/1609.01704.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 12(10):2451–2471, 2000.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pages 249–256, 2010.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.
URL http://arxiv.org/abs/1308.0850.

Alex Graves. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983,
2016. URL http://arxiv.org/abs/1603.08983.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL
http://arxiv.org/abs/1609.09106.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. CoRR,
abs/1507.01526, 2015. URL http://arxiv.org/abs/1507.01526.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rose-
mary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout:
Regularizing rnns by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305,
2016.

9

Under review as a conference paper at ICLR 2018

Jared Ostmeyer and Lindsay Cowell. Machine learning on sequential data using a recurrent weighted
average. arXiv preprint arXiv:1703.01253, 2017.

Kamil Rocki. Recurrent memory array structures. CoRR, abs/1607.03085, 2016. URL http:
//arxiv.org/abs/1607.03085.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 1017–1024, 2011.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning, pages 2048–2057, 2015.

Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
highway networks. CoRR, abs/1607.03474, 2016. URL http://arxiv.org/abs/1607.
03474.

10

Under review as a conference paper at ICLR 2018

Appendices
A MATHEMATICAL PROOFS

Lemma 1 Let the task be to output the sequence ht = −1tc for 0 < c < 1. Let ht be defined by
the equations of the Recurrent Weighted Average, and let zt be bounded and fh be a continuous,
monotonically increasing surjection from R→ (−1, 1).
Then, at grows geometrically with increasing t.

Proof

Given that the activation fh is a continuous, monotonically increasing surjection from R to (−1, 1),
we know that there are two values x+ and x− such that f(x+) = c and f(x−) = −c. Define
x+ − x− = δ.

Then for every even integer i, we have ni

di
= x+ and ni+1

di+1
= x−.

From the definitions of nt and dt we have

ni+1

di+1
=
ni + zi+1ai+1

di + ai+1
= x−

Substituting ni = dix+ and rearranging yields

ai+1 =
di(x− − x+)
zi+1 − x−

≥ di|δ|
|z|max + |x|max

where |z|max = max{|z|} and |x|max = max{|x+|, |x−|}.
Substituting this into di+1 = di + ai+1 gives us

di+1 ≥ di
(
1 +

|δ|
|z|max + |x|max

)

By a similar argument, we have the same growth for odd integers di+2 ≥ di+1

(
1 + |δ|

|z|max+|x|max

)
and we get geometric growth of dt.

From the definition of dt we have

ai = di+1 − di ≥ di
|δ|

|z|max + |x|max

As dt grows geometrically, then so does at. �

Corollary 2 If at is also bounded then it cannot grow geometrically for all time and so the RWA
cannot output the sequence ht = −1tc
Proof Assume the RWA can output the sequence ht = −1tc. As at grows geometrically, it is
unbounded, but this is a contradiction. �

11

Under review as a conference paper at ICLR 2018

B ILLUSTRATED EMPIRICAL RESULTS

We include figures of the loss function learning curves during training. In the case of MNIST, we
report on validation accuracy instead. These experiments provide evidence that the two flavours of
the RDA unit consistently perform close to the best across a broad range of tasks. Figures are best
viewed in colour.

0 500 1,000 1,500 2,000 2,500

0

0.1

0.2

0.3

0.4

0.5

Steps

L
os

s

GRU
LSTM

RDA-exp-tanh
RDA-sigmoid-id

RWA

(a) Addition task.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

Steps
L

os
s

(b) Classification task.

0 0.5 1 1.5 2

·104

10−1

100

101

102

103

104

Steps

L
os

s
(l

og
sc

al
e)

(c) Single copy task.

0 1,000 2,000 3,000 4,000 5,000

10−1

100

101

102

103

104

105

Steps

L
os

s
(l

og
sc

al
e)

(d) Multiple copy task.

0 1 2 3 4

·104

0

0.2

0.4

0.6

0.8

1

Steps

V
al

id
at

io
n

ac
cu

ra
cy

(e) MNIST, pixel per pixel classification.

0 0.5 1 1.5 2 2.5

·104

0.4

0.6

0.8

1

Steps

V
al

id
at

io
n

ac
cu

ra
cy

(f) MNIST permuted classification.

12

