
Workshop track - ICLR 2018

EXTENDING ROBUST ADVERSARIAL REINFORCE-
MENT LEARNING CONSIDERING ADAPTATION AND
DIVERSITY

Hiroaki Shioya, Yusuke Iwasawa, Yutaka Matsuo
The University of Tokyo
Bunkyo-Ku,Tokyo,Japan
{shioya,iwasawa,matsuo}@weblab.t.u-tokyo.ac.jp

ABSTRACT

We propose two extensions to Robust Adversarial Reinforcement Learning.
(Pinto et al., 2017) One is to add a penalty that brings the training domain closer
to the test domain to the objective function of the adversarial agent. The other
method trains multiple adversarial agents for one protagonist. We conducted ex-
periments with the physical simulator benchmark task. The results show that our
method improves performance in the test domain compared to the baseline.

1 INTRODUCTION

Deep reinforcement learning has developed in various domains such as video games (Mnih et al.,
2015), Go (Silver et al., 2016), and robots (Chebotar et al., 2017). However, deep reinforcement
learning requires so many trials that it is hard to apply to the real world problems.

To avoid high sample-complexity problems, transfer from simulation to the real world may be a
promising solution. However, the physical properties and physics in a simulator are not the same as
the real world. This modeling error often makes the policy fail to generalize to the test domain.

To mitigate this problem, we can train an agent in an environment as close as possible to the test
domain (Hanna, 2017), train in diverse domains as possible(Yu et al., 2017)(Peng et al., 2017), or
in a difficult domain.(Pinto et al., 2017)(Rajeswaran et al., 2016) Robust adversarial reinforcement
learning (RARL) (Pinto et al., 2017)is training jointly protagonist agent and adversarial agent to
learn a robust policy against adversarial disturbance. However, this approach does not consider how
close the training domain is to the test domain or the diversity of the domains.

We propose two extensions to RARL that take these two factors into account. One is to add a penalty
on the difference between the transition function of the training domain and that of the test domain
to the objective function of the adversarial agent. This penalty term forces the training domain not
only to be hard for the protagonist, but also to be close to test domain. The other method is to
train multiple adversarial agents simultaneously for one protagonist. Multiple adversarial agents are
capable of giving the protagonist more diverge samples than a single adversary.

We conducted experiments with the MuJoCo benchmark task in OpenAI gym. Our experiment
shows that our method has improved performance in the test domain compared to the baseline.

2 METHOD

2.1 ADD PENALTY FOR DIFFERENCE FROM TEST DOMAIN

We propose a method that force the adversarial agent to sample not only hard domains but also
close ones to the test domain. In original RARL, the adversarial agent minimize reward: minπadv

R
where R is sum of the reward rtof the episode and πadv is a policy of the adversarial agent. We add
this objective to a penalty term on the difference of the transition function of the training domain
which is changed by adversarial agent and that of the test domain, so as to train the protagonist in

1

Workshop track - ICLR 2018

the area close to the test domain. As a result, the adversarial agent optimize the following equation.
minπadv

R+ λL(S, T) where L(S, T) is a penalty term and λ is a hyper parameter.

The penalty term L(S, T) is calculated as follows: L(S, T) = 1
N

∑N
i ∥st+1 − Tt(st, at)∥2

where(st, at, st+1) is state-action-next state tuples from the training domain and Tt is a transition
function in the test domain. Tt is learned by using trajectories sampled by running the current policy
in the test domain.

The pseudocode of the proposed method is Algorithm1.

Algorithm 1 proposed algorithm
Initialize policy parameter θpro0 for πpro and θadv0 for πadv

for i = 1, 2...Nitr do
θproi ⇐ θproi−1
for j = 1, 2...Npro do

sample Ntraj trajectory (sit, a
ipro
t , riprot)i, i = 1...Ntraj from training domain

θproi ⇐ PolicyOptimizer((sita
ipro
t riprot)ii = 1...Ntraj ,θ

pro
i)

end for
θadvi ⇐ θadvi−1
if mod(Nitr,K) = 0 then

sample Ntraj trajectory (sit, a
ipro
t , riprot)i, i = 1...Ntraj from test domain

refit transition function for test domain
end if
for j = 1, 2...Nadv do

sample Ntraj trajectory (sit, a
ipro
t , riprot , aiadvt , riadvt)i, i = 1...Ntraj from training domain

θproi ⇐ PolicyOptimizer((sit, a
ipro
t , riprot , aiadvt , riadvt)i, i = 1...Ntraj ,θ

pro
i)

end for
end for

2.2 ROBUST ADVERSARIAL REINFORCEMENT LEARNING WITH MULTIPLE ADVERSARY

We propose a method that trains multiple adversarial agents for one protagonist. Multiple adversarial
agents are capable of giving the protagonist more diverge samples than single adversary.

To make the policy more robust, the simplest way is to use harder samples from all adversarial
agents. However, in our experiment, this method stops the learning process. To address this problem,
we prioritize the sample on which learning is progressing. In order to judge the progress of learning,
we use linear regression by using samples from each adversarial agent of the most recent T iterations
and use its regression coefficient.

Considering both how hard the sample is and the progress of learning, we rank samples: samples
whose regression coefficient is positive higher than samples whose regression coefficient is negative.
the internal ranks of the positive sample and negative sample were higher as the reward is higher.

According to the rank, We choose samples stochastically, which also prevents from using only too
hard samples and makes samples more diverge. The probability of selection for each sample is
given by the following equation.pj = λα

j /
∑

k λ
α
k whereλ = 1/rank, and α is a hyper parameter

that adjusts the importance of the ranking.

Also, to make the policies of the multiple adversarial agents more diverge, we add a penalty
of the objective. the objective function of the adversarial agent is as follows: minπadvi

R −
γ
∑

ij KL(πadvi(at|st)πadvj (at|st)) where KL(πadvi(at|st), πadvj (at|st)) is the KL divergence
of the i th adversarial agent and the j th adversarial agent policy and γ is a hyper parameter that
adjusts the weight of the penalty term.

3 EXPERIMENT

3.1 EFFECTIVENESS OF PENALTY FOR DIFFERENCE FROM TEST DOMAIN

We conducted experiments in the physical simulator MuJoCo task provided in OpenAI
gym(Brockman et al., 2016). We train policies in the environment of the default parameter of the

2

Workshop track - ICLR 2018

simulator, and test the policy in one different test domain with which our proposed method (and
Adaptation, mentioned later) interacts. We use Trust Region Policy Optimization(TRPO)(Schulman
et al., 2015) as the policy optimizer.

We compared the proposed method with the following methods. RARL(Pinto et al., 2017), Adap-
tation: We use the objective function of the adversarial agent represented in Section 2.1, omit-
ting the first term for minimizing the reward, TRPO-target: TRPO trained only in the target task
with the same number of iteration as the proposed method used to collect samples of the test
domain.(= Nitr/K) We use Nitr = 500, K = 10.

Hopper Walker2D HalfCheetah
test domain 1 test domain 2 test domain 3 test domain 1 test domain 2 test domain 1 test domain 2

RARL 1349.6±471.±0 1544.8±679.1 1555.9±694.5 842.2±577.4 461.9±354.2 1608.1±748.6 1608.9±755.1
Adaptation 1541±351.6 2097±295.2 1049.6±91.4 453.8±266.4 596.5±290.8 1991.1±718.1 1553.7±373.8

TRPO-target 902.3±681.3 811.5±606.6 806.6±608.4 237.3±70.7 296.1±61.5 90.6±60.7 40.9±116.9
proposed method 2077.5±462.1 2022.1±673.2 1632.1±624.6 1410.8±450.5 708.1±326.7 1101.0±70.7 1250.7±360.7

Table 1: the average reward ± standard deviation of each method on each task and test domain.

The results are presented in Table 1. Our method outperforms RARL in 5 out of 7 tasks and all the
other method in 4 out of 7 tasks.

3.2 EFFECTIVENESS OF MULTIPLE ADVERSARY AND SAMPLING METHOD

We conducted experiments in the MuJoCo benchmark task. We train policies in the environment of
the default parameter of the simulator, and evaluate the policy in 169 different test domains.

We compared the following methods.RARL(Pinto et al., 2017), max: Choose samples with lower
rewards in descending order, mean: Equally select samples from all adversarial agents. This corre-
sponds to α = 0 in the proposed method, soft: the proposed method. We set α = 1.

Figure 1: Percentile plot of different test domains. We run learned policies in 169 different test
domains and plot the results in descending order of rewards.

Experimental results are shown in Figure 1. It shows that mean has higher generalization per-
formance than RARL. This indicates the effectiveness of using multiple adversarial agents. Soft
outperforms mean in one task and not in the other. This suggests that the soft weighting can adjust
the performance of this method. Max get lower rewards in almost all the tasks than other methods
not only in easy environments but also in difficult ones. this suggests that when we use the max
method, protagonist fail to progress learning rather than learn too robust (or conservative) policy.

4 CONCLUSION

In this paper, We propose two extensions to RARL: One is to add a penalty that brings the training
domain closer to the test domain to the objective function of the adversarial agent, the other method
trains multiple adversarial agents for one protagonist. Our experiment shows that our method im-
proves performance in MuJoCo physical simulator task compared to the baseline.

3

Workshop track - ICLR 2018

REFERENCES

G. Brockman, V. Cheung, L. Pettersson, Schneider, Schulman J., and J. Zaremba W. J., Tang.
Openai gym. arXiv preprint, arXiv:1606.01540, 2016.

Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, and Levine S. Schaal, S. Path integral guided
policy search. In Robotics and Automation (ICRA), 2017 IEEE International Conference on (pp.
3381-3388). IEEE.:3381–3388, 2017.

P. Hanna, J. P. Stone. Grounded action transformation for robot learning in simulation. AAAI, pp.
3834–3840, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, and Veness J. Bellemare M. G. ... Petersen S. Rusu, A. A.
Human-level control through deep reinforcement learning. Neural Computation, 518(7540):
1527–1554, 2015.

X. B. Peng, M. Andrychowicz, and Abbeel P. Zaremba, W. Sim-to-real transfer of robotic control
with dynamics randomization. arXiv preprint, arXiv:1710.06537, 2017.

L. Pinto, R. Davidson, J.and Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
In International Conference on Machine Learning, pp. 2817–2826, 2017.

A. Rajeswaran, S. Ghotra, and Levine S. Ravindran, B. Epopt: Learning robust neural network
policies using model ensembles. arXiv preprint, arXiv:1610.01283, 2016.

J. Schulman, S. Levine, P. Abbeel, and Moritz P. Jordan, M. Trust region policy optimization. In
International Conference on Machine Learning, pp. 1889–1897, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, and ... Dieleman S. Van Den Driessche,
G. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489., 2016.

W. Yu, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy with online
system identification. arXiv preprint, arXiv:1702.02453, 2017.

4

	Introduction
	Method
	Add Penalty for Difference from Test Domain
	Robust Adversarial Reinforcement Learning with Multiple Adversary

	Experiment
	Effectiveness of Penalty for Difference from Test Domain
	Effectiveness of Multiple Adversary and Sampling Method

	Conclusion

