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ABSTRACT

Recent advances in neural variational inference have facilitated efficient training
of powerful directed graphical models with continuous latent variables, such as
variational autoencoders. However, these models usually assume simple, uni-
modal priors — such as the multivariate Gaussian distribution — yet many real-
world data distributions are highly complex and multi-modal. Examples of com-
plex and multi-modal distributions range from topics in newswire text to con-
versational dialogue responses. When such latent variable models are applied to
these domains, the restriction of the simple, uni-modal prior hinders the overall
expressivity of the learned model as it cannot possibly capture more complex as-
pects of the data distribution. To overcome this critical restriction, we propose a
flexible, simple prior distribution which can be learned efficiently and potentially
capture an exponential number of modes of a target distribution. We develop the
multi-modal variational encoder-decoder framework and investigate the effective-
ness of the proposed prior in several natural language processing modeling tasks,
including document modeling and dialogue modeling.

1 INTRODUCTION

With the development of the variational autoencoding framework (Kingma & Welling, 2013;
Rezende et al., 2014), a tremendous amount of progress has been made in learning large-scale,
directed latent variable models. This approach has lead to improved performance in applications
ranging from computer vision (Gregor et al., 2015; Larsen et al., 2015) to natural language pro-
cessing (Mnih & Gregor, 2014; Miao et al., 2015; Bowman et al., 2015; Serban et al., 2016b).
Furthermore, these models naturally incorporate a Bayesian modeling perspective, by enabling the
integration of problem-dependent knowledge in the form of a prior on the generating distribution.

However, the majority of models proposed assume an extremely simple prior in the form of a mul-
tivariate Gaussian distribution in order to maintain mathematical and computational tractability. Al-
though this assumption on the prior has lead to favorable results on several tasks, it is clearly a
restrictive and often unrealistic assumption. First, it imposes a strong uni-modal structure on the la-
tent variable space; latent samples from the generating model (prior distribution) all cluster around
a single mean. Second, it encourages local smoothness on the latent variables; the similarity be-
tween two latent variables decreases exponentially as their distance increase. Thus, for complex,
multi-modal distributions — such as the distribution over topics in a text corpus, or natural language
responses in a dialogue system — the uni-modal Gaussian prior inhibits the model’s ability to ex-
tract and represent important structure in the data. To learn more powerful and expressive models
— in particular, models with multi-modal latent variable structures for natural language processing
applications — we seek a suitable and flexible prior than can be automatically adapted to model
multiple modes of a target distribution.

∗First two authors contributed equally.
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In this paper, we propose the multi-modal variational encoder-decoder framework, introducing an
efficient, flexible prior distribution that is suitable for distributions such as those found in natural
language text. We demonstrate the effectiveness of our multi-modal variational architectures in two
representative tasks: document modeling and dialogue modeling. We find that our prior is able to
capture elements of a target distribution that simpler priors — such as the uni-modal Gaussian —
cannot model, thus allowing neural latent variable models to extract richer structure from data. In
particular, we achieve state-of-the-art results on several document modeling tasks.

2 RELATED WORK

The idea of using an artificial neural network to approximate an inference model dates back to the
90s (Hinton & Zemel, 1994; Hinton et al., 1995; Dayan & Hinton, 1996). However, initial attempts
at such an approach were hindered by the lack of low-bias, low-variance estimators of parame-
ter gradients. Traditionally, researchers resorted to Markov chain Monte Carlo methods (MCMC)
(Neal, 1992) which do not scale well and mix slowly, or to variational approaches which require a
tractable, factored distribution to approximate the true posterior distribution, usually under-fitting
it (Jordan et al., 1999). Others have since proposed using feed-forward inference models to effi-
ciently initialize the mean-field inference algorithm for incrementally training Boltzmann architec-
tures (Salakhutdinov & Larochelle, 2010; Ororbia II et al., 2015b). However, these approaches are
limited by the mean-field inference’s inability to model structured posteriors. Recently, Mnih &
Gregor (2014) proposed the neural variational inference and learning (NVIL) approach to match the
true posterior directly without resorting to approximate inference. NVIL allows for the joint training
of an inference network and directed generative model, maximizing a variational lower-bound on
the data log-likelihood and facilitating exact sampling of the variational posterior. Simultaneously
with this work, the variational autoencoder framework was proposed by Kingma & Welling (2013)
and Rezende et al. (2014). This framework is the motivation of this paper, and will be discussed in
detail in the next section.

With respect to document modeling, it has recently been demonstrated that neural architectures
can outperform well-established, standard topic models such as Latent Dirichlet Allocation (LDA)
(Blei et al., 2003). For example, it has been demonstrated that models based on the Boltzmann ma-
chine, which learn semantic binary vectors (binary latent variables), perform very well (Hofmann,
1999). Work involving discrete latent variables include the constrained Poisson model (Salakhut-
dinov & Hinton, 2009), the Replicated Softmax model (Hinton & Salakhutdinov, 2009) and the
Over-Replicated Softmax model (Srivastava et al., 2013), as well as similar, auto-regressive neural
architectures and deep directed graphical models (Larochelle & Lauly, 2012; Uria et al., 2014; Lauly
et al., 2016; Bornschein & Bengio, 2014). In particular, Mnih & Gregor (2014) showed that using
NVIL yields better generative models of documents than these previous approaches. The success
of these discrete latent variable models — which are able to partition probability mass into separate
regions — serve as the main motivation for investigating models with continuous multi-modal la-
tent variables for document modeling. More recently, Miao et al. (2015) have proposed continuous
latent variable representations for document modeling, which has achieved state-of-the-art results.
This model will be described later.

With respect to dialogue modeling, latent variable models were investigated by Bangalore et al.
(2008), Crook et al. (2009) as well as others. More recently, Zhai & Williams (2014) have proposed
three models combining hidden Markov models and topic models. The success of these discrete
latent variable models also motivates our investigation into dialogue models with multi-modal la-
tent variables. Most related to our work is the Variational Hierarchical Recurrent Encoder-Decoder
(VHRED) model by Serban et al. (2016b), which is a neural architecture with latent multivariate
Gaussian variables. This model will be described later.

There has been some work exploring alternative distributions for the latent variables in the varia-
tional autoencoder framework, including multi-modal distributions. Rezende & Mohamed (2015)
propose an approach called normalizing flows which computes a more complex, potentially multi-
modal distribution, by projecting standard Gaussian variables through a sequence of non-linear
transformations. This approach is similar to the inverse auto-regressive flow proposed by Kingma
et al. (2016). Unfortunately, both normalizing flows and auto-regressive flow are only applicable
to the approximate posterior distribution; typically these approaches require fixing the prior distri-
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bution to a uni-modal multivariate Gaussian. Furthermore, to the best of our knowledge, neither of
these approaches have been investigated in the context of larger scale text processing tasks, such as
the document modeling and dialogue modeling tasks we evaluate on. A complementary approach is
to combine variational inference with MCMC sampling (Salimans et al., 2015; Burda et al., 2015),
however this is computationally expensive and therefore difficult to scale up to many real-world
tasks. Enriching the latent variable distributions has also been investigated by Maaløe et al. (2016).

2.1 APPROACHES FOR LEARNING MULTI-MODAL LATENT VARIABLES

Mixture of Gaussians Perhaps the most direct and naive approach to learning multi-modal latent
variables is to parametrize the latent variable prior and approximate posterior distributions as a
mixture of Gaussians. However, the KL divergence between two mixtures of Gaussian distributions
cannot be computed in closed form (Durrieu et al., 2012). To train such a model, one would have
to either resort to MCMC sampling, which may slow down and hurt the training process due to the
high variance it incurs, or resort to approximations of the KL divergence, which may also hurt the
training process.1

Deep Directed Models An alternative to a mixture of Gaussians parametrization is to construct
a deep directed graphical model composed of multiple layers of uni-modal latent variables (e.g.
multivariate Gaussians) (Rezende et al., 2014). Such models have the potential to capture highly
complex, multi-modal latent variable representations through the marginal distribution of the top-
layer latent variables. However, this approaches has two major drawbacks. First, the variance of the
gradient estimator grows with the number of layers. This makes it difficult to learn highly multi-
modal latent representations. Second, it is not clear how many modes such models can represent
or how their inductive biases will affect their performance on tasks containing multi-modal latent
structure. The piecewise constant latent variables we propose do not suffer from either of these two
drawbacks; the piecewise constant variables incur low variance in the gradient estimator, and can,
in principle, represent a number of modes exponential in the number of latent variables.

Discrete Latent Variables A third approach for learning multi-modal latent representations is to in-
stead use discrete latent variables as discussed above. For example, the learning procedure proposed
by Mnih & Gregor (2014) for discrete latent variables can easily be combined with the variational
autoencoder framework to learn models with both discrete and continuous latent variables. How-
ever, the major drawback of discrete latent variables is the high variance in the gradient estimator.
Without further approximations, it might be difficult to scale up models with discrete latent variables
for real-world tasks.

3 THE MULTI-MODAL VARIATIONAL ENCODER-DECODER FRAMEWORK

We start by describing the general neural variational learning framework. Then we present our pro-
posed prior model aimed at enhancing the model’s ability to learn multiple modes of data distribu-
tions. We focus on modeling discrete output variables in the context of natural language processing
applications. However, the framework can easily be adapted to handle continuous output variables,
such as images, video and audio.

3.1 NEURAL VARIATIONAL LEARNING

Let w1, . . . , wN be a sequence of N words conditioned on a continuous latent variable z. In the
general framework, the distribution over the variables follows the directed graphical model:

Pθ(w1, . . . , wN , z) =

∫ N∏
n=1

Pθ(wn|w<n, z)Pθ(z)dz, (1)

where θ are the model parameters. The model first generates the higher-level, continuous latent
variable z, and then, conditioned on this, generates the word sequence. The document modeling

1Our lab has previously investigated incorporating mixture of Gaussian models into the autoencoder frame-
work, but without any success. This work has not been published.
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task further simplifies the model by assuming the words are independent of each other:

Pθ(w1, . . . , wN , z) =

∫ N∏
n=1

Pθ(wn|z)Pθ(z)dz. (2)

Following the variational autoencoder (VAE) framework (Kingma & Welling, 2013), the parameters
can be learned using the variational lower-bound:
logPθ(w1, . . . , wN , z) ≥ Ez∼Qψ(z|w1,...,wN )[logPθ(wn|w<n, z)]− KL [Qψ(z|w1, . . . , wN )||Pθ(z)] ,

(3)
where Qψ(z|w1, . . . , wN ) is the approximation to the posterior for z, called the encoder, or some-
times the recognition model or inference model, with parameters ψ. The distribution Pθ(z) is the
prior model for z. The variational autoencoder model further makes use of the re-parametrization
trick, which allows one to move the derivative of the lower-bound to inside the expectation. To
accomplish this, we need to parametrize z as a transformation from a fixed (parameter-less) random
distribution:

z = fθ(ε), (4)
where ε is drawn from a random distribution, e.g. a standard Gaussian distribution (with zero mean
and unit standard deviation) or a uniform distribution in the interval [0, 1], and f is some transfor-
mation of this variable, also parametrized by θ.

The majority of work on VAEs that uses the re-parametrization trick propose to parametrize z —
both the prior and approximate posterior (encoder) — as a multivariate Gaussian variable. However,
the multivariate Gaussian is a uni-modal distribution and can therefore only represent one mode
in latent space. This means the mapping from latent variable to outputs — i.e. the conditional
distribution Pθ(wn|z) — has to be highly non-linear in order to capture additional modes. However,
in general, it is difficult to learn such non-linear mappings with existing stochastic optimization
methods, such as mini-batch stochastic gradient descent and its variants. Learning such a non-linear
mapping is particularly difficult using the variational bound in eq. (3), because it incurs additional
variance from sampling the latent variable z. Consequently, such a model is very likely to converge
on a solution which does not model multi-modality which then leads to a poor approximation of the
output distribution.

3.2 THE PIECEWISE-CONSTANT PRIOR FOR LATENT VARIABLES

In this work, we overcome the uni-modal restriction by parametrizing z using a piecewise constant
probability density function (PDF). This parametrization will allow z to represent complex aspects
of the data distribution in latent variable space, such as multiple modes and highly non-smooth
regions of probability mass. From a manifold learning perspective, this extension translates into
expanding the set of manifolds representable by the model parameters to include more non-linear
manifolds – in particular, manifolds where there exists separate clusters of probability mass.

Let n ∈ N be the number of piecewise constant components. We assume z is drawn from the PDF:

P (z) =
1

K

n∑
i=1

1( i− 1

n
≤z≤

i

n

)ai, (5)

where 1(x) is the indicator function (which is one whenever x is true and otherwise zero), ai > 0 for
i = 1, . . . , n are the distribution parameters (which will be learned during training), and K is the
normalization constant:

K =

n∑
i=1

Ki, where K0 := 0,Ki :=
ai
n

for i = 1, . . . , n. (6)

To train the model using the re-parametrization trick, we need to generate z = f(ε) where ε ∼
Uniform(0, 1). To do so, we employ inverse transform sampling (Devroye, 1986), which requires
finding the inverse of the cumulative distribution function (CDF). We first derive the CDF of eq. (5):

φ(z) =
1

K

n∑
i=1

1( i
n
≤z
)Ki + 1( i− 1

n
≤z≤

i

n

)(z − i− 1

n

)
ai. (7)
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Next, we derive its inverse:

φ−1(ε) =

n∑
i=1

1( 1

K
∑i−1
j=0Kj≤ε≤

1

K
∑i
j=0Kj

)
 i− 1

n
+
K

ai

ε− 1

K

i−1∑
j=0

Kj

 (8)

Armed with the inverse CDF, we can now draw a sample z:

z = φ−1(ε), where ε ∼ Uniform(0, 1). (9)

In addition to sampling, we need to compute the Kullback-Leibler (KL) divergence between the prior
and approximate posterior distributions of the piecewise constant variables. We assume both the
prior and the posterior are piecewise constant distributions. We use prior to denote prior parameters
and post to denote posterior parameters (encoder model parameters). The KL divergence between
the prior and posterior can be computed using a sum of integrals, where each integral inside the sum
corresponds to one constant segment:

KL [Qψ(z|w1, . . . , wN )||Pθ(z)] =
∫ 1

0

Qψ(z|w1, . . . , wN ) log

(
Qψ(z|w1, . . . , wN )

Pθ(z)

)
dz (10)

=

n∑
i=1

∫ 1/n

0

apost
i

Kpost log

(
apost
i /Kpost

aprior
i /Kprior

)
dz (11)

(12)

=
1

n

n∑
i=1

apost
i

Kpost log

(
apost
i /Kpost

aprior
i /Kprior

)
(13)

=
1

n

1

Kpost

n∑
i=1

apost
i

(
log(apost

i )− log(aprior
i )

)
(14)

+ log(Kprior)− log(Kpost)

In order to train the model, we take partial derivatives of the variational bound in eq. (3) w.r.t.
each parameter in θ and ψ. These expressions involve derivatives of the indicator functions, which
have derivatives zero everywhere except for the changing points where the derivative is undefined.
However, the probability of sampling ε such that an indicator function is exactly at its changing
point is effectively zero. Therefore, we fix their derivatives to zero.2 A similar approach is used for
training neural networks with rectified linear units. Figure 1 illustrates how the piecewise constant
latent variables can work with Gaussian latent variables in order to model multi-modality.

4 LATENT VARIABLE PARAMETRIZATIONS

The latent variable parametrizations are crucial to modeling the data effectively. In this section, we
will develop the parametrizations for both the Gaussian variable and our proposed piecewise latent
variable.

For all parametrizations, let c be the conditioning information for the prior. In document modeling
there is no conditioning information available to the prior, so c = ∅. In dialogue modeling c is
the vector representation of the dialogue context, namely all previous utterances until the current
time step. Let x be the current output sequence (observation), which the model must generate (e.g.
w1, . . . , wN for document modeling).

4.1 GAUSSIAN PARAMETRIZATION

Let µprior and σ2,prior be the prior mean and variance, and let µpost and σ2,post be the posterior mean
and variance. For Gaussian latent variables, the prior distribution mean and variances are encoded
using linear transformations of a hidden state. In particular, the prior distribution covariance is

2We thank Christian A. Naesseth for pointing out this assumption.
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Figure 1: The horizontal axis corresponds to z1, which is a univariate Gaussian variable. The vertical
axis corresponds to z2, which is a piecewise constant variable. The PDF for each variable is shown
along each axis, and their joint distribution is illustrated in grey color.

encoded as a diagonal covariance matrix using a softplus function:

µprior = Hprior
µ Enc(c) + bprior

µ , (15)

σ2,prior = diag(log(1 + exp(Hprior
σ Enc(c) + bprior

σ ))), (16)

where Enc(c) is an embedding/encoding of the context c (e.g. given by a bag-of-words encoder or an
LSTM encoder applied to c), which is shared across all latent variable dimensions. The parameters
Hprior
µ , bprior

µ , Hprior
σ , bprior

σ are to be learned.

For the posterior distribution, our preliminary experiments have shown that it is much better to
parametrize the posterior distribution by interpolating between the prior distribution mean and vari-
ance and a new estimate of the mean and variance. This interpolation is controlled by a gating
mechanism, which makes it easy for the model to learn how to turn on/off latent dimensions:

µpost = (1− αµ)µprior + αµ
(
Hpost
µ Enc(c, x) + bpost

µ

)
, (17)

σ2,post = (1− ασ)σ2,prior + ασdiag(log(1 + exp(Hpost
σ Enc(c, x) + bpost

σ ))), (18)

where Enc(c, x) is an encoding/embedding of both c and x, and where the parameters are
Hpost
µ , bpost

µ , Hpost
σ , bpost

σ , αµ, ασ . The interpolation mechanism is controlled by αµ and ασ , which
are initialized to zero (i.e. initialized such that the posterior is equal to the prior).3

4.2 PIECEWISE CONSTANT PARAMETRIZATION

Similar to the Gaussian variances, we propose to parametrize the piecewise constant prior parameters
using an exponential function applied to a linear transformation of the context embedding/encoding:

aprior
i = exp(Hprior

a,i Enc(c) + bprior
a,i ), i = 1, . . . , n, (19)

where Hprior
a and bprior

a are the parameters to be learned.

We may also constrain the piecewise constant posterior parameters to be an interpolation between
the prior parameters and a new estimated parameter:

apost
i = (1− αa,i)aprior

i + αa,i exp(H
post
a,i Enc(c, x) + bpost

a,i ), i = 1, . . . , n, (20)

3We experimented with more sophisticated mechanisms for controlling the gating variables, including defin-
ing αµ and ασ to be a linear function of the encoder. However, we found that simpler was often better and thus
do not report these results using more advanced mechanisms.
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whereHpost
a , bpost

a , αa are the parameters. However, we found that this interpolation hurt performance
and therefore fixed αa = 1.

To take advantage of the properties of both priors, the Gaussian and piecewise constant variables
may be combined, as was suggested in Section 3.2. In this work, we primarily experimented with
their concatenation to create a hybrid model.

5 VARIATIONAL TEXT MODELING

We now present two probabilistic models, the NVDM and the VHRED, which are extended to
incorporate the latent variable parametrization and used for the document modeling and the dialogue
modeling experiments described below.

5.1 NEURAL VARIATIONAL DOCUMENT MODEL (NVDM)

The NVDM framework (Mnih & Gregor, 2014; Miao et al., 2015) collapses the recurrent neural
encoder into a simpler bag-of-words model (since no symbol order is taken into account), which
may be defined as a multi-layer perceptron (MLP) for Enc(c = ∅, x) = Enc(x). Let V be the
vocabulary. Let W represent a document matrix, where row wi is the 1-of-|V | binary encoding of
the i’th word in the document. Enc(W ) is trained to compress a document vector into a continuous
distributed representation upon which the posterior model is built.

The NVDM parametrization requires only learning the parameters bprior
a ,W post

a , bpost
a for the piece-

wise variables, and learning the parameters bprior
µ , bprior

σ ,W post
µ , bpost

µ ,W post
σ , bpost

σ for the Gaussian vari-
ables. We initialize the bias parameters to zero, in order for the NVDM to start with a centered Gaus-
sian prior. This prior will be adapted by the parametric encoder as learning progresses, while also
learning to turn on/off latent dimensions controlled through the gating mechanism. It is important to
note that our particular instantiation of the NVDM is different from that of Mnih & Gregor (2014)
and Miao et al. (2015); we jointly learn the prior mean and variance whereas in previous work it has
been assumed to be a standard Gaussian. Furthermore, our models learn to interpolate between the
generated prior and posterior models to calculate a new posterior.

Based on preliminary experiments, we choose the encoder to be a 2-hidden layer perceptron, defined
by parameters {E0, b0, E1, b1}. The decoder is defined by parameters {R, c}. For example, in the
case of the hybrid VAE we use eq. (15)–(20) to generate the distribution parameters. In this case,
to draw a sample from the Gaussian prior, we draw a standard Gaussian variable and then multiply
it by the standard deviation and add the mean of the Gaussian prior. To draw a sample from the
piecewise prior, we use eq. (8). As such, the complete architecture is:

π(W ) = f0(E0W + b0),

Enc(W ) = f1(E1π(W ) + b1),

zGaussian = µpost +
√
σ2,post ⊗ ε0,

zPiecewise = φ−1,post(ε1),

z = 〈zGaussian, zPiecewise〉,
Dec(w, z) = g(−wTRz),

where⊗ is the Hadamard product, 〈◦, ◦〉 is an operator that combines the Gaussian and the Piecewise
variables and Dec(w, z) is the decoder model. 4 As a result of using the re-parametrization trick
and choice of prior, we calculate the latent variable z through the two samples, ε0 and ε1. f(◦) is a
non-linear activation function. We choose it to be the softsign function, or f(v) = v/(1 + |v|). The
decoder model Dec(z) outputs a probability distribution over words conditioned on z. In this case,
we define g(◦) as the softmax function (omitting the bias term c for clarity) computed as:

Dec(w, z) = Pθ(w|z) =
exp (−wTRz)∑
w′ exp (−wTRz)

,

4Operations include vector concatenation, summation, or averaging.
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The decoder’s output is used to calculate the first term in the variational lower-bound: logPθ(W |z).
The prior and posterior distributions are used to compute the KL term in the variational lower-bound.
The lower-bound defined becomes:

L = EQψ(z|W )

[
N∑
i=1

logPθ(wi|z)

]
− KL [Qψ(z|W )||Pθ(z)] ,

where the KL term is the sum of the Gaussian and piecewise KL-divergence measures:

KL [Q(z|W )||P (z)] = KLGaussian [Q(z|W )||P (z)] + KLPiecewise [Q(z|W )||P (z)] .

The KL-terms may be interpreted as regularizers of the parameter updates for the encoder model
(Kingma & Welling, 2013). These terms encourage the posterior distributions to be similar to their
corresponding prior distributions, by limiting the amount of information the encoder model trans-
mits regarding the output. For example, it encourages the uni-modal Gaussian posterior to move its
mean close to the mean of the Gaussian prior, which makes it difficult for the Gaussian posterior
to represent different modes conditioned on the observation. Similarly, this encourages the piece-
wise constant posterior to be similar to the piecewise constant prior. However, since the piecewise
constant posterior is multi-modal, it may be able to shift some of its probability mass towards the
prior distribution while keeping other probability mass on one or several modes dependent upon
the output observation (e.g. if the prior distribution is a uniform distribution and the true posterior
concentrates all its probability mass in several small regions, then the approximate posterior could
interpolate between the prior and the true posterior).

5.2 VARIATIONAL HIERARCHICAL RECURRENT ENCODER-DECODER (VHRED)

The VHRED model is an extension of the hierarchical recurrent encoder-decoder model (HRED)
for dialogue (Serban et al., 2016b;a). The model decomposes dialogues using a two-level hierarchy:
sequences of utterances (e.g. sentences), and sub-sequences of tokens (words). Let wn be the n’th
utterance in a dialogue with N utterances. Let wn,m be the m’th word in the n’th utterance from
vocabulary V , and let Mn be the number of words in the n’th utterance. In addition to this, VHRED
has a latent multivariate continuous variable zn for each utterance n = 1, . . . , N . The probability
distribution of the generative model factorizes as:

Pθ(w1, . . . ,wN ) =

N∏
n=1

Pθ(wn|w<n, zn)Pθ(zn|w<n),

=

N∏
n=1

Mn∏
m=1

Pθ(wn,m|wn,<m,w<n, zn)Pθ(zn|w<n), (21)

where θ are the model parameters. VHRED uses three RNN modules: an encoder RNN, a context
RNN and a decoder RNN. First, each utterance is encoded into a vector by the encoder RNN:

henc
n,0 = 0, henc

n,m = f enc
θ (henc

n,m−1, wn,m) ∀m = 1, . . . ,Mn,

where f enc
θ is either a GRU or a bidirectional GRU function. The last hidden state of the encoder

RNN is given as input to the context RNN. Then, the context RNN updates its internal hidden state
to reflect all the information up until that utterance:

hcon
0 = 0, hcon

n = f con
θ (hcon

n−1, h
enc
n,Mn

),

where f con
θ is a GRU function taking as input two vectors. This state is used to compute the prior

distribution over the latent variable zn:

Pθ(zn | w<n) = f prior
θ (hconn−1), (22)

where f prior is a PDF parametrized by both θ and hconn . Next, a sample is drawn from this distribu-
tion: zn ∼ Pθ(zn|w<n). The sample and context state are given as input to the decoder RNN:

hdec
n,0 = 0, hdec

n,m = f dec
θ (hdec

n,m−1, h
con
n−1, zn, wn,m)

∀m = 1, . . . ,Mn,
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where f dec
θ is the LSTM gating function taking as input four vectors. The output distribution is

computed by passing hdec
n,m through an MLP fmlp

θ , an affine transformation and a softmax function:

Pθ(wn,m+1|wn,≤m,w<n, zn) =
e(Own,m+1)

Tfmlp
θ (hdec

n,m)∑
w′ e

(Ow′)Tfmlp
θ (hdec

n,m)
, (23)

whereO ∈ R|V |×d is the word embedding matrix for the output distribution with embedding dimen-
sionality d ∈ N. The model is trained by maximizing the variational lower-bound, which factorizes
into independent terms for each sub-sequence (utterance):

logPθ(w1, . . . ,wN ) ≥
N∑
n=1

− KL [Qψ(zn | w1, . . . ,wn)||Pθ(zn | w<n)]

+ EQψ(zn|w1,...,wn) [logPθ(wn | zn,w<n)] , (24)
where distribution Qψ is the approximate posterior distribution with parameters ψ, which is com-
puted similar to the prior distribution but further conditioned on the future encoder RNN hidden
state:

Qψ(zn | w≤n) = f post
ψ (hconn−1, h

enc
n,Mn

), (25)

where f post is a PDF. More details are given by Serban et al. (2016b).

The original VHRED model as described by Serban et al. (2016b) used only Gaussian latent vari-
ables. We will refer to this model as Gaussian-VHRED (G-VHRED). The VHRED model with
both Gaussian and piecewise constant latent variables will be referred to as Hybrid-VHRED (H-
VHRED). In this case, we combine the Gaussian and piecewise latent variables by concatenating
them into one vector.5

6 EXPERIMENTS

In order to validate the ability of our piecewise latent variables to capture complex aspects of data
distributions, we conduct experiments with both the NVDM and VHRED models.

All models are trained using back-propagation to obtain parameter gradients with respect to the
variational lower-bound on the log-likelihood or the exact log-likelihood. We used a standard first-
order gradient-descent optimizer, Adam (Kingma & Ba, 2015), for both models, where only hyper-
parameter choices varied depending on the task. The specifics of the design of the encoder and
decoder differed between the two tasks (as described in Sections 5.1 and 5.2). For all models that
used piecewise latent variables, we chose to fix αai = 1, meaning the piecewise prior and poste-
rior models are kept separate (instead of having the posterior be an interpolation between another
distribution and the prior), since we found this to perform better6

6.1 DOCUMENT MODELING

For our experiments in document modeling, we make use of the 20 News-Groups dataset. We
follow the pre-processing and set-up of Hinton & Salakhutdinov (2009). In addition, we make use
of the Reuters corpus (RCV1-V2), using a version that contained a selected 5,000 term vocabulary. 7

Note that the features are a log(1 + TF ) transform of the original frequency vectors. To test our
document models on text from another language (in this case, Brazilian Portuguese), we make use of
the CADE12 dataset (stop-word removed and stemmed) Cardoso-Cachopo (2007), where we further
filtered terms that occurred less than 130 times to obtain a vocabulary of 3,736 terms (over 26,991
training and 13,486 test documents). For all datasets, we track the validation bound on a subset of
100 vectors randomly drawn from each training corpus.

5Before concatenation, we transform the piecewise constant latent variables to lie within the interval [−1, 1]:
z′ = 2z− 1. This ensures the input to the decoder RNN has mean zero at the beginning of training.

6We believe that if αai = 0 for a long period of time, then the posterior receives no gradient signal. Without
a gradient signal, the estimated posterior becomes increasingly disconnected from the rest of the model and,
thus, less effective. This might be due to the choice of non-linearities, which affect the piecewise latent variables
moreso than the Gaussian latent variables.

7We will make the code and scripts used to create the final document input vectors and vocabulary files
publicly available upon publication.
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20-NG Sampled SGD-Inf
LDA 1058 −−
RSM 953 −−
docNADE 896 −−
SBN 909 −−
fDARN 917 −−
NVDM 836 −−
G-NVDM 651 588
H-NVDM-3 607 546
H-NVDM-5 566 496

RCV1 Sampled SGD-Inf
G-NVDM 905 837
H-NVDM-3 865 807
H-NVDM-5 833 781

CADE Sampled SGD-Inf
G-NVDM 339 230
H-NVDM-3 258 193
H-NVDM-5 294 209

Table 1: Comparative test perplexities on various document datasets (50 latent variables). Note that
document probabilities were calculated using 10 samples to estimate the variational lower bound.

G-NVDM H-NVDM-3 H-NVDM-5
governments citizens arms
citizens rights rights
country governments federal
threat civil country
private freedom policy
rights legitimate administration
individuals constitution protect
military private private
freedom court citizens
foreign states military

G-NVDM H-NVDM-3 H-NVDM-5
environment project science
project gov built
flight major high
lab based technology
mission earth world
launch include form
field science scale
working nasa sun
build systems special
gov technical area

Table 2: Word query similarity test, where each (20 News-Group) document model’s decoder is
given a query and must return the top 10 most relevant words. The first query was “government”
while the second was “space”. It appears that the models with piecewise variables tend to associate
more general/abstract terms to the query, which may or may not always be what is desired.

For the Gaussian NVDM (G-NVDM), we constrain the interpolated posterior variance to lie in the
range of [0.01, 10.0]. For the hybrid NVDMs (H-NVDM) 8, we vary the number of components used
in the PDF, investigating the effect that 3 and 5 pieces had on the final quality of the model. Pa-
rameter updates for all models were estimated using mini-batches of 100 samples drawn randomly
without replacement from the training data over 150 epochs. A learning rate of 0.002 was used.
Model selection and early stopping (the only additional form of regularization employed for this set
of experiments) were conducted using the validation lower-bound, estimated using five stochastic
samples per validation example. We rescale large gradients by their norm (Pascanu et al., 2012).
Inference networks made use of 50 units in each hidden layer for 20 News-Groups and CADE and
100 for RCV1, while all performed best with 50 latent variables (chosen via preliminary exper-
imentation with smaller models). On the 20 News-Groups, since we were able to use the same
set-up (especially vocabulary) as Hinton & Salakhutdinov (2009), we also report the perplexities
of a topic model (LDA, Hinton & Salakhutdinov (2009)), the Replicated Softmax (RSM, Hinton
& Salakhutdinov (2009)), the document neural auto-regressive estimator (docNADE, Larochelle &
Lauly (2012)), a sigmoid belief network (SBN, Mnih & Gregor (2014)), a deep auto-regressive neu-
ral network (fDARN, Mnih & Gregor (2014)), and a neural variational document model with a fixed
standard Gaussian prior (NVDM, lowest reported perplexity, Miao et al. (2015)).

In Table 1, we report the test document perplexity (under the Sampled column), calculated using
the standard formula, exp(− 1

D

∑
n

1
Ln

logPθ(xn). Note that logPθ(xn), or the log-probability of
a particular document, was approximated with an estimate of the variational lower-bound using 10
samples, as was done in Mnih & Gregor (2014). The second score (or column SGD-Inf ), refers to
the model’s test-perplexity when the lower-bound is tightened using iterative inference to search for
the optimal latent variable per document. In this paper, our iterative inference procedure consisted of
simple stochastic gradient descent (no more than 100 steps), with a learning rate of 0.1 and the same

8We ultimately found that averaging the variables, as opposed to using concatenation, yielded best perplexity
and thus report these results.
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gradient rescaling used in training, using early-stopping (for 20 News-Groups, the lookahead was
10, while on Reuters and CADE the lookahead was 5). The parameters of the model, as well as the
well as the generated prior, are fixed, and the gradients of the variational lower bound with respect
to generated posterior model parameters (i.e., the mean and variance of the Gaussian variables, and
the piecewise components, ai) are used to update the posterior model for each document (using a
freshly drawn sample each step).

First and foremost, we note that the best baseline model (i.e., the NVDM) is more competitive
when both the prior and posterior models are learnt together (i.e., the G-NVDM), as opposed to
the fixed prior of Miao et al. (2015). However, we observe that integrating our proposed piecewise
variables yields even better results in our document modeling experiments, substantially improving
over the baselines. More importantly, in some cases, as in the 20 News-Groups and Reuters datasets,
increasing the number of pieces from 3 to 5 can further reduce perplexity. Thus, we have achieved a
new state-of-the-art perplexity on 20 News-Group task and — to the best of our knowledge – better
perplexities on the CADE12 and RCV1 tasks compared to using a state-of-the-art model like the G-
NVDM. Furthermore, we observe iterative inference yields yet a further boost in performance since
the bound estimated is tighter, however, this form of inference is expensive and requires additional
meta-parameters (e.g., a step-size, an early-stopping criterion, etc.). We remark a simpler, and more
accurate, approach to inference would be to use importance sampling.

In Table 2, we examine the top ten highest ranked words given a query term, using the decoder
parameter matrix (since the decoder is directly affected by the latent variables in our document
models). It appears that the piecewise variables affect what is uncovered by the model with respect
to the data, as each model returns different, but relevant results with respect to the query word. In
our current examples, it appears that the H-NVDM with 5 pieces returns more general words. For
example, in the case of “government”, the baseline seems to value the plural form of the word (which
is largely based on morphology) while the hybrid model actually pulls out meaningful terms such
as “federal”, “policy”, and “administration”. The case of “space” is interesting–the hybrid with 5
pieces seems to value two senses of the word–one related to “outer space” (e.g., “sun”, “world”,
etc.) and another related to the dimensions of depth, height, and width within which things may
exist and move (e.g., “area”, “form”, “scale”, etc.).

6.2 DIALOGUE MODELING

We experiment with VHRED for dialogue modeling. This is a difficult problem, extensively studied
in the recent literature (Ritter et al., 2011; Lowe et al., 2015; Sordoni et al., 2015; Li et al., 2016;
Serban et al., 2016a). Related systems for dialogue response generation have recently gained a sig-
nificant amount of attention from industry, with high-profile projects such as Google’s SmartReply
system (Kannan et al., 2016) and Microsoft’s chatbot Xiaolice (Markoff & Mozur, 2015). Even
more recently, Amazon has announced the Alexa Prize Challenge for the research community with
the goal of developing a natural and engaging chatbot system (Farber, 2016).

We focus on non-goal-driven dialogue modeling and use the Twitter Dialogue Corpus (Ritter et al.,
2011) based on public Twitter conversations. The dataset is split into training, validation, and test
sets, containing respectively 749,060, 93,633 and 9,399 dialogues each. On average, each dia-
logue contains about 6 utterances (dialogue turns) and about 94 words. The dataset is the same as
used by Serban et al. (2016b), but further pre-processed using byte-pair encoding (Sennrich et al.,
2016) using a vocabulary consisting of 5000 sub-words.9 The dialogues are substantially longer
than recent large-scale language modeling corpora, such as the 1 Billion Word Language Model
Benchmark (Chelba et al., 2014), which usually focus on modeling single sentences.

Parameter optimization was conducted with a learning rate of 0.0002 and mini-batches of size 40
or 80.10 We use a variant of truncated back-propagation and apply gradient clipping (Pascanu et al.,
2012). Model selection and early stopping — the only additional form of regularization employed
for this set of experiments — are conducted using the validation lower-bound, estimated using one
stochastic sample per validation example.

9In addition to applying byte-pair encoding, we filtered out 601 test dialogues so that no test dialogue
context overlapped with the training or validation sets.

10We had to vary the mini-batch size to make the training fit on GPU architectures with low memory.
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Word G-VHRED H-VHRED Word G-VHRED H-VHRED
Time-related G-KL G-KL P-KL Event-related G-KL G-KL P-KL

monday 3 5 10 school 9 16 50
tuesday 2 3 7 class 11 16 27

wednesday 4 11 13 game 20 26 41
thursday 2 3 9 movie 12 20 41

friday 9 18 26 club 13 22 28
saturday 6 6 13 party 8 10 32
sunday 2 2 9 wedding 7 13 23

weekend 8 16 32 birthday 12 20 23
today 18 28 56 easter 15 15 23
night 16 31 68 concert 7 16 20

tonight 32 36 47 dance 11 12 21

Word G-VHRED H-VHRED Word G-VHRED H-VHRED
Sentiment
-related G-KL G-KL P-KL Acronyms, Punctuation

Marks & Emoticons G-KL G-KL P-KL
good 72 73 44 lol 394 358 312
love 102 101 38 omg 52 45 19

awesome 26 44 39 . 386 558 1009
cool 14 28 29 ! 648 951 525
haha 132 101 75 ? 507 851 221

hahaha 60 48 24 * 108 54 19
amazing 14 38 33 xd 28 42 26

thank 137 153 29 ♥ 56 42 24

Table 3: Approximate posterior word encoding on Twitter. The numbers are computed by counting
the number of times each word is among the 5 words with the largest sum of squared gradients of
the Gaussian KL divergence (G-KL) and piecewise constant KL divergence (P-KL)

Similar to Serban et al. (2016b), we use a bidirectional GRU RNN encoder, where the forward and
backward RNNs each have 1000 hidden units. We experiment with context RNN encoders with
500 and 1000 hidden units, and find that that 1000 hidden units reach better performance w.r.t. the
variational lower-bound on the validation set. The encoder and context RNNs use layer normaliza-
tion (Ba et al., 2016). We experiment with decoder RNNs with 1000, 2000 and 4000 hidden units
(LSTM cells), and find that 2000 hidden units reach better performance. For the G-VHRED model,
we experiment with latent multivariate Gaussian variables with 100 and 300 dimensions, and find
that 100 dimensions reach better performance. For the H-VHRED model, we experiment with latent
multivariate Gaussian and piecewise constant variables each with 100 and 300 dimensions, and find
that 100 dimensions reach better performance. We follow the training procedure of Serban et al.
(2016b): we drop words in the decoder with a fixed drop rate of 25% and multiply the KL terms in
the variational lower-bound by a scalar, which starts at zero and linearly increases to 1 over the first
60,000 training batches.

We also experiment with an LSTM baseline model and a HRED baseline model (Serban et al.,
2016a). For the LSTM model, we experiment with number of hidden units (LSTM cells) equal
to 1000, 2000 and 4000 and find that 4000 hidden units perform best w.r.t. validation perplextiy.
For the HRED model, we use the same encoder and context RNN architectures as the G-VHRED
and H-VHRED models described earlier. We set the encoder RNN to have 1000 hidden units. We
experiment with a context RNN with 500 and 1000 hidden units, and find that 1000 hidden units
reach better performance. For the decoder RNN, we experiment with 1000 and 2000 hidden units
(LSTM cells) and find that 2000 hidden units perform better.

Approximate Posterior Analysis Our hypothesis is that the piecewise constant latent variables
are able to capture multi-modal aspects of the dialogue. Therefore, we evaluate the models by
analyzing what information they have learned to represent in the latent variables. For each test
dialogue with n utterances, we condition each model on the first n − 1 utterances and compute the
latent posterior distributions using all n utterances. We then compute the gradients of the KL terms
of the multivariate Gaussian and piecewise constant latent variables w.r.t. each word in the dialogue.
Since the words vectors are discrete, we compute the sum of the squared gradients w.r.t. each word
embedding. The higher the sum of the squared gradients of a word is, the more influence it will have
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on the posterior approximation (encoder model). For every test dialogue, we count the top 5 words
with highest squared gradients separately for the multivariate Gaussian and piecewise constant latent
variables.11

The results are shown in Table 3. The piecewise constant latent variables clearly capture different
aspects of the dialogue compared to the Gaussian latent variables. The piecewise constant variable
approximate posterior encodes words related to time (e.g. weekdays and times of day) and events
(e.g. parties, concerts, Easter). On the other hand, the Gaussian variable approximate posterior en-
codes words related to sentiment (e.g. laughter and appreciation) and acronyms, punctuation marks
and emoticons (i.e. smilies). We also conduct a similar analysis on the document models evaluated
in Sub-section 6.1, the results of which may be found in the Appendix.

Response Evaluation Non-goal-driven dialogue models are typically evaluated by asking humans to
rate the quality of different responses. We follow the approach by Liu et al. (2016) by conducting an
Amazon Mechanical Turk experiment to compare the G-VHRED and H-VHRED models. For each
test dialogue, we use TF-IDF to extract 100 candidate responses (Lowe et al., 2015). We then rank
the responses according to the G-VHRED model and H-VHRED model using the variational lower-
bound.12 We ask three human evaluators to rate model responses for 45 dialogues on a Likert-type
scale 1 − 5, with 1 representing an inappropriate response and 5 representing a highly appropriate
response.13 For each dialogue, we show the human evaluators the top two responses ranked by the
G-VHRED and H-VHRED models. We choose to evaluate the re-ranked responses for two reasons.
First, it reduces variance in the output because it uses the approximate posterior model, compared
to using beam search with samples from the high-entropy prior. Second, it decreases the number
of generic responses, which are extremely common among generative models and which human
evaluators tend to prefer despite not advancing the dialogue (Li et al., 2016).

The results are as follows. The G-VHRED model achieves scores 1.88 and 2.13 for the first and
second ranked responses on average, and the H-VHRED model achieves scores 1.93 and 2.04 on
average. In other words, H-VHRED performs nominally better on the first ranked response while
G-VHRED performs nominally better on the second ranked response. In conclusion, if there exists
a difference between the two models, naive human evaluators cannot see it.

Although naive human evaluators cannot distinguish between the model responses, based on our
previous analysis we know that the two models encode different aspects of dialogue conversations.
Therefore, we further investigate the probability of different responses to dialogue contexts related
to time and events. Two examples are shown in Figure 2, where the dialogue contexts are “when
do you want to meet this weekend?” and “where are you going tomorrow?”. H-VHRED assigns
substantially more probability mass to relevant words compared to the G-VHRED as well as an
LSTM baseline and HRED baseline. This confirms the ability of the piecewise constant latent
variable to generate responses related to time and events.

Finally, we also evaluate the diversity of the G-VHRED and H-VHRED model outputs w.r.t. the top
ranked FF-IDF candidate responses. We measure the average word entropy (Serban et al., 2016b)
as well as number of unique words for each response and unique words across all test responses, but
did not find a significant difference between the two models. This indicates that the Gaussian latent
variables alone are able to increase response diversity, while the piecewise constant latent variables
instead help encode specific aspects of the dialogue such as time and events.

11Our approach is equivalent to counting the top 5 words with the highest L2 gradient norms. We also did
some experiments using L1 gradient norms, which showed similar patterns.

12We use one stochastic sample.
13Human evaluators are only given a minimal description of the task, without any examples, before beginning

the evaluation.
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Figure 2: Probabilities for different responses related to time and events: left) probabilities for giving
a one-word response with one of the weekdays (monday, tuesday, . . . , sunday) conditioned on the
context utterance “when do you want to meet this weekend?”, right) probabilities forgiving a one-
word response with one of several event-related nouns (school, class, . . . , wedding) on the context
utterance “where are you going tomorrow?”. The probabilities have been normalized in log-space
by the number of words in the response including end-of-utterance tokens. For G-VHRED and
H-VHRED, the probabilities were estimated using the variational lower-bound over 10 samples.

7 CONCLUSIONS

In this paper, we have proposed the multi-modal variational encoder-decoder framework. In order to
capture complex aspects of unknown data distributions, we developed the piecewise constant prior,
which can be efficiently and flexibly adjusted to capture distributions with many modes, such as
those over topics. In experiments on document modeling and dialogue modeling, we have shown
the effectiveness of our framework in building models capable of learning richer structure from data.
In particular, we have demonstrated new state-of-the-art results on several document modeling tasks.

Future work should focus on exploring other natural language processing tasks, where multi-
modality plays an important role such as modeling technical help dialogues (Lowe et al., 2015)
and online debates (Rosenthal & McKeown, 2015), and where additional information is available,
such as in semi-supervised document categorization (Ororbia II et al., 2015a). Furthermore, the
piecewise variables proposed in this work could prove useful in uncovering interesting and novel
information in lesser-explored corpora.
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APPENDIX A: ANALYSIS OF DOCUMENT MODEL PIECEWISE VARIABLES

We present an additional analysis of the learned 20 News-Groups document models in order to ex-
plore what each set of latent variables might be capturing. To calculate the gradient of the KL terms
needed to formulate word scores, we follow the approach described in Sub-section 6.2, however,
conditioning only on the (training) document bag-of-words to compute the latent posterior to then
calculate the gradient of the KL-terms with respect to each word in the document.

In Table 4, we observe results similar to those of Sub-section 6.2–the piecewise variables capture
different aspects of the document data. It is worth noting, in this experiment, that the Gaussian
variables alone were originally were sensitive to some of these words. However, in the hybrid
model, nearly all of the temporal words that the Gaussian variables were once more sensitive to now
more strongly affect the piecewise variables, which themselves also capture all of the words that
were originally missed. This might indicate a shift in responsibility in which latent variables the
document model decide are more suitable to capture certain aspects of the data. This effect appears
to be even stronger in the case of certain nationality-based adjectives (e.g., “american”, “israeli”,
etc.). While the G-NVDM could model multi-modality in the data to some degree, this work would
be primarily done in the model’s decoder. In the H-NVDM, the piecewise variables provide an
explicit mechanism for capturing modes in the unknown target distribution, so it makes sense that
the model would learn to use the piecewise variables instead, thus freeing up the Gaussian variables
to capture other aspects of the data, as we found was the case with names (e.g., “jesus”, “kent”, etc.).

Word G-NVDM H-NVDM-5
Time-related G-KL G-KL P-KL

months 23 33 40
day 28 32 35
time 55 22 40

century 28 13 19
past 30 18 28
days 37 14 19
ahead 33 20 33
years 44 16 38
today 46 27 71
back 31 30 47
future 20 15 20
order 42 14 26

minute 15 34 40
began 16 5 13
night 49 12 18
hour 18 17 16
early 42 42 69

yesterday 25 26 36
year 60 17 21
week 28 54 58
hours 20 26 31

minutes 40 34 38
months 23 33 40
history 32 18 28

late 41 45 31
moment 23 17 16
season 45 29 37

summer 29 28 31
start 30 14 38

continue 21 32 34
happened 22 27 35

Word G-NVDM H-NVDM-5
Names G-KL G-KL P-KL
henry 33 47 39
tim 32 27 11

mary 26 51 30
james 40 72 30
jesus 28 87 39

george 26 56 29
keith 65 94 61
kent 51 56 15
chris 38 55 28

thomas 19 35 19
hitler 10 14 9
paul 25 52 18
mike 38 76 40
bush 21 20 14

Adjectives G-KL G-KL P-KL
american 50 12 40
german 25 21 22

european 20 17 27
muslim 19 7 23
french 11 17 17

canadian 18 10 16
japanese 16 9 24
jewish 56 37 54
english 19 16 26
islamic 14 18 28
israeli 24 14 18
british 35 15 17
russian 14 19 20

Table 4: Approximate posterior word encodings on 20 News-Groups. For P-KL, we also bold every
case where the piecewise variables showed greater sensitivity to the word than the Gaussian variables
within the same hybrid model.
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