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ABSTRACT

The score function estimator is widely used for estimating gradients of stochas-
tic objectives in Stochastic Computation Graphs (SCG), e.g., in reinforcement
learning and meta-learning. While deriving the first order gradient estimators by
differentiating a surrogate loss (SL) objective is computationally and conceptually
simple, using the same approach for higher order gradients is more challenging.
Firstly, analytically deriving and implementing such estimators is laborious and
not compliant with automatic differentiation. Secondly, repeatedly applying SL to
construct new objectives for each order gradient involves increasingly cumbersome
graph manipulations. Lastly, to match the first order gradient under differentiation,
SL treats part of the cost as a fixed sample, which we show leads to missing and
wrong terms for higher order gradient estimators. To address all these shortcomings
in a unified way, we introduce DICE, which provides a single objective that can
be differentiated repeatedly, generating correct gradient estimators of any order
in SCGs. Unlike SL, DICE relies on automatic differentiation for performing the
requisite graph manipulations. We verify the correctness of DICE both through a
proof and through numerical evaluation of the DICE gradient estimates. We also
use DICE to propose and evaluate a novel approach for multi-agent learning. Our
code is available at https://goo.gl/xkkGxN.

1 SUMMARY

The score function trick is used to produce Monte Carlo estimates of gradients in settings with
non-differentiable objectives, e.g., in meta-learning and reinforcement learning. Estimating the
first order gradients is computationally and conceptually simple. While the gradient estimators
can be directly defined, it is often more convenient to define an objective whose derivative is the
gradient estimator and let the powerful automatic-differentiation (auto-diff) toolbox as implemented
in deep learning libraries do the work for you. This is the method used by the surrogate loss (SL)
approach (Schulman et al., 2015a), which provides a recipe for building a surrogate objective from a
stochastic computation graph (SCG). When differentiated, the SL produces an estimator for the first
order gradient of the original objective.

Unfortunately, the first order gradient estimators mentioned above are fundamentally ill-suited for
calculating higher order derivatives via auto-diff. Due to the dependency on the sampling distribution,
higher order gradient estimators require repeated application of the score function trick. Simply
differentiating the first order estimator again, as was for example done by Finn et al. (2017), leads to
missing terms, as shown by Al-Shedivat et al. (2017) and Stadie et al. (2018).

To obtain higher order score function gradient estimators, there are currently two unsatisfactory
options. The first is to analytically derive and implement the estimators. However, this is laborious,
error prone, and does not comply with the auto-diff paradigm. The second is to repeatedly apply the
SL approach to construct new objectives for each further gradient estimate. However, constructing
each of these new objectives involves increasingly complex graph manipulations, defeating the appeal
of using a differentiable surrogate loss, as illustrated in Appendix B.
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Moreover, to match the first order gradient after a single differentiation, the SL treats part of the
cost as a fixed sample, severing the dependency on the parameters. In Appendix C.2 we show that
this yields missing and incorrect terms in higher order gradient estimators. We believe that these
difficulties have limited the usage and exploration of higher order methods in reinforcement learning
tasks and other application areas that may be formulated as SCGs.

Therefore, we propose a novel technique, the Infinitely Differentiable Monte-Carlo Estimator (DICE),
to address all these shortcomings. DICE constructs a single objective, L , that evaluates to an
estimate of the original objective, but can also be differentiated repeatedly to obtain correct gradient
estimators of any order. Unlike the SL approach, DICE relies on auto-diff as implemented for
instance in TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2017) to automatically perform
the complex graph manipulations required for these higher order gradient estimators.

DICE uses a novel operator, MAGICBOX( ), which wraps around the set of those stochastic nodes
Wc that influence each of the original losses, c, in an SCG. Upon differentiation, this operator
generates the correct gradients associated with the sampling distribution:

∇θ (Wc) = (Wc)∇θ
∑

w∈Wc

log(p(w; θ)),

while returning 1 when evaluated: (W) � 1. MAGICBOX can easily be implemented in standard
deep learning libraries as follows:

(W) = exp
(
τ −⊥(τ)

)
,

τ =
∑
w∈W

log(p(w; θ)),

where ⊥ is an operator (e.g.‘stop gradient’ or ‘detach’) that sets the gradient of the operand to zero,
so ∇x⊥(x) = 0 . Using , we finally define the DICE objective, L , that fulfils all requirements
from above:

L =
∑
c∈C

(Wc)c+
∑
w∈S

(1− ({w}))bw.

Here the baseline bw is a design choice and can be any function of nodes not influenced by w, further
details are provided in Appendix D.2.

We verify the correctness of DICE both through a proof, in Appendix D and through numerical
evaluation of the DICE gradient estimates in Appendix E. To demonstrate the utility of DICE,
in Section 2, we also propose and evaluate a novel approach for learning with opponent learning
awareness (Foerster et al., 2018). We also open-source our code in TensorFlow. We hope this
powerful and convenient novel objective will unlock further exploration and adoption of higher order
learning methods in meta-learning, reinforcement learning, and other applications of SCGs.

2 EXPERIMENTS

While the main contribution of this paper is to provide a novel general approach for any order gradient
estimation in SCGs, we also provide a proof-of-concept empirical evaluation for a set of case studies,
carried out on the iterated prisoner’s dilemma (IPD). In IPD, two agents iteratively play matrix
games with two possible actions: (C)ooperate and (D)efect. The possible outcomes of each game
are DD, DC, CD, CC with the corresponding first agent payoffs, -2, 0, -3, -1, respectively. This
setting is useful because (1) it has a nontrivial but analytically calculable value function, allowing for
verification of gradient estimates, and (2) differentiating through the learning steps of other agents
in multi-agent RL is a highly relevant application of higher order policy gradient estimators in RL
(Foerster et al., 2018).

DICE for multi-agent RL. In learning with opponent-learning awareness (LOLA), Foerster et al.
(2018) show that agents which differentiate through the learning step of their opponent converge to
Nash equilibria with higher social welfare in the IPD.

Since the standard policy gradient learning step for one agent has no dependency on the parameters
of the other agent (which it treats as part of the environment), LOLA relies on a Taylor expansion of
the expected return in combination with an analytical derivation of the second order gradients to be
able to differentiate through the expected return after the opponent’s learning step.
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Figure 1: Joint average per step returns for different training methods. (a) Agents naively optimize
expected returns w.r.t. their policy parameters only, without lookahead steps. (b) The original LOLA
algorithm (Foerster et al., 2018) that uses gradient corrections. (c) LOLA-DICE with lookahead of
up to 3 gradient steps. Shaded areas represent the 95% confidence intervals based on 5 runs. All
agents used batches of size 64, which is more than 60 times smaller than the size required in the
original LOLA paper.

Here, we take a more direct approach, made possible by DICE. Let πθ1 be the policy of the LOLA
agent and let πθ2 be the policy of its opponent and vice versa. Assuming that the opponent learns
using policy gradients, LOLA-DICE agents learn by directly optimising the following stochastic
objective w.r.t. θ1:

L1(θ1, θ2)LOLA = Eπθ1 ,πθ2+∆θ2(θ1,θ2)

[
L1
]
,where

∆θ2(θ1, θ2) = α∇θ2Eπθ1 ,πθ2
[
L2
]
,

(2.1)

Here α is a scalar step size and Li =
∑T
t=0 γ

trit is the sum of discounted returns for agent i.

To evaluate these terms directly, our variant of LOLA unrolls the learning process of the opponent,
which is functionally similar to model-agnostic meta-learning (MAML, Finn et al., 2017). In
the MAML formulation, the gradient update of the opponent, ∆θ2, corresponds to the inner loop
(typically training objective) and the gradient update of the agent itself to the outer loop (typically
test objective).

Using the following DICE-objective to estimate gradient steps for agent i, we are able preserve all
dependencies:

Li (θ1,θ2) =
∑
t

({
at

′≤t
j∈{1,2}

})
γtrit, (2.2)

where
{
at

′≤t
j∈{1,2}

}
is the set of all actions taken by both agents up to time t. We note that for

computational reasons, we cache the ∆θi of the inner loop when unrolling the outer loop policies in
order to avoid recalculating them at every time step.

Importantly, using DICE, differentiating through ∆θ2 produces the correct higher order gradients,
which is vital for LOLA to function. In contrast, simply differentiating through the SL-based first
order gradient estimator again, as was done for MAML by Finn et al. (2017), results in omitted
gradient terms and a biased gradient estimator, as pointed out by Al-Shedivat et al. (2017) and Stadie
et al. (2018).

Figure 1 shows a comparison between the LOLA-DICE agents and the original formulation of LOLA.
In our experiments, we use a time horizon of 150 steps and a reduced batch size of 64; the lookahead
gradient step, α, is set to 1 and the learning rate is 0.3. Importantly, given the approximation used,
the LOLA method was restricted to a single step of opponent learning. In contrast, using DICE we
can differentiate through an arbitrary number of opponent learning steps.

The original LOLA implemented via second order gradient corrections shows no stable learning, as it
requires much larger batch sizes (∼ 4000). In contrast, LOLA-DICE agents discover strategies of
high social welfare, replicating the results of the original LOLA paper in a way that is both more
direct, efficient and establishes a common formulation between MAML and LOLA.
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A RELATED WORK

Gradient estimation is well studied, although many methods have been named and explored indepen-
dently in different fields, and the primary focus has been on first order gradients. Fu (2006) provides
an overview of methods from the point of view of simulation optimization.

The score function (SF) estimator, also referred to as the likelihood ratio estimator or REINFORCE,
has received considerable attention in many fields. In reinforcement learning, policy gradient methods
(Williams, 1992) have proven highly successful, especially when combined with variance reduction
techniques (Weaver & Tao, 2001; Grondman et al., 2012). The SF estimator has also been used in the
analysis of stochastic systems (Glynn, 1990), as well as for variational inference (Wingate & Weber,
2013; Ranganath et al., 2014).

Kingma & Welling (2013) and Rezende et al. (2014) discuss Monte-Carlo gradient estimates in the
case where the stochastic parts of a model are amenable to reparameterisation.

To easily make use of these estimates for optimizing neural network models, automatic differentiation
for backpropagation has been widely used (Baydin et al., 2015).

These approaches are formalized for arbitrary computation graphs by Schulman et al. (2015a), but to
our knowledge our paper is the first to present a practical and correct approach for generating higher
order gradient estimators utilizing auto-diff.

One rapidly growing application area for such higher order gradient estimates is meta-learning for
reinforcement learning. Finn et al. (2017) compute a loss after a single policy gradient learning
step, differentiating through the learning step to find parameters that can be quickly fine-tuned for
different tasks. Li et al. (2017) extend this work to also meta-learn the fine-tuning step direction and
magnitude.

Al-Shedivat et al. (2017) and Stadie et al. (2018) derive the proper higher order gradient estimators
for their work by reapplying the score function trick. Foerster et al. (2018) instead use a Taylor
expansion to derive their gradient estimators. None present a general strategy for constructing higher
order gradient estimators for arbitrary graphs.

B BACKGROUND

Suppose x is a random variable, x ∼ p(x; θ), f is a function of x and we want to compute
∇θEx [f(x)]. If the analytical gradients∇θf are unavailable or nonexistent, we can employ the score
function (SF) estimator:

∇θEx [f(x)] = Ex [f(x)∇θ log(p(x; θ))] (B.1)

If instead x is a deterministic function of θ and another random variable z, the operators ∇θ and
Ez commute, yielding the pathwise derivative estimator or reparameterisation trick. In this work,
we focus on the SF estimator, which can capture the interdependency of both the objective and the
sampling distribution on the parameters θ, and therefore requires careful handling for higher order
gradient estimates.
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B.1 STOCHASTIC COMPUTATION GRAPHS

Gradient estimators for single random variables can be generalised using the formalism of a stochastic
computation graph (SCG, Schulman et al., 2015a). An SCG is a directed acyclic graph with four
types of nodes: input nodes, Θ; deterministic nodes, D; cost nodes, C; and stochastic nodes, S.
Input nodes are set externally and can hold parameters we seek to optimise. Deterministic nodes are
functions of their parent nodes, while stochastic nodes are distributions conditioned on their parent
nodes. The set of cost nodes C are those associated with an objective L = E[

∑
c∈C c].

Let v ≺ w denote that node v influences node w, i.e., there exists a path in the graph from v to
w. If every node along the path is deterministic, v influences w deterministically which is denoted
by v ≺D w. See Figure 2 (top) for a simple SCG with an input node θ, a stochastic node x and a
cost function f . Note that θ influences f deterministically (θ ≺D f ) as well as stochastically via x
(θ ≺ f ).

B.2 SURROGATE LOSSES

In order to estimate gradients of a sum of cost nodes,
∑
c∈C c, in an arbitrary SCG, Schulman et al.

(2015a) introduce the notion of a surrogate loss (SL):

SL(Θ,S) :=
∑
w∈S

log p(w | DEPSw)Q̂w +
∑
c∈C

c(DEPSc)

Here DEPSw are the “dependencies” of w: the set of stochastic or input nodes that deterministically
influence the node w. Furthermore, Q̂w is the sum of sampled costs ĉ corresponding to the cost nodes
influenced by w.

The SL produces a gradient estimator when differentiated once (Schulman et al., 2015a, Corollary 1):

∇θL = E[∇θSL(Θ,S)]. (B.2)

The hat notation on Q̂w indicates that, inside the SL, these costs are treated as fixed samples, thus
severing the functional dependency on θ that was present in the original stochastic computation graph.
This ensures that the first order gradients of the SL match the score function estimator, which does
not contain a term of the form log(p)∇θQ.

Although Schulman et al. (2015a) focus on first order gradients, they argue that the SL gradient
estimates themselves can be treated as costs in an SCG and that the SL approach can be applied
repeatedly to construct higher order gradient estimators. However, the use of sampled costs in the SL
leads to missing dependencies and wrong estimates when calculating such higher order gradients, as
we discuss in Section C.2.

C HIGHER ORDER GRADIENTS

In this section, we illustrate how to estimate higher order gradients via repeated application of the
score function (SF) trick and show that repeated application of the surrogate loss (SL) approach
in stochastic computation graphs (SCGs) fails to capture all of the relevant terms for higher order
gradient estimates.

6



Workshop track - ICLR 2018

C.1 HIGHER ORDER GRADIENT ESTIMATORS

We begin by revisiting the derivation of the score function estimator for the gradient of the expectation
L of f(x; θ) over x ∼ p(x; θ):

∇θL = ∇θEx [f(x; θ)]

= ∇θ
∑
x

p(x; θ)f(x; θ)

=
∑
x

∇θ
(
p(x; θ)f(x; θ)

)
=
∑
x

(
f(x; θ)∇θp(x; θ) + p(x; θ)∇θf(x; θ)

)
=
∑
x

(
f(x; θ)p(x; θ)∇θ log(p(x; θ))

+ p(x; θ)∇θf(x; θ)
)

= Ex [f(x; θ)∇θ log(p(x; θ)) +∇θf(x; θ)] (C.1)
= Ex[g(x; θ)].

The estimator g(x; θ) of the gradient of Ex [f(x; θ)] consists of two distinct terms: (1) The
term f(x; θ)∇θ log(p(x; θ)) originating from f(x; θ)∇θp(x; θ) via the SF trick, and (2) the term
∇θf(x; θ), due to the direct dependence of f on θ. The second term is often ignored because f is
often only a function of x but not of θ. However, even in that case, the gradient estimator g depends
on both x and θ. We might be tempted to again apply the SL approach to ∇θEx[g(x; θ)] to produce
estimates of higher order gradients of L, but below we demonstrate that this fails. In Section D,
we subsequently introduce a practical algorithm for correctly producing such higher order gradient
estimators in SCGs.

C.2 HIGHER ORDER SURROGATE LOSSES

While Schulman et al. (2015a) focus on the first order gradients, they state that a recursive application
of SL can generate higher order gradient estimators. However, as we demonstrate in this section,
because the SL approach treats part of the objective as a sampled cost, the corresponding terms lose a
functional dependency on the sampling distribution. This leads to missing terms in the estimators of
the higher order gradients.

Consider the following example, where a single parameter θ defines a sampling distribution p(x; θ)
and the objective is f(x, θ).

SL(L) = log p(x; θ)f̂(x) + f(x; θ)

(∇θL)SL = Ex[∇θSL(L)]

= Ex[f̂(x)∇θ log p(x; θ) +∇θf(x; θ)] (C.2)
= Ex[gSL(x; θ)].

The corresponding SCG is depicted at the top of Figure 2. Comparing (C.1) and (C.2), note that the
first term, f̂(x) has lost its functional dependency on θ, as indicated by the hat notation and the lack
of a θ argument. While these terms evaluate to the same estimate of the first order gradient, the lack
of the functional dependency yields a discrepancy between the exact derivation of the second order
gradient and a second application of SL.

SL(gSL(x; θ)) = log p(x; θ)ĝSL(x) + gSL(x; θ)

(∇2
θL)SL = Ex[∇θSL(gSL)]

= Ex[ĝSL(x)∇θ log p(x; θ) +∇θgSL(x; θ)]. (C.3)

By contrast, the exact derivation of∇2
θL results in the following expression:

∇2
θL = ∇θEx[g(x; θ)]

= Ex[g(x; θ)∇θ log p(x; θ) +∇θg(x; θ)]. (C.4)
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ĝSL∇θ log(p(x; θ)) +
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θ log(p(x; θ)) +
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∇

∇

· · ·
∇

Figure 2: Simple example illustrating the difference of the Surrogate Loss (SL) approach to DICE.
Stochastic nodes are depicted in orange, costs in gray, surrogate losses in blue, DICE in purple, and
gradient estimators in red. Note that for second-order gradients, SL requires the construction of an
intermediate stochastic computation graph and due to taking a sample of the cost ĝSL, the dependency
on θ is lost, leading to an incorrect second-order gradient estimator. Arrows from θ, x and f to
gradient estimators omitted for clarity.

Since gSL(x; θ) differs from g(x; θ) only in its functional dependencies on θ, gSL and g are identical
when evaluated. However, due to the missing dependencies in gSL, the gradients w.r.t. θ, which
appear in the higher order gradient estimates in (C.3) and (C.4), differ:

∇θg(x; θ) = ∇θf(x; θ)∇θ log(p(x; θ))

+ f(x; θ)∇2
θ log(p(x; θ))

+∇2
θf(x; θ),

∇θgSL(x; θ) = f̂(x)∇2
θ log(p(x; θ))

+∇2
θf(x; θ).

We lose the term ∇θf(x; θ)∇θ log(p(x; θ)) in the second order SL gradient because ∇θf̂(x) = 0
(see left part of Figure 2). This issue occurs immediately in the second order gradients when f
depends directly on θ. However, as g(x; θ) always depends on θ, the SL approach always fails to
produce correct third or higher order gradient estimates even if f depends only indirectly on θ.
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C.3 SIMPLE FAILING EXAMPLE

Here is a toy example to illustrate a possible failure case. Let x ∼ Ber(θ) and f(x, θ) = x(1− θ) +
(1− x)(1 + θ). For this simple example we can exactly evaluate all terms:

L = θ(1− θ) + (1− θ)(1 + θ)

= −2θ2 + θ + 1

∇θL = −4θ + 1

∇2
θL = −4

Evaluating the expectations for the SL-gradient estimators analytically results in the following terms:

(∇θL)SL = −4θ + 1

(∇2
θL)SL = −2

Even with an infinite number of samples, the SL estimator produces the wrong second order gradient.
If, for example, these wrong estimates were used in combination with the Newton-Raphson method
for optimising L, then θ would never converge to the correct value. In contrast, this method would
converge in a single step using the correct gradients.

The failure mode seen in this toy example will appear whenever the objective includes a regularisation
term that depends on θ, and is also impacted by the stochastic samples. One example in a practical
algorithm is soft Q-learning for RL (Schulman et al., 2017), which regularises the policy by adding
an entropy penalty to the rewards. This penalty encourages the agent to maintain an exploratory
policy, reducing the probability of getting stuck in local optima. Clearly the penalty depends on the
policy parameters θ. However, the policy entropy will also depends on the states visited, which in turn
depend on the stochastically sampled actions. As a result, the entropy regularised RL objective in this
algorithm will have the exact property leading to the failure of the SL approach shown above. Unlike
our toy analytic example, the consequent errors will not just appear as a rescaling of the proper higher
order gradients, but will depend in a complex way on the parameters θ. Any second order methods
with such a regularised objective will therefore require an alternative strategy for generating gradient
estimators, even setting aside the awkwardness of repeatedly generating new surrogate objectives.

D CORRECT GRADIENT ESTIMATORS WITH DICE

In this section, we propose the Infinitely Differentiable Monte-Carlo Estimator(DICE), a practical
algorithm for programatically generating correct gradients of any order in arbitrary SCGs. The naive
option is to recursively apply the update rules in (C.1) that map from f(x; θ) to the estimator of its
derivative g(x; θ). However, this approach has two deficiencies: First, by defining gradients directly,
it fails to provide an objective that can be used in standard deep learning libraries. Second, these
naive gradient estimators violate the auto-diff paradigm for generating further estimators by repeated
differentiation since in general ∇θf(x; θ) 6= g(x; θ). Our approach addresses these issues, as well as
fixing the missing terms from the SL approach.

As before, L = E[
∑
c∈C c] is the objective in an SCG. The correct expression for a gradient estimator

that preserves all required dependencies for further differentiation is:

∇θL = E

[∑
c∈C

(
c
∑
w∈Wc

∇θ log p(w | DEPSw)

+∇θc(DEPSc)

)]
, (D.1)

where Wc = {w | w ∈ S, w ≺ c, θ ≺ w}, i.e. the set of stochastic nodes that depend on θ
and influence the cost c. For brevity, from here on we suppress the DEPS notation, assuming all
probabilities and costs are conditioned on their relevant ancestors in the SCG.

9
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Note that (D.1) is the generalisation of (C.1) to arbitrary SCGs. The proof is given by Schulman et al.
(2015a, Lines 1-10, Appendix A). Crucially, in Line 11 the authors then replace c by ĉ, severing the
dependencies required for correct higher order gradient estimators. As described in Section B.2, this
was done so that the SL approach reproduces the score function estimator after a single differentiation
and can thus be used as an objective for backpropagation in a deep learning library.

To support correct higher order gradient estimators, we propose DICE, which relies heavily on a
novel operator, MAGICBOX( ). This operator takes a set of stochastic nodesW as input and has the
following two properties by design:

1. (W) � 1,
2. ∇θ (W) = (W)

∑
w∈W ∇θ log(p(w; θ)).

Here, � indicates “evaluates to” in contrast to full equality, =, which includes equality of all gradi-
ents. In the auto-diff paradigm, � corresponds to a forward pass evaluation of a term. Meanwhile, the
behaviour under differentiation in property (2) indicates the new graph nodes that will be constructed
to hold the gradients of that object. Note that that (W) reproduces the dependency of the gradient
on the sampling distribution under differentiation through the requirements above. Using , we can
next define the DICE objective, L :

L =
∑
c∈C

(Wc)c. (D.2)

Below we prove that the DICE objective indeed produces correct arbitrary order gradient estimators
under differentiation.
Theorem 1. E[∇nθL ] � ∇nθL,∀n ∈ {0, 1, 2, . . . }.

Proof. For each cost node c ∈ C, we define a sequence of nodes, cn, n ∈ {0, 1, . . . } as follows:

c0 = c,

E[cn+1] = ∇θE[cn]. (D.3)

By induction it follows that E[cn] = ∇nθE[c] ∀n, i.e. that cn is an estimator of the nth order derivative
of the objective E[c].

We further define cn = cn (Wcn). Since (x) � 1, clearly cn � cn. Therefore E[cn ] � E[cn] =
∇nθE[c], i.e., cn is also a valid estimator of the nth order derivative of the objective. Next, we show
that cn can be generated by differentiating c0 n times. This follows by induction, if∇θcn = cn+1,
which we prove as follows:

∇θcn = ∇θ(cn (Wcn))

= cn∇θ (Wcn) + (Wcn)∇θcn

= cn (Wcn)

 ∑
w∈Wcn

∇θ log(p(w; θ))


+ (Wcn)∇θcn

= (Wcn)

∇θcn + cn
∑

w∈Wcn

∇θ log(p(w; θ))

 (D.4)

= (Wcn+1)cn+1 = cn+1. (D.5)

To proceed from (D.4) to (D.5), we need two additional steps. First, we require an expression for
cn+1. Substituting L = E[cn] into (D.1) and comparing to (D.3), we find the following map from cn

to cn+1:
cn+1 = ∇θcn + cn

∑
w∈Wcn

∇θ log p(w; θ). (D.6)

The term inside the brackets in (D.4) is identical to cn+1. Secondly, note that (D.6) shows that cn+1

depends only on cn andWcn . Therefore, the stochastic nodes which influence cn+1 are the same as
those which influence cn. SoWcn =Wcn+1 , and we arrive at (D.5).

10
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To conclude the proof, recall that cn is the estimator for the nth derivative of c, and that cn � cn.
Summing over c ∈ C then gives the desired result.

D.1 IMPLEMENTATION OF DICE

DICE is easy to implement in standard deep learning libraries:

(W) = exp
(
τ −⊥(τ)

)
,

τ =
∑
w∈W

log(p(w; θ)),

where ⊥ is an operator that sets the gradient of the operand to zero, so∇x⊥(x) = 0. 1

Since ⊥(x) � x, clearly (W) � 1. Furthermore:

∇θ (W) = ∇θ exp
(
τ −⊥(τ)

)
= exp

(
τ −⊥(τ)

)
∇θ(τ −⊥(τ))

= (W)(∇θτ + 0)

= (W)
∑
w∈W

∇θ log(p(w; θ)).

With this implementation of the -operator, it is now straightforward to construct L as defined in
(D.7). This procedure is demonstrated in Figure 3, which shows a reinforcement learning use case.
In this example, the cost nodes are rewards that depend on stochastic actions, and the total objective
is J = E[

∑
rt]. We construct a DICE objective J =

∑
t ({at′ , t′ ≤ t})rt. Now E[J ] � J

and E[∇nθJ ] � ∇nθJ , so J can both be used to estimate the return and to produces estimators
for any order gradients under auto-diff, which can be used for higher order methods such as TRPO
(Schulman et al., 2015b).

Causality. In Theorem 1 of Schulman et al. (2015a), two expressions for the the gradient estimator
are provided:

1. The first expression handles causality by summing over stochastic nodes, w, and multiplying
∇ log(p(w)) for each stochastic node with a sum of the downstream costs, Q̂w. This is
forward looking causality.

2. In contrast, the second expression sums over costs, c, and multiplies each cost
with a sum over the gradients of log-probabilities from upstream stochastic nodes,∑

w∈Wc
∇ log(p(w)). We can think of this as backward looking causality.

In both cases, integrating causality into the gradient estimator leads to reduction of variance com-
pared to the naive approach of multiplying the full sum over costs with the full sum over grad-log-
probabilities.

While the SL approach is based on the first expression, DICE uses the second formulation. As shown
by Schulman et al. (2015a), both expressions result in the same terms for the gradient estimator.
However, the second formulation leads to greatly reduced conceptual complexity when calculating
higher order terms, which we exploit in the definition of the DICE objective. This is because each
further gradient estimator maintains the same backward looking dependencies for each term in the
original sum over costs, i.e., Wcn = Wcn+1 . In contrast, the SL approach is centred around the
stochastic nodes, which each become associated with a growing number of downstream costs after
each differentiation. Consequently, we believe that our DICE objective is more intuitive, as it is
conceptually centred around the original objective and remains so under repeated differentiation.

D.2 VARIANCE REDUCTION.

So far, the construction of the DICE objective addresses variance reduction only via implementing
causality, since each cost term is associated with the that captures all causal dependencies. However,

1This operator exists in PyTorch as detach and in TensorFlow as stop gradient.
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s1 s2 st· · ·

a1 a2 at· · ·

r1 r2 rt· · ·

θ

(a1)r1 (a1, a2)r2 (a1, . . . , at)rt· · ·

∇nθ (a1)r1 ∇nθ (a1, a2)r2 ∇nθ (a1, . . . , at)rt· · ·

∇n ∇n ∇n

Figure 3: DICE applied to a reinforcement learning problem. A stochastic policy conditioned on
st and θ produces actions, at, which lead to rewards rt and next states, st+1. Associated with each
reward is a DICE objective that takes as input the set of all causal dependencies that are functions of
θ, i.e., the actions. Arrows from θ, ai and ri to gradient estimators omitted for clarity.

we can also include a baseline term in the definition of the DICE objective:

L =
∑
c∈C

(Wc)c+
∑
w∈S

(1− ({w}))bw. (D.7)

The baseline bw is a design choice and can be any function of nodes not influenced by w. As long as
this condition is met, the baseline will not change the expectation of the gradient estimates, but can
considerably reduce the variance (including of higher order gradient estimators). A common choice
is the average cost.

Since (1 − ({w})) � 0, the addition of the baseline leaves the evaluation of the estimator L
of the original objective unchanged, while reproducing the baseline term stated by Schulman et al.
(2015a) after differentiation.

Hessian-Vector Product. The Hessian-vector, v>H , is useful for a number of algorithms, such as
estimation of eigenvectors and eigenvalues of H (Pearlmutter, 1994). Using DICE, v>H can be
implemented efficiently without having to compute the full Hessian. Assuming v does not depend on
θ and using > to indicate the transpose:

v>H = v>∇2L
= v>(∇>∇L )

= ∇>(v>∇L ).

In particular, (v>∇L ) is a scalar, making this implementation well suited for auto-diff.

E EMPIRICAL VERIFICATION.

We first verify that DICE successfully recovers gradients and Hessians in stochastic computation
graphs. To do so, we use DICE to estimate gradients and Hessians of the expected return for fixed
policies in IPD.

As shown in Figure 4, we find that indeed the DICE estimator matches both the gradients (a) and
the Hessians (b) for both agents accurately. Furthermore, Figure 5 shows how the estimate of the
gradient improve as the value function becomes more accurate during training, in (a). Also shown is
the quality of the gradient estimation as a function of sample size with and without a baseline, in (b).
Both plots show that the baseline is a key component of DICE for accurate estimation of gradients.
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Figure 4: For each of the two agents (1 top row, 2 bottom row) in the iterated prisoner’s dilemma,
shown is the flattened true (red) and estimated (green) Gradient (left) and Hessian (right) using
the first and second derivative of DICE and the exact value function respectively. The correlation
coefficients are 0.999 for the gradients and 0.97 for the Hessian; the sample size is 100k.
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Figure 5: Shown in (a) is the correlation of the gradient estimator (averaged across agents) as a
function of the estimation error of the baseline when using a sample size of 128 and in (b) as a
function of sample size when using a converged baseline (in blue) and no baseline (in green). In both
plots errors bars indicate the standard deviation.
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