Under review as a conference paper at ICLR 2018

DOMAIN ADAPTATION FOR DEEP REINFORCEMENT
LEARNING IN VISUALLY DISTINCT GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many deep reinforcement learning approaches use graphical state representations,
this means visually distinct games that share the same underlying structure cannot
effectively share knowledge. This paper outlines a new approach for learning
underlying game state embeddings irrespective of the visual rendering of the game
state. We utilise approaches from multi-task learning and domain adaption in
order to place visually distinct game states on a shared embedding manifold. We
present our results in the context of deep reinforcement learning agents.

1 INTRODUCTION

Games have often been used in order to experiment with new approaches with Artificial Intelligence
(AI) research. Games provide flexibility to simulate a range of problems such as fully observable vs
partially observable, stochastic vs discrete and noisy vs noise free environments. This first started
with digital versions of board games being used such as backgammon and chess. More recently
video games have begun to provide a plethora of digital environments and tasks for benchmarking
Al systems. These new systems use neural networks and are usually trained using the raw pixel
values of game frames, meaning the networks have to interpret these pixels into game states that can
then be used to learn an optimal policy for play. Due to the fact that they use these raw pixel values
they are sensitive to changes in the visuals of the game used, this results in very little knowledge
transfer between visually distinct games (Rusu et al., [2016) resulting in the networks learning each
game individually without any representation overlap. Games are usually very visually distinct as
concepts are often abstract, especially for puzzle games. Early video games were often like this
because it is very computationally expensive to create games that accurately imitate the real world,
whereas more modern games may take a more abstract representation due to the financial expense.

Learning representations has long been an important area of Al research. It has led to many new
approaches to producing representations for many applications, such as word embeddings (Bengio
et al., [2003) and style transfer (Gatys et al., 2015). In the case of word embeddings networks can
be used to solve various tasks such as predicting the context within which each word appears, the
outputs of one of the hidden layers can then be used in order represent that word. This then results
in word embeddings that place words that appear in similar contexts within close proximity to each
other in the embedding space (Bengio et al.,2003)). These resulting embeddings can then be used in
order to solve more complex tasks without the system having to train from raw input. This could be
seen as a form of knowledge transfer as the knowledge of the meaning of words has been encoded
into its embedding and can then be used with new networks working on new tasks without the need
to learn this mapping between words and their context again (Turian et al., 2010).

In our work we improve knowledge representation across tasks that have underlying similarities
but are represented in a visually distinct way. The architecture we propose in this paper learns
representations that are independent of the visual differences of the games. This will result in the
strategic elements of the game playing network to share knowledge between visually distinct games.

In order to achieve this we use and extend work that has been done around domain adaption. Domain
adaption seeks to produce shared representation between two separate domains a source domain and
a target, such as high resolution product photos and images taken with a low resolution webcam
(Ganin & Lempitsky, |2015). We present a method for using similar techniques in the domain of
reinforcement learning allowing an agent to learn domain independent representations for a group
of similar games that are visually distinct.

Under review as a conference paper at ICLR 2018

This paper will first ground our work in the context of both learning representations and reinforce-
ment learning. We will then outline the environment that the networks were trained in along with
the desired outcomes. We will finally present the resulting representations and outline future work
to extend this approach.

2 RELATED WORK

2.1 AI AND GAMES

Games provide a good benchmark for Al as they require high level reasoning and planning (Yan-
nakakis & Togelius, [2015; McCoy & Mateas|, [2008)). This means that they have often been used to
signify advances in the state of the art such as with Deep Blue the chess playing Al that beat Gary
Kasparov (Campbell et al., |2002) and AlphaGo the go playing agent that beat Lee Sedol (Silver
et al.}2016). Games also provide a nice interface for agents to be able to either look into the internal
state of the games, as needed for methods such as Monte carlo tree search (MCTS) (Perez-Liebana
et al., |2016), or can provide visual representations of state that can be used by agents (Bellemare
et al.,2015). Games also allow agents to process experiences much faster than would be possible in
the real world. This means data hungry methods are still able to learn in a relatively short period of
time (Karakovskiy & Togelius},|2012).

There has also been a significant amount of research into other areas of game playing, such as
competitions aimed at agents passing a form of Turing Test in order to rank agents based on their
ability to mimic human play (Hingston, 2009)). Most of these systems have revolved around using
data from human play in order to achieve this goal (Polceanu, 2013} [Karpov et al.l 2013). There
have also been competitions organised in order to assess agents ability to generalise across a variety
of games, the General Game Playing Competition (Genesereth et al.l 2005) focusing on playing
multiple board games, and the General Video Game Playing Competition (Liebana et al., [2016)
that assess agents performance across a broad range of video games. Other work has also started
that uses modified versions of game engines in order to provide environments to teach Al, these
include Project Malmo that uses the popular Minecraft Game in order to provide an experimentation
platform for AI agents (Johnson et al.l 2016), and OpenArena, a modified version of the ID Tech
3 engine used by Quake 3, in order to train and benchmark Al at a range of tasks including path
finding in a Labyrinth and laser tag (Jaderberg et al., 2016).

There has also been some work in using neural evolution to evolve a network to control an agent
in an first-person shooter (FPS) environment (Parker & Bryant, 2012)). Others have investigated the
use of hierarchical approaches in the design of Al agents for FPS games (Van Hoorn et al.| [2009)
that use networks in a hierarchical fashion to deconstruct the tasks into sub-skills.

2.2 REINFORCEMENT LEARNING

Reinforcement learning is an area of machine learning that focuses on the use of rewards in order to
train agents how to act within environments. Reinforcement learning provides a structure where the
agent is in an environment in which it can take actions, then make observations and receive rewards.
These rewards can then be used in order to improve the agent’s policy for picking actions in the
future, with the aim of maximising the rewards it receives.

Temporal difference (TD) is a technique that has had a large impact in reinforcement learning (Kael-
bling et al.,[1996). It gives a method for predicting future reward through learning from experience.
TD learning is the basis for many other reinforcement approaches (Watkins & Dayanl 1992} Konda
& Tsitsiklis) [1999).

Actor-critic is one method the utilises TD. Actor-critic methods split the agent into two separate
entities (Williams|, [1992). The actor learns a policy which is a vector of probabilities for selecting
a specific action. The critic is then a more traditional state-value function that is used to guide
the learning of the policy. The critic evaluates the TD error § to assess whether the action chosen
performed better or worse than expected (Konda & Tsitsiklis| |1999). If the action produced a better
reward than expected the probability of choosing that action should be increased. However if the
reward was less than expected the probability p(s;, a¢) of choosing action a; should be reduced.

Under review as a conference paper at ICLR 2018

This is one of the simpler forms of actor critic methods with other approaches introducing more
factors into the calculation such as the entropy of the current policy (Williams & Peng, |[1991).

There are two main advantages to actor critic over value function methods, one is that it takes
minimal amount of computation in order to select actions. There is no need to calculate the value
of @ for every action in the action space before picking the action with the highest value. The
other advantage is that they can learn explicitly stochastic policies, meaning it can learn the optimal
probabilities for which action to pick. One example of this is that actor critic methods could learn
the optimal policy for the game rock, paper, scissors. It would learn that the optimal policy is to pick
each action one third of the time, this is the optimal if you are not modelling the decisions of your
opponent (Niklasson et al) 2001). Whereas a value function method with a greedy policy would
constantly pick the same action depending on the experiences it had during training.

2.3 DEEP REINFORCEMENT LEARNING

There have already been a few systems that tackle the problem of learning to play games from the
screen buffer only. As will be discussed below all of these systems rely on the use of deep neural
networks in order to process the images and learn which action produces the best possible outcome
for the agent.

Deep Q networks (DQN) were the first deep reinforcement learning agents to beat human perfor-
mance in a variety of Atari games (Mnih et al.,2015). This has lead to many advancements including
Asynchronous Advantage Actor-Critic networks that are the basis for our experiments.

Asynchronous advantage actor-critic (A3C) is a method for using actor-critic reinforcement learning
methods along with deep reinforcement learning, it is also the approach that we chose to use in our
experiments. There are a few different intricacies to A3C networks, the first is the fact that the
value and policy are calculated by two separate networks. Although in theory they are two different
networks, in practice it is possible for the two networks to share lower level layers, that includes
all the convolutional layers and any LSTM layers that the model may have. As it is an actor-critic
method the policy is learnt online. Meaning the policy is followed during training at all times and
there is no need for a explore vs exploit parameter. Instead one of the tricks used by A3C is to
subtract the entropy of the policy from the error rate, this tries to force the network towards high
entropy until it finds a policy that produces high rewards, this has been shown to find better policies
by increasing exploration and preventing the system from converging on a sub optimal policy too
early (Williams & Peng| [1991). A3C is also an asynchronous method, with each thread having an
instance of the MDP that the agent can learn from. Once a set of experiences have been acquired
on a particular thread then the gradients are calculated on the local network in order to then update
the global network. Once the global network has been updated a new copy is taken by the local
network. This means that A3C can train entirely on CPUs and does not require GPUs to attain
acceptable training times (Mnih et al., 2016).

This method negates many of the tricks required by the DQN technique that are there to improve
the convergence of those systems. The fact that the local threads take a copy of the global network
prevents the need for network freezing, where old copies of the network are used for the error
calculation. Having multiple threads all updating the global network with different experiences also
means there is no need for experience replay. A3C has been shown to perform better than DQN
approaches in a variety of Atari 2600 games (Mnih et al.,|2016).

There have also been some improvements made to A3C including the Unsupervised reinforcement
and auxiliary learning (UNREAL) networks who use a variety of auxiliary tasks in order to improve
feature extraction from the raw input images (Jaderberg et al.,[2016).

2.4 MULTI-TASK LEARNING

Multi-task learning (MTL) is a method that tries to leverage the similarities between tasks in order
to improve training efficiency and accuracy (Caruanal [1998). In the context of deep learning these
systems try to share this knowledge by having shared layers of the neural networks used, these are
the lower layers of the network that then feed into separate output layers for each task (Caruana,
1998)). This results in the lower layers producing representations of the input data that can be used
to solve a variety of tasks. Features that are extracted by one task can then be shared among all the

Under review as a conference paper at ICLR 2018

tasks allowing them to leverage the learned features. This form of MTL has many similarities to
auxiliary tasks such as the ones used in UNREAL (Jaderberg et al.| 2016).

There has been some work with using MTL in the context of deep reinforcement learning. One of
these approaches by Liu et al uses DQN as the base reinforcement learning agent and then presents
the agent with different but similar tasks. These tasks involve solving a navigation problem within
the Malmo environment, this means that the output layers for the different tasks would be dealing
with differing action space sizes and different actions to choose between. During training of this
network the task would be switched after every training episode and a separate experience replay
memory would be stored for each task. This has been shown to produce aligned embeddings across
similar tasks with a visually similar environment (Lydia T. Liu & Hofmann| |2016). It has also been
shown however that these systems cannot align the embeddings for similar tasks that are visually
distinct (Rusu et al., [2016)).

2.5 DOMAIN ADAPTION

Domain adaption is an approach that tries to deal with differing data sets that have the same under-
lying structure. These approaches are often applied to image data sets such as the Office dataset that
contains images of the same objects split into three data sets, one containing the amazon product
images, one containing images taken with a high resolution dSLR camera and finally images of the
objects captured using a low resolution webcam. There is also extensive amounts of research in
using domain adaption for natural language processing, such as sentiment analysis where product
reviews across a variety of domains are used (Glorot et al [2011). Originally a loss between these
tasks was hard coded (Fernando et al.,[2013) whereas more recent approaches use adversarial net-
works in order to produce a loss that can be used to produce a domain adaption embedding space
(Ganin & Lempitskyl 2015)). Using the Office dataset still shows results based on supervised learn-
ing of real world representations. The most diversity in input that the network needs to deal with
is differing quality of images and lighting conditions. The objects still have a familiar real world
representation that changes very little between data sets.

2.6 SUMMARY

The research presented above represents the grounding for our work. In our work we look to improve
the representations that deep reinforcement learning agents produce when learning multiple visually
distinct games. As shown when visually distinct games are used in the context of multi task learning
each game would result in separate embedding spaces Rusu et al.| (2016). Domain adaption is
an approach that tries to create shared embedding spaces from differing raw datasets. We look
to use approaches from domain adaption in order to create unified embedding spaces for visually
distinct games in order to facilitate knowledge transfer in the future by taking advantage of a shared
embedding manifold.

3 APPROACH

For our approach we wish to create a neural network system that can effectively learn to play multiple
visually distinct games that share the same underlying structure. Solving this problem opens up the
possibility of sharing knowledge between distinct data sources that still describe the underlying
structure of similar tasks. This would allow for more general Al systems as well as increasing the
amount of data that can be used in order to solve a task, as multiple differing data sources could be
used. It may also be possible to use the representations in order to learn new unseen datasets in a
more time and data efficient manner than learning from scratch, such as the current systems do.

Our approach retains the advantages of deep reinforcement learning systems by learning to play
these games form the raw pixel values and a given reward function only. As our research is con-
cerned with learning these underlying representations we have chosen to use an established deep
reinforcement learning approach. We chose A3C given its success in learning a variety of games,
but this approach could easily be adapted to other deep reinforcement learning algorithms. In this
paper we look at games that have the same underlying structure and game states, however we change
the visual representations of these game states so that the network needs to learn the underlying sim-
ilarities and not the raw pixel value similarities. We will compare this to current domain adaption

Under review as a conference paper at ICLR 2018

Figure 1: Game Renderers (Left to Right: GreyRenderer, InvertRenderer, ShapeRenderer)

approaches and also the naive approach of simply training the A3C network on all three representa-
tions.

Our approach also uses techniques that have shown success in domain adaption (Ganin & Lempitsky,
2015)). We use an adversarial network in order to provide an error gradient that tries to force the lower
layers of the network into creating embeddings that are agnostic to the dataset that produced them.

4 EXPERIMENTAL SETUP

Our work is focused on obtaining a shared embedding manifold between games that have an un-
derlying similarity but which are rendered differently. The environment that we setup in order to
experiment involved using the game GridWorld, a simple 2D game where a player character can
move in the four cardinal directions and must collect a pickup and then head towards a final goal.
We then take the gridworld game and create three renderers that render the game in distinct ways.

The frames shown in Figure|[T]all show the same game state. The Shape Renderer renders the player
as a circle, the pickup as a triangle and the goal as a square. The Invert renderer has the colors
inverted and changes which shape corresponds to the game elements. The Grey renderer uses the
greyscale value to discriminate between the game objects. All the games were played on a 4x4
grid with the agent receiving a positive reward of 0.5 for collecting the pickup, and a reward of 1
when reaching the goal having already collected the pickup, the images produced by the renderers
were 40x40 pixels in size. The size of the grid was chosen to be 4x4 in order to keep the training
time relatively short. Our choice of reward function was based on rewarding the agent only for
positive actions towards it’s goal, as our research isn’t focused on improving the planning of actions
or dealing with distant rewards we also added a reward for collecting the pickup in order to speed
up convergence to a good policy. Goal and player position are random for every episode of a game.
Our goal is to have our system learn to play these games and separate the underlying game state
from the visual representation.

5 NETWORK DETAILS

For all our experiments we compare our approach to two other approaches, we keep as much of
the networks the same in order to test our enhancements. We will outline our approach and then
highlight the differences between our two benchmarks.

5.1 DOMAIN ADATATION FOR DEEP REINFORCMENT LEARNING (DA-DRL)

Our approach is shown in Figure 2} The architecture is a standard A3C implementation, but instead
of training on one game it is fed multiple games with the upper layers being shared. This is to try
and get the upper layers to embed knowledge of how to play the games independent of how they are
rendered. The input images are all 8bit greyscale and are 40x40 pixels in size. The convolutional
layers for all the games are the same in size but do not share any weights, the first layer has 16 8x8
kernels that have a convolution step size of 4, the second layer has 32 4x4 kernels that have a step
size of 2. The upper hidden layer has 16 neurons and the action output is a probability distribution
of size 4, one for each direction the agent can move. There is also a value estimation output that is
used during training in order to guide the agents policy.

The error gradients for the A3C elements of the network are calculated using

Under review as a conference paper at ICLR 2018

INPUT INDEPENDENT WEIGHTS SHARED WEIGHTS ERROR
i i ;
CONVOLUTION CONNECTED UPPER
|| LAYERS || EMBEDDING STRATEGY POLICY - »wp)
LAYER LAYERS OUTPUT I poowN)
LAYER —— p@iGHT)
—— P(LEFT)
CONVOLUTION CONNECTED ac
|| LAYERS | |EMBEDDING |||
LAYER ERROR
VALUE
OUTPUT
CONVOLUTION CONNECTED LAYER [vem®
|| LAYERS || EMBEDDING
LAYER
DISCRIMINATOR SOFTMAX L »mexpER D) -
— LAYERS OUTPUT | »wenpER2) EEESEENTRUPY
LAYER |—— P(RENDER 3)
Figure 2: Network Architecture
! /
Vo log m(at|se; 0')(re — V(se50v)) + BV H(m(s¢;0")) (1)

where 7(a¢|s;; 6’) is the output of the policy network for action a; in state s, r; represents the
actual reward received by the agent, V' (s;;0,) is the estimated reward from the value network, H
is the entropy and S is the strength of the entropy regularization term. The action taken is factored
by the amount of error in the prediction of the value of the state. This has the effect of increasing
the probability of actions that it underestimates the value of the states they produce, and reduces the
probability of actions that it overestimates the value of the states.

The architecture also has another network that needs to be optimized, in this case an adversary
that receives a game state embedding as an input and must predict which renderer produced that
embedding. This network consists of an input layer of size 16, a hidden layer of size 16 and then
a softmax output layer of size 3 with one output per renderer during training. The cross entropy
loss is then minimized during training in order for the network to improve at classifying which
renderer produced which embedding. Whilst this is happening the convolutional layers are also
updated in order to try and maximise the loss from the discriminator network. This has the effect of
the convolutional layers being forced to remove renderer specific data from the embedding that the
discriminator sees and only include data that can be extracted from all of the renderers.

Simply adding the discriminator would however not fully force the network to have to remove all
render specific information as the convolutional layers can begin to deliver unseen embeddings in
order to fool the discriminator into not knowing which renderer produced the embedding. This can
be fixed by placing a small error to the embeddings during training that penalises distance from the
global distributions of all embeddings across all three renderers. The equation for this penalty is
given by

11—71_
==Y E—¢ 2
Lr nz_; e)

where 7 is the number of embeddings produced in this training batch, E is the rolling average of the
global set of embeddings and e represents an individual embedding in the training batch.

The loss for the convolutional layers now contains a variety of errors that need to be optimized. The
loss calculation for these layers are calculated using

Lconv(0) = Lasc +AeLE —Aala 3)

where £ 43¢ is the A3C loss as calculated by Equation[I} ApLg being the discounted embedding
loss as outlined in Equation[3Jand A4 £ 4 being the discounted adversarial networks loss in the case
of our network this is the cross entropy loss. The adversarial networks loss is is subtracted from

Under review as a conference paper at ICLR 2018

INPUT INDEPENDENT WEIGHTS SHARED WEIGHTS ERROR
r r r

1 e —

1

CONVOLUTION CONNECTED UPPER

LAYERS || EMBEDDING STRATEGY POLICY L pup
LAYER LAYERS OUTPUT —— pmowN)
LAYER [—— PRIGHT)
f——— P(LEFT)
CONVOLUTION CONNECTED A3C
—|LAYERS | |EMBEDDING |\ ERROR
LAYER VALUE
OUTPUT —— V(STATE)
CONVOLUTION CONNECTED LAYER
LAYERS || EMBEDDING

LAYER

Figure 3: This Figure shows the architecture for our baseline

INPUT SHARED WEIGHTS ERROR
r | r | r |
UPPER
STRATEGY POLICY —— p(up)
LAYERS OUTPUT —— POOWN)
LAYER [—— P(RIGHT)
|—— PEFT)
CONVOLUTION CONNECTED A3C
— {LAYERS | EMBEDDING H— .
LAYER ERROR
VALUE
OUTPUT —— V(STATE)
LAYER
DISCRIMINATOR SOFTMAX —— P(RENDER 1) . . i
LAYERS OUTPUT L nrenpir2) R INTRORY
LAYER P(RENDER 3) B

Figure 4: This Figure shows the network with completly shared parameters betweeen games.

the convolutional layers loss so that the convolutional layers are trying to maximise the adversarial
networks error.

We expect that our system would be able to deal well with generalisability due to the fact that the
bases of the reinforcement learning is A3C that has been shown to generalise well when dealing
with a wide variety of games. We also use a relatively small A4 when calculating the gradients for
the convolutional layers. This should allow for games that do not share underlying similarities to
diverge within the embedding space, this however has not yet been tested.

5.2 BASELINE

The first variation we will compare to is an identical network to our approach but without the adver-
sarial network, this will be used to demonstrate whether the embeddings between the separate tasks
naturally align into a shared manifold. All of the other parameters are identical to our approach
above.

5.3 SHARED CONVOLUTION

The final system we test against is show in Figure] This network shares the lower convolutional
layers between all three games such as the networks by (Ganin & Lempitsky|(2015)

6 RESULTS

As shown in Figure5|the network with fully shared parameters was unable to reach the same perfor-
mance as our network with separate convolutional layers per renderer. With our network managing
to get very close to optimal performance in around 3 million examples. The fully shared network
however was unable to achieve these results only getting to 10 average excess moves per game. The
baseline system was able to get to our performance faster but without managing to extract similarities
between game states as shown in Figure [l where each visually distinct game is fully disconnected
in the embedding space. These results are from a single training run, but we have found that these

Under review as a conference paper at ICLR 2018

400 Architecture
@ Baseline

2 30.0 @ Shared Convolutions
8 30.
§ @® DA-DRL
w 20.0
1]
8
®
& 10.0

0.00

0.000 1.000M 2.000M 3.000M
Experiences
Figure 5: Average game play performance during training

DA-DRL Fully Shared Parameters Baseline

Renderer ~ ® Grey Scale Renderer @ Invert Shape Renderer @ Shape Renderer

Figure 6: Embedding results colored by renderer used for each data point, plotted using Principle
Component Analysis (PCA)

results are consistent across multiple runs, with only the initial performance of the networks being
affected due to random weight initialisation. Interestingly the performance of both the DA-DRL
network and the shared convolution network decreases in the early stage of training, we believe this
is due to an untrained adversarial network having a bigger influence at the start of training.

Looking at Figure [f] it is obvious that there is some overlap between the renderers however it is
possible to see that our system better aligns the separate renderers as they follow the same overall
structure, whereas in the fully shared parameter version the renderers embeddings have differing
shapes and cross over each other at differing angles. Also looking at Figures[7]and [§]it can be seen
that there isn’t as much structure to the embeddings in terms of encoding the best action to take or
if there is a pickup present in the game state.

DA-DRL Fully Shared Parameters Baseline

Optimal Move ~ ® Down @ Down/Right ® Right Up / Right Up Up/Left ® Left ® Down/ Left

Figure 7: Embedding results colored by best possible move for each data point, plotted using PCA

Under review as a conference paper at ICLR 2018

DA-DRL Fully Shared Parameters Baseline

Game State @ Pickup Collected ® Pickup Uncollected

Figure 8: Embedding results colored by the presence of the pickup in game state, plotted using PCA

Whereas the network with separate convolutional layers per renderer was able to successfully align
its embeddings as shown in Figure [6] and also encode information about both the optimal move to
make and the current state of the game, in this case whether the game state has a pickup present or
not. This is not a property that we tried to impose during training but rather an emergent property of
the embeddings that the network produced.

7 CONCLUSION

As our results show it is possible for our system to separate game states from raw pixel values
despite the renderings of the game being so distinct. It also effectively separates out states that
require a different task to be completed, with the game states that contain pickups being in a distinct
but related space to the states that require the player to now head towards the goal. This shows
that the learned embeddings are capturing a lot about how the game is played irrespective of how
the frame is rendered. We show that this is possible in the context of deep reinforcement learning
for domain adaptions to be successfully achieved using adversarial networks. Our network also
manages to deal with more visually diverse inputs than was possible with a network that fully shares
its parameters. As the results have shown the single shared convolutional layers did not have the
capacity to deal with the differences between the visual representations of the game. We have shown
that it is possible to use adversarial networks along with separate convolutional layers in order to
produce shared embedding spaces for visually distinct inputs.

8 FUTURE WORK

In the future we plan to use the knowledge we have extracted from this approach to allow the network
to effectively utilise these embeddings in order to improve learning on a new, but visually distinct,
game. We believe the knowledge that has been extracted would aid in the data efficiency of learning
a new task that is visually distinct but shares similarities with the original task. We would also like
to increase the complexity of the underlying games as well as reducing the similarity between the
tasks. One identified experiment would be to use 3 games from the Arcade Learning Environment
(ALE) that provides an environment for reinforcement learning from screen capture on a variety of
Atari 2600 games. We have identified 4 similar yet visually distinct games that could be used in our
experiments. Zaxxon, Assault, Beam Rider and Space Invaders all require the player to move some
form of entity at the bottom of the screen and shoot upwards in order to destroy entities coming from
the top of the screen. They are visually distinct and in some cases also diverge slightly in how then
are played, with Space Invaders being the only game with defences at the bottom of the screen. . By
achieving this knowledge transfer we would provide a flexible method for the transfer of knowledge
between these deep neural network systems, irrespective of their architectures.

Under review as a conference paper at ICLR 2018

REFERENCES

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJICAI’15, pp. 4148-4152. AAAI Press, 2015. ISBN 978-
1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832747.2832830.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137-1155, 2003.

Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1):57-83, 2002.

Rich Caruana. Multitask learning. In Learning to learn, pp. 95-133. Springer, 1998.

Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual do-
main adaptation using subspace alignment. In Proceedings of the IEEE international conference
on computer vision, pp. 2960-2967, 2013.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In Pro-
ceedings of the 32Nd International Conference on International Conference on Machine Learn-
ing - Volume 37, ICML’15, pp. 1180-1189. JMLR.org, 2015. URL http://dl.acm.org/
citation.cfm?id=3045118.3045244.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview of the
AAAI competition. Al magazine, 26(2):62, 2005.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 513-520, 2011.

Philip Hingston. A turing test for computer game bots. [EEE Transactions on Computational
Intelligence and Al in Games, 1(3):169-186, 2009.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for ar-
tificial intelligence experimentation. In Infernational joint conference on artificial intelligence
(1IJCAI), 2016.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237-285, 1996.

Sergey Karakovskiy and Julian Togelius. The mario ai benchmark and competitions. IEEE Trans-
actions on Computational Intelligence and Al in Games, 4(1):55-67, 2012.

Igor V Karpov, Jacob Schrum, and Risto Miikkulainen. Believable bot navigation via playback of
human traces. In Believable Bots, pp. 151-170. Springer, 2013.

Vijay R Konda and John N Tsitsiklis. Actor-Critic Algorithms. In Neural Information Processing
Systems (NIPS), volume 13, pp. 1008-1014, 1999.

Diego Perez Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon M. Lucas,
Adrien Couétoux, Jerry Lee, Chong-U Lim, and Tommy Thompson. The 2014 general video
game playing competition. IEEE Trans. Comput. Intellig. and Al in Games, 8(3):229-243,
2016. doi: 10.1109/TCIAIG.2015.2402393. URLhttps://doi.org/10.1109/TCIAIG.
2015.2402393.

Urun Dogan Lydia T. Liu and Katja Hofmann. Decoding multitask dqn in the world of minecraft.
In NIPS Deep Reinforcement Learning Workshop, 2016.

10

http://dl.acm.org/citation.cfm?id=2832747.2832830
http://dl.acm.org/citation.cfm?id=3045118.3045244
http://dl.acm.org/citation.cfm?id=3045118.3045244
https://doi.org/10.1109/TCIAIG.2015.2402393
https://doi.org/10.1109/TCIAIG.2015.2402393

Under review as a conference paper at ICLR 2018

Joshua McCoy and Michael Mateas. An Integrated Agent for Playing Real-Time Strategy Games.
In Association for the Advancement of Artificial Intelligence (AAAI), volume 8, pp. 1313-1318,
2008.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pp. 1928-1937, 2016. URL http://Jjmlr.
org/proceedings/papers/v48/mnihal6.html.

Lars Niklasson, H Engstrom, and Ulf Johansson. An adaptive rock, scissors and paper player based
on a tapped delay neural network. Application and Development of Computer Games Conference
in 21st Century (ADCOG21), pp. 130-136, 2001.

Matt Parker and Bobby D Bryant. Neurovisual control in the Quake II environment. /[EEE Transac-
tions on Computational Intelligence and Al in Games, 4(1):44-54, 2012.

Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Simon M Lucas, and Tom Schaul.
General Video Game AI: Competition, Challenges and Opportunities. In Thirtieth Association
for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, 2016.

Mihai Polceanu. Mirrorbot: Using human-inspired mirroring behavior to pass a turing test. In
Computational Intelligence in Games (CIG), 2013 IEEE Conference on, pp. 1-8. IEEE, 2013.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. International Conference on Learning Representations (ICLR), 2016.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484-489, January 2016. doi:
10.1038/nature16961.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pp. 384-394. Association for Computational Linguistics, 2010.

Niels Van Hoorn, Julian Togelius, and Jurgen Schmidhuber. Hierarchical controller learning in a
first-person shooter. In 2009 IEEE Symposium on Computational Intelligence and Games, pp.
294-301. IEEE, 2009.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241-268, 1991.

Georgios N Yannakakis and Julian Togelius. A panorama of artificial and computational intelligence
in games. [EEE Transactions on Computational Intelligence and Al in Games, 7(4):317-335,
2015.

11

http://jmlr.org/proceedings/papers/v48/mniha16.html
http://jmlr.org/proceedings/papers/v48/mniha16.html

	Introduction
	Related Work
	AI and Games
	Reinforcement Learning
	Deep Reinforcement Learning
	Multi-Task Learning
	Domain Adaption
	Summary

	Approach
	Experimental Setup
	Network Details
	Domain Adatation for Deep Reinforcment Learning (DA-DRL)
	Baseline
	Shared Convolution

	Results
	Conclusion
	Future Work

