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Abstract

Pattern recognition and machine learning research work often contains experi-
mental results on real-world data, which corroborates hypotheses and provides a
canvas for the development and comparison of new ideas. Results, in this context,
are typically summarized as a set of tables and figures, allowing the comparison
of various methods, highlighting the advantages of the proposed ideas. Unfortu-
nately, result reproducibility is often an overlooked feature of original research
publications, competitions, or benchmark evaluations. The main reason for such
a gap is the complexity on the development of software associated with these re-
ports. Software frameworks are difficult to install, maintain, and distribute, while
scientific experiments often consist of many steps and parameters that are diffi-
cult to report. The increasingly rising complexity of research challenges make it
even more difficult to reproduce experiments and results. In this paper, we empha-
size that a reproducible research work should be repeatable, shareable, extensible,
and stable, and discuss important lessons we learned in creating, distributing, and
maintaining software and data for reproducible research in pattern recognition and
machine learning. We focus on a specific use-case of face recognition and describe
in details how we can make the recognition experiments reproducible in practice.

1 Introduction

The popularity of machine learning, especially neural networks, has been growing exponentially in
the recent years. This growth manifested in an explosive number of available machine learning soft-
ware, datasets, models, and techniques. Every respectable software company or a university is now
providing and maintaining a machine learning software suite, ranging from open-source tools, such
as TensorFlow [1] by Google, Caffe [2] by UC Berkeley, and Torch [3] by Facebook, to business-
oriented solutions, including Azure [4] by Microsoft and Watson platform [5] by IBM. Datasets are
also growing in size and numbers, with regularly organized competitions that provide challenging
databases. Examples include the NIST speaker recognition evaluations [6], with more than a thou-
sand hours recordings of more than two thousand identities, the MegaFace [7, 8] face recognition
challenge, with four million images of more than six hundred thousand identities, and generic ob-
ject recognition dataset COCO [9], with more than two million instances of eighty different object
categories.

Such abundance of tools and data has a positive impact on advances in research, allowing scientists
to quickly test their hypotheses and setup experiments, however, it also increases the complexity
of an experiment setup. A paper that was published eighty years ago, e.g., on Linear Discriminant
Analysis (LDA) by Ronald Fisher [10], is a self-contained piece of knowledge, and even now, its
results can be verified and reproduced with pen and paper. A machine learning paper today is no
more bound by the 10-page text limit, and often corresponds just to the tip of an iceberg, since



the experiments and the results depend on various software, data, configuration options, operating
systems, and even hardware. Therefore, a researcher needs to make an additional effort for such a
paper to become reproducible, so others can reliably repeat and verify its results.

Making a paper reproducible is clearly a challenging task. Operating systems have new releases, li-
braries that software depends on bring constant updates, bugs can be found and need to be corrected,
documentation needs corrections, etc. With time, software inevitably changes and that may even-
tually degrade the reproducibility of published scientific work. Hence, a systematic approach and a
formalized software organization need to be established to achieve reproducibility that is stable over
time and useful to others. A systematic approach is especially important when considering typical
research groups sizes and the constant flow of personnel that share ideas and software leading to
published articles. If tried, maintaining current and past published reports (tens, if not hundreds of
papers) reproducible over time can prove to be a rather challenging task.

In this paper, we consider a published paper to be reproducible if it is:

o Repeatable: It should be possible to re-run experiments declared in a report and obtain the
same results, given the same selection of data, software, hyper-parameters, and evaluation
protocol.

e Shareable: It should be possible to share the material (data and code) with others, so they
can repeat experiments declared in a report.

o Extensible: It should be ‘easy’ to implement new research directions or evaluate new con-
ditions on existing experimental infrastructure.

e Stable: The repeatability through time should be guaranteed, on a best-effort basis.

We share our approaches and lessons learnt on how to organize the research work and ensure that the
resulted papers can satisfy these properties of reproducibility. We highlight the practical issues of
reproducibility related to reusable experimental toolchains, source version control system, packag-
ing, continuous integration, unit testing and documentation. We first provide, in Section 2, a generic
overview of how to structure research-enabled software frameworks and experimental toolchains
for them to be continuously reproducible, extensible and shareable. Then, in Section 3, we focus
on a use case example of face recognition and describe, in details, how we achieve long term repro-
ducibility of the published work on face recognition. In Section 4, we conclude with our outlook on
reproducible research.

2 Framework

Today’s state-of-the-art experiments will inevitably become, at some point, yesterday’s baselines.
Hence, extensibility is an important aspect to consider when designing frameworks which are meant
to be reusable. It is possible to identify a number of common components through most experiments
in machine learning and pattern recognition. Figure 1 tries to summarize such components and their
interconnection forming a “workflow”. Processing typically starts from loading data from available
raw samples (e.g., images, audio, and videos), that is then fed into a series of processing steps,
which we refer to as “foolchain”. Toolchains input raw data samples and output representations of
phenomena in such samples, which relates to the characteristics one wants to model. For example,
the output of a toolchain may indicate whether a photograph was taken outdoors or indoors, whether
a biological sample contains a contaminant, or whether a person is singing a song. The modelled
phenomena, therefore, depends on nature of the problem one is trying to model. The last stage of
the pipeline corresponds to “analysis” (or evaluation) of results obtained by combining raw data
with the toolchain components and statistical models. Analysis yields merit figures indicating that a
method performs better than another given the same input conditions.

The input dataset is probably one of the most important aspects of experimentation, as one tries to
create models that express properties on real-world phenomena captured through the raw samples in
such sets. To avoid bias and improve comparability between different toolchains, it is of current use
to publish, alongside the raw data, usage protocols that establish which portions of the data may be
used for training, model tuning, and/or evaluation. In competitions and public challenges [11], eval-
uation protocols on datasets may also impose performance figures requiring participants to follow
strict evaluation procedures. Reading data from disk or databases may require access to input de-
coding routines, which are typically shared among different experiments (e.g., how to decode JPEG
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Figure 1: TYPICAL WORKFLOW IN MACHINE LEARNING AND PATTERN RECOGNITION. Raw
data from a dataset is read out from storage and input into a series of processing steps (toolchain) yielding
information about detected phenomena. The final performance figures are extrapolated from these to provide
markings for the system being tested. Read out from the database must often respect a usage protocol that, in
some cases, also advise for standardized performance figures to facilitate comparison across different systems.
Components to input and output data, pre-process, learn statistical models, and compute error figures are very
frequently re-used and shared via libraries.

images or load electro-cardiogram data from a specific container format) through the use of exter-
nal libraries, built and tested for such a purpose. Datasets may also provide labels or target values,
allowing analysis modules to compare results obtained via learnt models to existing annotations.
Solutions exist in commercial products [11, 12] and for free [13] to load data through programmatic
APIs, though none seem to tackle evaluation protocol integration.

Toolchains vary in complexity and size, but typically comprise (a) feature enhancement stage (e.g.,
data equalization, noise suppression, and subsampling); (b) feature extraction (e.g., local binary
patterns, mel-frequency cepstral coefficients, and scale-invariant feature transforms), and (c) the
creation of a statistical model allowing for the recognition and modelling of phenomena observed in
raw data (e.g., support vector machines, neural networks, and gaussian mixtures). Not all toolchains
are composed of the same number of processing steps. Their exact size and design depends on
various factors including research directions, experience, and problem complexity. Currently, an
abundant number of basic utilities for various machine learning fields can be used to build computing
toolchains, providing their own advantages and downsides. Examples can be found in computer
vision [14], audio processing [15], machine learning [1, 3], and so on. Toolchains for specific tasks
are released from time to time as sub-products of conferences or journal articles [16, 17, 18], though
very often, re-usability is not one of the features built-in, as connection to data readout, evaluation
protocols, and analysis is frequently hard-coded.

Finally, the analysis stage computes figures of merit that help researchers to determine if workflows
or specific combinations of hyper-parameters represent an improvement to established baselines or
not. Figures of merit include, but not exclusively, measures of accuracy in detecting phenomena. The
complexity of code or the modelling, execution time, or resource utilization may be also considered
to be parameters of interest. In practice, dataset evaluation protocols often require specific figures
of merit to be computed in the end of an experiment, allowing comparison across researchers and
published material. In some domains, efforts go as far as standardizing evaluation techniques [19].
A great number of toolkits exist today for plotting [20, 21] and computing specific performance
figures [22, 13]. Integration with existing workflows remain a manual task.

2.1 The meta-framework

Bare software frameworks are seldom successful in the long run without accompanying tools to
manage various aspects related to its development and deployment. Allowing one self to readily
repeat results obtained, as well as, transmitting such a knowledge to third parties are important
aspects in research and have a direct connection with reproducibility. We axe our analysis in four
key tools which, in our experience, are essential elements to achieve continuable reproducibility and

!Sometimes also referred to as ground-truth, even if the term may not always apply.



ease of sharing: (a) version control, (b) unit-testing and continuous quality control, (c) packaging
and deployment and, finally, (d) documentation.

Source version control (VC) is a mechanism to keep track of the changes that is applied to files in a
computer. VC accumulates the changes applied to the files in its history and changes can be reverted
back to a particular point in history. VC gives software framework authors many advantages: it is the
very first place where software revisions are defined, e.g., version shipped to conference X, which
readily allows one to track where new bugs are introduced in the software. Existing VC systems of-
ten also accommodate tools boosting collaborative usage, issue reporting and tracking, authorization
and authentication, which are equally important features. Since research reproducibility in machine
learning and pattern recognition very frequently depends on large software stacks and configuration,
we advocate precise version control of source-code.

Because of increasingly large software stacks, continuous reproducibility may be severely affected
by the likewise continuous change in the underlying software dependencies and defaults. It is there-
fore equally essential to establish test routines which verify result stability, through the stipulated
availability of a given scientific report and associated experiments. Test routines should be as thor-
ough as possible and encompass basic tools, middleware ,and should reach, if possible, as far as ex-
perimental result checking. The re-use of existing software frameworks which are, in turn, properly
tested may relief one from implementing basic testing and skip to middle and high-level software
testing directly.

To ease test running and improve on the life expectancy of software packages, test suites are typically
run in automated frameworks each time new software or configuration revisions are stored. This
continuous quality control shall be flexible enough to allow its users to not only determine the impact
of changes done to a given experiment, but also the impact caused by changes to any underlying
software which may, one way or another alter original conclusions. When changes are detected, the
use of VC associated to existing test suites must be carried on to determine the root causes of issues
so to invalidate or confirm published hypothesis.

Deploying software stacks for one self or others is probably one of the biggest annoyances in at-
tempts to reproduce experiments or re-use code into other research ventures in this field. The actual
software stack required to run experiments may be composed of tens if not hundreds of software
packages which must be compiled with a given version and in a particular way so reproduction
can be achieved. It is, therefore, required of researchers seeking to reproduce results to learn how
to properly handle and compile software, fix and report bugs, or solve issues associated to these
activities.

Nevertheless, our experience in this area suggests that more interest and visibility can be drawn to
one’s research, if a complete software stack is easier to deploy, by-passing operating system require-
ments, compilation aspects and proper version handling. Simplified deployment instructions are
possible by properly implementing software packaging using suitable tools. After software is prop-
erly packaged in compiled form, re-deployment for one self or third parties becomes very simple
and can encourage collaboration and re-use which, in turn, directly impact research reproducibil-
ity and visibility. Packaging can optionally be hooked into continuous quality control, allowing
contributions to be built, tested, and packaged in a single controlled framework.

Finally, it is difficult to envisage re-use, extensibility, and meaningful sharing of undocumented
software frameworks. Properly documented code, in our experience, boosts reproducibility and
share-ability, which finally impacts research visibility [23]. Documenting experimental research
allows one to be able to re-run experiments, remember choices, and transmit those to newcomers or
third-parties in an organized manner. Documentation generation may also be subject to continuous
quality control, if its source code is kept alongside software. Some programming languages provide
documentation standards allowing for both in-code and external sections to be combined creating
very flexible documentation systems for a variety of needs.

3 Use-case in Biometrics: Bob

In form of a small use case, we describe a practical approach on how to make use of a framework,
as described in Section 2, to run reproducible face recognition experiments. To do so, we created
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Figure 2: FACE RECOGNITION TOOLCHAIN. The face recognition toolchain is split into several stages.
These are: data preprocessing, feature extraction, and face recognition, including model enrollment scoring.
Which images to use in which stage is defined by the protocol of the biometric database.

a reproducible source code package? that compares two state-of-the-art face recognition algorithms
on the publicly available MOBIO dataset [24, 25], using the evaluation protocol male.

To run the experiments, we use a Python-based biometrics framework3 that is part of Bob [26, 27,
28]. This framework implements a biometric recognition toolchain, which is depicted in Figure 2, as
well as database access and evaluation tools. The implemented toolchain is divided into three stages,
i) a preprocessing stage for data enhancement, ii) a feature extraction step to extract meaningful
features from the raw images, iii) and a recognition stage, which is composed of the biometric-
specific steps of model enrollment and the comparison of enrolled models with probe features to
produce the final scores. Each stage of the toolchain is implemented in a class and has a defined input
and output interfaces. The framework also controls the toolchain execution and can parallelize it to
reduce running time. Using this framework, one can completely focus on the implementation of core
algorithms, without being required to deal with evaluation protocols, data pipelining, dependencies
between stages, or toolchain execution.

When implementing research that should be reproducible, we always follow a simple principle:
one report leads to one software package requiring one execution environment. In our example,
the environment is implemented with the Conda* package manager, which is used to install all
the specific versions of required software on any Linux-based machine — usually conda allows for
other operating systems, but dependent packages enforce some limitations. The fact that the specific
versions of the software libraries are listed guarantees stable reproduction of the results over time. To
make it possible for ourselves and others to re-install and use this package,? proper documentation
of the installation procedure and commands to execute the experiments is vital and is included with
the package.

Fortunately, Bob’s biometrics framework?® already comes with several implementations for database
interfaces, preprocessors, feature extractors, and recognition algorithms. Our first algorithm that we
test is the inter-session variability (ISV) modeling [29] of discrete cosine transform (DCT) features
extracted from blocks of images [30]. As preprocessing, images are aligned using the eye locations
provided by the database, and the face is cropped to photometrically enhanced 64 x 80 pixel images,
while enrollment computes a Gaussian mixture model (GMM) in an ISV subspace of DCT block
features. For this experiment, all tools are already implemented in the framework, so we only need
to specify the parameters as defined in [30]. Running and repeating the experiment is as simple as
calling a simple command line, please refer to our software package?® for details. Due to the design
of the framework, to share the experimental setup with others is as simple as sharing the parameters.

The second experiment will employ the Caffe [31] version of the publicly available VGG Face
descriptor network [32]. Consonant with [32], we align images to 224 x 224 pixel color images and
extract VGG Face descriptors from the images. The features of the enrollment images of the dataset
are averaged for each subject, which are then compared using the cosine similarity measure. Here,
the framework does not contain source code to extract features from a Caffe-based networks, so we
have to extend it by writing a shallow wrapper to connect the Caffe framework with the biometrics
toolchain. Finally, all parameters are provided, which allows us (and anyone else) to run the second
experiment.

After running both experiments on the same MOBIO image dataset, we evaluate the experiments
using two typical performance measures for face recognition, both of which are proposed by the
MOBIO dataset [24]. The resulting receiver operating characteristic (ROC) curve comparing the
two algorithms on the development set are shown in Fig. 3(a), while equal error rate (EER) and half
total error rate (HTER) are presented in Fig. 3(b).

*https://gitlab.idiap.ch/bob/bob.paper.icm12017
*https://pypi.python.org/pypi/bob.bio.base
*https://conda.io/
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Figure 3: RESULTS. The ROC curve on the development set as well as EER (development set) and HTER
(evaluation set) for the two evaluated algorithms are presented.

The final work to do is to package the example, provide unit tests for the implementation of our
source code, and incorporate it into the automatic testing framework, e.g., our continuous integration
system that is built into the git source code distribution platform.> Running the test cases after
installation also allows the user to verify that the installation process succeeded. Issues and questions
may be posed via a publicly-accessible mailing list> connecting authors and users of Bob packages.

4 Conclusion

To guarantee long-time reproducibility, scientific work must be repeatable, shareable, extensible and
stable over time. Committing to continuous reproducibility implies the creation and maintenance of
a re-usable framework, as well as, addressing practical aspects such as version control, quality as-
surance, distribution and documentation. In our experience, efforts in making work reproducible can
be reduced if, instead of working individually, researchers are unified into standardized frameworks
and share common tools and environments. If the requirement for reproducibility is defined as a
base objective in a research group, individuals will, in both short and longer terms, benefit from
each other’s help and be able to share work and experience in much more impactful ways than what
is possible today.

We aim to follow these principles in our machine learning toolbox Bob and its existing reproducible
research frameworks. Packages are maintained at our gitlab instance where we have implemented
a quality assurance framework and documentation hosting. Experience to maintain and implement
features into the framework are shared among students, postdocs, and researchers in a continuous
turning cycle favoring exchange of ideas which are, since their inception, reproducible. External
collaboration is welcome and maintained through a public mailing list.?

Because of the rising complexity of research results in the field, we expect to see an increase in
the number of software frameworks tackling reproducible research in machine learning and pattern
recognition for the coming years. The coupling of social networking with these frameworks may
provide an opportunity to develop research tools, which can be easily shared relieving requirements
for distribution, documentation, and deployment. The BEAT Platform [33] is one such example.
Beyond social research, platforms such as this can also solve data distribution issues in a world with
increasing dataset sizes, while implementing reproducibility assurance and honoring data privacy
requirements.
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