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ABSTRACT

Neural network-based classifiers parallel or exceed human-level accuracy on
many common tasks and are used in practical systems. Yet, neural networks are
susceptible to adversarial examples, carefully perturbed inputs that cause networks
to misbehave in arbitrarily chosen ways. When generated with standard methods,
these examples do not consistently fool a classifier in the physical world due to a
combination of viewpoint shifts, camera noise, and other natural transformations.
Adversarial examples generated using standard techniques require complete con-
trol over direct input to the classifier, which is impossible in many real-world
systems.
We introduce the first method for constructing real-world 3D objects that consis-
tently fool a neural network across a wide distribution of angles and viewpoints.
We present a general-purpose algorithm for generating adversarial examples that
are robust across any chosen distribution of transformations. We demonstrate its
application in two dimensions, producing adversarial images that are robust to
noise, distortion, and affine transformation. Finally, we apply the algorithm to
produce arbitrary physical 3D-printed adversarial objects, demonstrating that our
approach works end-to-end in the real world. Our results show that adversarial
examples are a practical concern for real-world systems.

1 INTRODUCTION

The existence of adversarial examples for neural networks has until now been largely a theoretical
concern. While minute, carefully-crafted perturbations can cause targeted misclassification in a
neural network, adversarial examples produced using standard techniques lose adversariality when
directly translated to the physical world as they are captured over varying viewpoints and affected
by natural phenomena such as lighting and camera noise. This suggests that practical systems may
not be at risk because adversarial examples generated using standard techniques are not robust in the
physical world.

classified as turtle classified as rifle classified as other

Figure 1: Randomly sampled poses of a single 3D-printed turtle adversarially perturbed to classify
as a rifle at every viewpoint by an ImageNet classifier. An unperturbed model is classified correctly
as a turtle 100% of the time. See https://youtu.be/YXy6oX1iNoA for a video where every
frame is fed through the classifier: the turtle is consistently classified as a rifle.
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We show that neural network-based classifiers are vulnerable to physical-world adversarial exam-
ples. We introduce a new algorithm for reliably producing physical 3D objects that are adversarial
over a distribution of viewpoints. Figure 1 shows an example of an adversarial object constructed
using our approach, where a 3D-printed turtle is consistently classified as rifle by an ImageNet
classifier. In this paper, we demonstrate the efficacy and generality of our method, demonstrating
conclusively that adversarial examples are a concern in real-world systems.

1.1 CHALLENGES

Methods for transforming ordinary two-dimensional images into adversarial examples are well-
known; however, the extent to which these techniques affect specific real-world systems is still
an open question. Prior work has shown that adversarial examples generated using standard tech-
niques lose their adversarial nature once subjected to minor transformations (Luo et al., 2016; Lu
et al., 2017). These results suggest that adversarial examples, while serving as interesting phenom-
ena, have no hope of applying to physical-world systems, where transformations such as viewpoint
changes and camera noise are inevitable.

Prior techniques attempting to synthesize robust adversarial examples for the physical world have
had limited success. While some progress has been made, current efforts have demonstrated a small
number of datapoints on nonstandard classifiers, and only in the two-dimensional case, with no clear
generalization to three dimensions (further discussed in Section 4).

The entirety of prior work has only explored generating adversarial examples in the two-dimensional
case, where “viewpoints” can be approximated by an affine transformations of an original image.
Constructing adversarial examples for the physical world requires the ability to generate entire 3D
adversarial objects, which must remain adversarial in the face of complex transformations not appli-
cable to 2D objects, such as 3D rotations and perspective projection.

1.2 CONTRIBUTIONS

In this work, we definitively show that adversarial examples pose a real threat in the physical world.
We propose a general-purpose algorithm for reliably constructing adversarial examples robust over
a chosen distribution of transformations, and we demonstrate the efficacy of this algorithm in both
the 2D and 3D case. We succeed in producing physical-world 3D adversarial objects that are robust
over a large, realistic distribution of 3D viewpoints, proving that the algorithm produces adversarial
three-dimensional objects that are adversarial in the physical world. Specifically, our contributions
are as follows:

• We develop Expectation Over Transformation (EOT), a novel algorithm that produces sin-
gle adversarial examples that are simultaneously adversarial over an entire distribution of
transformations

• We consider the problem of constructing 3D adversarial examples under the EOT frame-
work, viewing the 3D rendering process as part of the transformation, and we show that the
approach successfully synthesizes adversarial objects

• We fabricate adversarial objects and show that they remain adversarial, demonstrating that
our approach works end-to-end in the physical world, showing that adversarial examples
are of real concern in practical deep learning systems

2 APPROACH

First, we present the Expectation Over Transformation (EOT) algorithm, a general framework allow-
ing for the construction of adversarial examples that remain adversarial over a chosen transformation
distribution T . We then describe our end-to-end approach for generating adversarial objects using a
specialized application of EOT in conjunction with differentiating through the 3D rendering process.
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2.1 EXPECTATION OVER TRANSFORMATION

When constructing adversarial examples in the white-box case (that is, with access to a classifier
and its gradient), we know in advance a set of possible classes Y and a space of valid inputs X
to the classifier; we have access to the function P (y|x) and its gradient ∇P (y|x), for any class
y ∈ Y and input x ∈ X . In the standard case, adversarial examples are produced by maximizing
the log-likelihood of the target class over a ε-radius ball around the original image, that is:

x̂ = argmax
x′∈X

logP (y|x′) s.t. ||x′ − x||p < ε

This approach has been shown to be both feasible and effective at generating adversarial examples
for any given classifier. However, prior work has shown adversarial examples’ inability to remain
adversarial even under minor perturbations inevitable in any real-world observation (Luo et al., 2016;
Lu et al., 2017).

To address this issue, we introduce Expectation Over Transformation (EOT). The key insight behind
EOT is to model such perturbations within the optimization procedure. Rather than optimizing the
log-likelihood of a single example, EOT uses a chosen distribution T of transformation functions
t taking an input x′ supplied by the adversary to the “true” input t(x′) perceived by the classifier.
Furthermore, rather than simply taking the norm of x′ − x to constrain the solution space, EOT
instead aims to constrain the effective distance between the adversarial and original inputs, which
we define as:

δ = Et∼T [d(t(x)− t(x′))]
Intuitively, this is how different we expect the true input to the classifer will be, given our new input.
Then, EOT solves the following optimization problem:

x̂ = argmax
x′

Et∼T [logP (y|t(x′))] s.t. Et∼T [d(t(x
′), t(x))] < ε

In practice, the distribution T can model perceptual distortions such as random rotation, translation,
or addition of noise. However, EOT generalizes beyond simple transformations. EOT finds exam-
ples robust under any perception distribution Q(· ;x) parameterized by the generated example x as
long as d

dxQ(· ;x) is well-defined. The objective function can be optimized by stochastic gradi-
ent descent, approximating the derivative of the expected value through sampling transformations
independently at each gradient descent step and differentiating through the transformation.

2.2 SYSTEM OVERVIEW

Given its ability to synthesize robust adversarial examples, we use the EOT framework for gen-
erating 2D examples, 3D models, and ultimately physical-world adversarial objects. Within the
framework, however, there is a great deal of freedom in the actual method by which examples are
generated, including choice of T , distance metric, and optimization method.

In the 2D case, we design T to approximate a realistic space of possible distortions involved in print-
ing out an image and taking a natural picture of it. This amounts to a set of random transformations
of the form t(x) = Ax+ ε, which are more thoroughly described in Section 3.

In the 3D case, we define the transformations t from a texture to a perceived image by mapping the
texture to a given 3D object, and simulating highly nonlinear functions such as rendering, rotation,
translation, and perspective distortion of the object in addition to the perceptual mechanisms used in
the 2D case.

Finding adversarial examples across these nonlinear transformations is what allows for the transfer
of adversarial examples to the physical world, but also introduces implementation complexities not
found in the 2D case. EOT requires the ability to differentiate though the transformation distribution
with respect to the input. In the 3D case, this implies differentiating through the 3D renderer with
respect to the texture.

To do this, we model the rendering process as a sparse matrix multiplication between the texture
and a coordinate map, which is generated from a standard 3D renderer. Rather than attempting to
differentiate through the complex renderer, we use the renderer to find a coordinate map for each
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rendering, which maps coordinates on the texture to coordinates in the classifier’s field of view. We
can then simulate this specific rendering as a sparse matrix multiplication and differentiate through
it; we differentiate through different matrix multiplications at each sampling step.

Once EOT has been parameterized, i.e. once a distribution T is chosen, the issue of actually op-
timizing the induced objective function remains. Rather than solving the constrained optimization
problem given above, we use the Lagrangian-relaxed form of the problem, as Carlini & Wagner
(2017) do in the conventional (non-EOT, single-viewpoint) case:

x̂ = argmin
x′

Et∼T [− logP (y|t(x′))] + λEt∼T [d(t(x
′), t(x)])

In order to encourage imperceptibility of the generated images, we set d(x′, x) to be the `2 norm in
the LAB color space, a perceptually uniform color space where Euclidean distance roughly corre-
sponds with perceptual distance. Note that the Et∼T [||LAB(t(x))−LAB(t(x̂))||22] can be sampled
and estimated in conjunction with E[P (y|t(x))]; in general, the Lagrangian formulation gives EOT
the ability to intricately constrain the search space (in our case, using LAB distance) at insignificant
computational cost (without computing a complex projection). Our optimization, then, is:

x̂ = argmin
x′

Et∼T [− logP (y|t(x′)) + λ||LAB(t(x))− LAB(t(x′))||22]

We use projected gradient descent to find the optimum, clipping to the set of valid inputs (e.g. [0, 1]
for images).

3 EVALUATION

We show that we can reliably produce transformation-tolerant adversarial examples in both the 2D
and 3D case. Furthermore, we show that we can synthesize and fabricate 3D adversarial objects,
even those with complex shapes, in the physical world: these adversarial objects remain adversarial
regardless of viewpoint, camera noise, and other similar real-world factors. Adversariality in this
case refers to the propensity of the classifier to predict an attacker-chosen target class given an image
or object.

In our evaluation, given a source object x and a set of correct classes {y1, . . . yn}, as well as an
attacker-chosen target class yadv and a crafted adversarial example x′, we use the following terms
in order to characterize the effectiveness of x′. We call a viewpoint “adversarial” if the top output
of the classifier is yadv; “correct” if the adversarial example fails and the classifier outputs one of
{y1, . . . , yn}, and “misclassified” if the classifier predicts a class unrelated to that of the source ob-
ject (i.e. not in {y1, . . . yn}) but not the target class yadv . By randomly sampling a set of viewpoints,
we can evaluate an adversarial example x′ by examining the proportion of adversarial, correct, and
misclassified viewpoints.

We evaluate robust adversarial examples in the 2D and 3D case, and furthermore, we evaluate
physical-world 3D adversarial objects. The two cases are fundamentally different. In the virtual
case, we know that we want to construct adversarial examples robust over a certain distribution of
transformations, and we can simply use EOT over that distribution to synthesize a robust adversarial
example. In the case of the physical world, however, we cannot capture the exact distribution un-
less we perfectly model all physical phenomena. Therefore, we must approximate the distribution
and perform EOT over the proxy distribution. This works well in practice for producing adversarial
objects that remain adversarial under the “true” physical-world distribution, as we demonstrate. See
Appendix A for the exact parameters of the distributions we use in the 2D, 3D simulation, and 3D
physical-world cases. In all cases, the various transformation parameters are sampled as continuous
random variables from a uniform distribution between the minimum and maximum values given,
unless otherwise indicated in Appendix A (i.e. Gaussian noise).

In our experiments, we use TensorFlow’s standard pre-trained InceptionV3 classifier (Szegedy et al.,
2015) which has 78.0% top-1 accuracy on ImageNet. In all of our experiments, we use randomly
chosen target classes, and we use EOT to synthesize adversarial examples over a chosen distribu-
tion. We measure the `2 distance per pixel between the original and adversarial example (in LAB
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Images Classification Accuracy Adversariality `2

mean stdev mean stdev mean

Original 70.0% 36.4% 0.01% 0.3% N/A
Adversarial 0.9% 2.0% 96.4% 4.4% 5.6× 10−5

Table 1: Evaluation of 1000 2D adversarial examples with random targets. We evaluate each
example over 1000 randomly sampled transformations to calculate classification accuracy and ad-
versariality (percent classified as the adversarial class).

Original: Persian
cat

P (true): 97%
P (adv): 0%

P (true): 99%
P (adv): 0%

P (true): 19%
P (adv): 0%

P (true): 95%
P (adv): 0%

Adversarial:
jacamar

`2 = 2.1× 10−1
P (true): 0%
P (adv): 91%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 83%

P (true): 0%
P (adv): 97%

Figure 2: A 2D adversarial example, showing classifier confidence in true and adversarial classes
for original and corresponding adversarial image over randomly sampled poses.

space), and we also measure classification accuracy (percent of randomly sampled viewpoints clas-
sified as the true class) and adversariality (percent of randomly sampled viewpoints classified as
the adversarial class) for both the original and adversarial example. When working in simulation,
we evaluate over a large number of transformations sampled randomly from the distribution; in the
physical world, we evaluate over a large number of manually-captured images of our adversarial
objects taken over different viewpoints.

3.1 ROBUST 2D ADVERSARIAL EXAMPLES

In the 2D case, we consider the distribution of transformations that includes rescaling, rotation,
lightening or darkening by an additive factor, adding Gaussian noise, and any in-bounds translation
of the image.

We take the first 1000 images in the ImageNet validation set, randomly choose a target class for each
image, and use EOT to synthesize an adversarial example that is robust over the chosen distribution.
For each adversarial example, we evaluate over 1000 random transformations sampled from the dis-
tribution at evaluation time. Table 1 summarizes the results. On average, the adversarial examples
have an adversariality of 96.4%, showing that our approach is highly effective in producing robust
adversarial examples. Figure 2 shows an example of a synthesized adversarial example, along with
the classification confidence in true and adversarial classes for original and corresponding adversar-
ial images. See Appendix B for more examples.

3.2 ROBUST 3D ADVERSARIAL EXAMPLES

We produce 3D adversarial examples by modeling the 3D rendering as a transformation under EOT.
Given a textured 3D object, we optimize over the texture such that the rendering is adversarial from
any viewpoint. We consider a distribution that incorporates different camera distances, lateral trans-
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Images Classification Accuracy Adversariality `2

mean stdev mean stdev mean

Original 68.8% 31.2% 0.01% 0.1% N/A
Adversarial 1.1% 3.1% 83.4% 21.7% 5.9× 10−3

Table 2: Evaluation of 200 3D adversarial examples with random targets. We evaluate each example
over 100 randomly sampled poses to calculate classification accuracy and adversariality (percent
classified as the adversarial class).

Original: turtle

P (true): 97%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 20%
P (adv): 0%

Adversarial:
jigsaw puzzle

`2 = 8.9× 10−5

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 83%

Figure 3: A 3D adversarial example, showing classifier confidence in true and adversarial classes
for original and corresponding adversarial object over randomly sampled poses.

lation, rotation of the object, and solid background colors. We approximate the expectation over
transformation by taking the mean loss over batches of size 40; furthermore, due to the computa-
tional expense of computing a batch, we reuse up to 80% of the batch at each iteration, but enforce
that each batch contain at least 8 new images. As previously mentioned, the parameters of the dis-
tribution we use is specified in Appendix A, sampled as independent continuous random variables
(that are uniform except for Gaussian noise).

We consider 10 complex 3D models, choose 20 random target classes per 3D model, and use EOT
to synthesize adversarial textures for the 3D models with minimal parameter search (four constant,
pre-chosen λ values were tested across each [3D model, target] pair). For each of the 200 adver-
sarial examples, we sample 100 random transformations from the distribution at evaluation time.
Table 2 summarizes results, and Figure 3 shows renderings of drawn samples with classification
probabilities. See Appendix C for more examples.

The simulated adversarial object have an average adversariality of 83.4% with a long left tail, show-
ing that EOT usually produces highly adversarial objects. See Appendix C for a plot of the distribu-
tion.

3.3 PHYSICAL ADVERSARIAL EXAMPLES

In order to fabricate physical-world adversarial examples, beyond modeling the 3D rendering pro-
cess, we need to model physical-world phenomena such as lighting effects and camera noise. Fur-
thermore, we need to model the 3D printing process: in our case, we use commercially available
full-color 3D printing. With the 3D printing technology we use, we find that color accuracy varies
between prints, so we model printing errors as well. We approximate all of these phenomena by a
distribution of transformations under EOT. In addition to the transformations considered for 3D in
simulation, we consider camera noise, additive and multiplicative lighting, and per-channel color
inaccuracies.
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classified as turtle classified as rifle classified as other

classified as baseball classified as espresso classified as other

Figure 4: A sample of photos of unperturbed 3D prints. The unperturbed 3D-printed objects are
consistently classified as the true class.

Object Adversarial Misclassified Correct
Turtle 82% 16% 2%

Baseball 59% 31% 10%

Table 3: Quantitative analysis of the two adversarial objects, over 100 photos of each object over
a wide distribution of viewpoints. Both objects are classified as the adversarial target class in the
majority of viewpoints.

We evaluate physical adversarial examples over two 3D-printed objets: one of a turtle (where we
consider any of the 5 turtle classes in ImageNet as the “true” class), and one of a baseball. The
unperturbed 3D-printed objects are correctly classified as the true class with 100% accuracy over a
large number of samples. Figure 4 shows example photographs of unperturbed objects, along with
their classifications.

We choose target classes for each of the 3D models at random — “rifle” for the turtle, and “espresso”
for the baseball — and we use EOT to synthesize adversarial examples. We evaluate the performance
of our two 3D-printed adversarial objects by taking 100 photos of each object over a variety of
viewpoints1. Figure 5 shows a random sample of these images, along with their classifications.
Table 3 gives a quantitative analysis over all images, showing that our 3D-printed adversarial objects
are strongly adversarial over a wide distribution of transformations. See Appendix D for more
examples.

3.4 DISCUSSION

The results and quantative analysis in this section demonstrate the efficacy of EOT and confirm the
existence of physical adversarial examples. Here, we perform a qualitative analysis of the results:

Modeling Perception. The EOT algorithm as presented in Section 2 presents a general method to
construct adversarial examples over a chosen perceptual distribution, but notably gives no guaran-
tees for observations of the image outside of the chosen distribution. In constructing physical-world
adversarial objects, we use a crude, high-variance approximation of the rendering and capture pro-
cess, and this succeeds in ensuring robustness to a diverse set of environments; see, for example,
Figure 6, which shows the same adversarial turtle in vastly different environments. In specialized

1Although the viewpoints were not selected in any way and were simply the result of walking around the
objects, moving them up/down, etc., we hesitate to call them “random” since they were not in fact generated
numerically or sampled from a concrete distribution, in contrast with the rendered 3D examples.
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classified as turtle classified as rifle classified as other

classified as baseball classified as espresso classified as other

Figure 5: Random sample of photographs of the two 3D-printed adversarial objects. The 3D-
printed adversarial objects are strongly adversarial over a wide distribution of viewpoints.
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Figure 6: Three pictures of the same adversarial turtle (all classified as “rifle”), demonstrating the
need for a wide distribution, and the efficacy of EOT in finding examples robust across wide distri-
butions of physical-world effects like lighting.

Figure 7: A side-by-side comparison of a 3D-printed model (left) along with a printout of the cor-
responding texture, printed on a standard laser color printer (center) and the original digital texture
(right), showing significant error in color accuracy in printing.

domains, however, a domain expert may opt to model the perceptual distribution precisely in order
to better constrain the search space.

Error in Printing. We also find significant error in the color accuracy of even state of the art
commercially available color 3D printing; Figure 7 shows a comparison of a 3D-printed model along
with a printout of the model’s texture, printed on a standard laser color printer. Still, EOT was able
to overcome the problem and produce robust physical-world adversarial objects. We predict that
we could have produced adversarial examples with smaller `2 perturbation with a higher-fidelity
printing process.

Semantically Relevant Misclassification. Interestingly, for the majority of viewpoints where the
adversarial target class is not the top-1 predicted class, the classifier also fails to correctly predict
the source class. Instead, we find that the classifier often classifies the object as an object that is
semantically similar to the adversarial target; while generating the adversarial turtle to be classified
as a rifle, for example, the second most popular class (after “rifle”) was “revolver,” followed by
“holster” and then “assault rifle.” Similarly, when generating the baseball to be classified as an
espresso, the example was often classified as “coffee” or “bakery”.

4 RELATED WORK

State of the art neural networks are vulnerable to adversarial examples (Szegedy et al., 2013). Re-
searchers have proposed a number of methods for synthesizing adversarial examples in the white-
box scenario (with access to the gradient of the classifier), including L-BFGS (Szegedy et al., 2013),
the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), and a Lagrangian relaxation for-
mulation (Carlini & Wagner, 2017), all for the single-viewpoint case where the adversary directly
controls the input to the neural network. Projected Gradient Descent (PGD) can be seen as a univer-
sal first-order adversary (Madry et al., 2017).

Moosavi-Dezfooli et al. (2017) show the existence of universal (image-agnostic) adversarial per-
turbations, small perturbation vectors that can be applied to any image to induce misclassification.
Their paper proposes an algorithm that finds perturbations that are universal over images; in our
work, we give an algorithm that finds a perturbation to a single image or object that is universal
over a chosen distribution of transformations. In preliminary experiments, we found that universal
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adversarial perturbations, like standard adversarial perturbations to single images, are not inherently
robust to transformation.

In the first work on 2D physical-world adversarial examples, Kurakin et al. (2016) demonstrate the
transferability of FGSM-generated adversarial misclassification on a printed page. In their setup, a
photo is taken of a printed image with QR code guides, and the resultant image is warped, cropped,
and resized to become a square of the same size as the source image before classifying it. Their re-
sults show the existence of 2D physical-world adversarial examples for approximately axis-aligned
views, demonstrating that adversarial perturbations produced using FGSM can translate to the phys-
ical world and are robust to camera noise, rescaling, and lighting effects. Kurakin et al. (2016) do not
synthesize targeted physical-world adversarial examples, they do not evaluate other real-world 2D
transformations such as rotation, skew, translation, or zoom, and their approach does not translate to
the 3D case.

Sharif et al. (2016) develop a real-world adversarial attack on a state-of-the-art face recognition
algorithm, where adversarial eyeglass frames cause targeted misclassification in portrait photos. The
algorithm produces robust perturbations through optimizing over a fixed set of inputs: the attacker
collects a set of images and finds a perturbation that minimizes cross entropy loss over the set. The
algorithm solves a different problem than we do in our work: it produces adversarial perturbations
universal over portrait photos taken head-on from a single viewpoint, while EOT produces 2D/3D
adversarial examples robust over transformations. The approach also includes a mechanism for
enhancing perturbations’ printability using a color map to address the limited color gamut and color
inaccuracy of the printer. Note that this differs from our approach in achieving printability: rather
than creating a color map, we find an adversarial example that is robust to color inaccuracy. Our
approach has the advantage of working in settings where color accuracy varies between prints, as
was the case with our 3D-printer.

Recently, Evtimov et al. (2017) proposed a method for generating robust physical-world adversarial
examples in the 2D case by optimizing over a fixed set of manually-captured images. However,
the approach is limited to the 2D case, with no clear translation to 3D, where there is no simple
mapping between what the adversary controls (the texture) and the observed input to the classifier
(an image). Furthermore, the approach requires the taking and preprocessing of a large number of
photos in order to produce each adversarial example, which may be expensive or even infeasible for
many objects.

Lu et al. (2017) argued that adversarial examples may not be a practical concern in physical-world
systems because adversarial examples generated for the single viewpoint case lose adversariality
at viewpoints with differing scale and rotation. While this is the case with standard adversarial
examples as evaluated in the paper and in Luo et al. (2016), we have shown that with EOT, it is
in fact possible to construct physical-world adversarial images and objects that are classified as a
chosen target class over a wide range of viewpoints.

5 CONCLUSION

Our work shows that adversarial examples pose a practical threat to systems using neural network-
based image classifiers. By introducing EOT, a general-purpose algorithm for creating robust ad-
versarial examples under any chosen distribution, and modeling 3D rendering and printing within
the framework of EOT, we succeed in fabricating three-dimensional adversarial objects. With ac-
cess only to low-cost commercially available 3D printing technology, we successfully print physical
adversarial objects that are strongly classified as a chosen target class over a variety of angles, view-
points, and lighting conditions by a standard ImageNet classifier.

REFERENCES

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security & Privacy, 2017.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir
Rahmati, and Dawn Song. Robust Physical-World Attacks on Deep Learning Models. 2017.
URL https://arxiv.org/abs/1707.08945.

10

https://arxiv.org/abs/1707.08945


Under review as a conference paper at ICLR 2018

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
2016. URL https://arxiv.org/abs/1607.02533.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial
examples in object detection in autonomous vehicles. 2017. URL https://arxiv.org/
abs/1707.03501.

Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, and Qi Zhao. Foveation-based mechanisms
alleviate adversarial examples. 2016. URL https://arxiv.org/abs/1511.06292.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. 2017. URL https://arxiv.
org/abs/1706.06083.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 1528–1540, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978392. URL
http://doi.acm.org/10.1145/2976749.2978392.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. 2013. URL https://arxiv.org/
abs/1312.6199.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. 2015. URL https://arxiv.org/
abs/1512.00567.

11

https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1707.03501
https://arxiv.org/abs/1707.03501
https://arxiv.org/abs/1511.06292
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
http://doi.acm.org/10.1145/2976749.2978392
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567


Under review as a conference paper at ICLR 2018

Transformation Minimum Maximum
Scale 0.9 1.4
Rotation −22.5◦ 22.5◦

Lighten / Darken −0.05 0.05
Gaussian Noise (stdev) 0.0 0.1
Translation any in-bounds

Table 4: Distribution of transformations for the 2D case, where each parameter is sampled uni-
formly at random from the specified range.

Transformation Minimum Maximum
Camera distance 2.5 3.0
X/Y translation −0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)

Table 5: Distribution of transformations for the 3D case when working in simulation, where each
parameter is sampled uniformly at random from the specified range.

A DISTRIBUTIONS OF TRANSFORMATIONS

Under the EOT framework, we must choose a distribution of transformations, and the optimization
produces an adversarial example that is robust under the distribution of transformations. Here, we
give the specific parameters we chose in the 2D (Table 4), 3D (Table 5), and physical-world case
(Table 6).

B ROBUST 2D ADVERSARIAL EXAMPLES

We give a random sample out of our 1000 2D adversarial examples in Figures 8 and 9.

C ROBUST 3D ADVERSARIAL EXAMPLES

We give a random sample out of our 200 3D adversarial examples in Figures 10 and 11 and 12. We
give a histogram of adversariality (percent classified as the adversarial class) over all 200 examples
in Figure 13.

Transformation Minimum Maximum
Camera distance 2.5 3.0
X/Y translation −0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)
Lighten / Darken (additive) −0.15 0.15
Lighten / Darken (multiplicative) 0.5 2.0
Per-channel (additive) −0.15 0.15
Per-channel (multiplicative) 0.7 1.3
Gaussian Noise (stdev) 0.0 0.1

Table 6: Distribution of transformations for the physical-world 3D case, approximating rendering,
physical-world phenomena, and printing error.
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Original:
European fire
salamander

P (true): 93%
P (adv): 0%

P (true): 91%
P (adv): 0%

P (true): 93%
P (adv): 0%

P (true): 93%
P (adv): 0%

Adversarial:
guacamole

`2 = 2.1× 10−1
P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 95%

Original: caldron P (true): 75%
P (adv): 0%

P (true): 83%
P (adv): 0%

P (true): 54%
P (adv): 0%

P (true): 80%
P (adv): 0%

Adversarial:
velvet

`2 = 1.9× 10−1
P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 94%

P (true): 1%
P (adv): 91%

P (true): 0%
P (adv): 100%

Original: altar P (true): 87%
P (adv): 0%

P (true): 38%
P (adv): 0%

P (true): 59%
P (adv): 0%

P (true): 2%
P (adv): 0%

Adversarial:
African elephant
`2 = 2.6× 10−1

P (true): 0%
P (adv): 93%

P (true): 0%
P (adv): 87%

P (true): 3%
P (adv): 73%

P (true): 0%
P (adv): 92%

Figure 8: A random sample of 2D adversarial examples.

13



Under review as a conference paper at ICLR 2018

Original:
barracouta P (true): 91%

P (adv): 0%
P (true): 95%
P (adv): 0%

P (true): 92%
P (adv): 0%

P (true): 92%
P (adv): 0%

Adversarial: tick
`2 = 2.7× 10−1

P (true): 0%
P (adv): 88%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 95%

Original: tiger
cat P (true): 85%

P (adv): 0%
P (true): 91%
P (adv): 0%

P (true): 69%
P (adv): 0%

P (true): 96%
P (adv): 0%

Adversarial:
tiger

`2 = 2.1× 10−1
P (true): 32%
P (adv): 54%

P (true): 11%
P (adv): 84%

P (true): 59%
P (adv): 22%

P (true): 14%
P (adv): 79%

Original:
speedboat P (true): 14%

P (adv): 0%
P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

Adversarial:
crossword puzzle
`2 = 3.4× 10−1 P (true): 3%

P (adv): 91%
P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

Figure 9: A random sample of 2D adversarial examples.
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Original: barrel

P (true): 96%
P (adv): 0%

P (true): 99%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adversarial:
guillotine

`2 = 3.1× 10−5

P (true): 1%
P (adv): 10%

P (true): 0%
P (adv): 95%

P (true): 0%
P (adv): 91%

P (true): 3%
P (adv): 4%

Original:
baseball

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

Adversarial:
green lizard

`2 = 2.9× 10−5

P (true): 0%
P (adv): 66%

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 87%

P (true): 0%
P (adv): 94%

Original: turtle

P (true): 94%
P (adv): 0%

P (true): 98%
P (adv): 0%

P (true): 90%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adversarial:
Bouvier des

Flandres
`2 = 1.4× 10−4

P (true): 1%
P (adv): 1%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 21%

P (true): 0%
P (adv): 84%

Figure 10: A random sample of 3D adversarial examples.

15



Under review as a conference paper at ICLR 2018

Original:
baseball

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

P (true):
100%

P (adv): 0%

Adversarial:
Airedale

`2 = 3.4× 10−5

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 18%

Original: orange

P (true): 73%
P (adv): 0%

P (true): 29%
P (adv): 0%

P (true): 20%
P (adv): 0%

P (true): 85%
P (adv): 0%

Adversarial:
power drill

`2 = 4.3× 10−5

P (true): 0%
P (adv): 89%

P (true): 4%
P (adv): 75%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 84%

Original: dog

P (true): 1%
P (adv): 0%

P (true): 32%
P (adv): 0%

P (true): 12%
P (adv): 0%

P (true): 0%
P (adv): 0%

Adversarial:
bittern

`2 = 7.4× 10−5

P (true): 0%
P (adv): 97%

P (true): 0%
P (adv): 91%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 97%

Figure 11: A random sample of 3D adversarial examples.
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Original:
teddybear

P (true): 90%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 98%
P (adv): 0%

P (true): 5%
P (adv): 0%

Adversarial:
sock

`2 = 3.3× 10−5

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 99%

Original:
clownfish

P (true): 46%
P (adv): 0%

P (true): 14%
P (adv): 0%

P (true): 2%
P (adv): 0%

P (true): 65%
P (adv): 0%

Adversarial:
panpipe

`2 = 4.8× 10−5

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 1%

P (true): 0%
P (adv): 12%

P (true): 0%
P (adv): 0%

Original: sofa

P (true): 15%
P (adv): 0%

P (true): 73%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 70%
P (adv): 0%

Adversarial:
sturgeon

`2 = 1.3× 10−5

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

Figure 12: A random sample of 3D adversarial examples.
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Figure 13: A histogram of adversariality (percent of 100 samples classified as the adversarial class)
across the 200 3D adversarial examples.

D PHYSICAL ADVERSARIAL EXAMPLES

Figure 14 gives all 100 photographs of our adversarial 3D-printed turtle, and Figure 15 gives all 100
photographs of our adversarial 3D-printed baseball.
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classified as turtle classified as rifle classified as other

Figure 14: All 100 photographs of our physical-world 3D adversarial turtle.

19



Under review as a conference paper at ICLR 2018

classified as baseball classified as espresso classified as other

Figure 15: All 100 photographs of our physical-world 3D adversarial baseball.
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