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ABSTRACT

Deep learning models can be efficiently optimized via stochastic gradient descent,
but there is little theoretical evidence to support this. A key question in optimization
is to understand when the optimization landscape of a neural network is amenable
to gradient-based optimization. We focus on a simple neural network two-layer
ReLU network with two hidden units, and show that all local minimizers are global.
This combined with recent work of Lee et al. (2017); Lee et al. (2016) show that
gradient descent converges to the global minimizer.

1 INTRODUCTION

Deep learning has been used to achieve state-of-art performance on a wide variety of problems in
machine learning, artificial intelligence, computer vision, and natural language processing. In all
these applications, deep models often use hundreds of millions of parameters and are trained with
stochastic gradient descent (or other gradient-based methods such as Adagrad (Duchi et al., 2011),
Adam (Kingma and Ba, 2014)), a surprisingly simple method, and yet finds solutions with both low
train and test error.

Despite the empirical success, the mathematical justification for gradient-based methods is not
well-understood. Zhang et al. (2016a) empirically demonstrated that sufficiently over-parametrized
networks can be efficiently optimized to near global optimality with stochastic gradient. For a
two-layer network with leaky ReLU activation, Soudry and Carmon (2016) showed that gradient
descent on a modified loss function can obtain a global minimum of the modified loss function;
however, this does not imply reaching a global minimum of the original loss function. Under the same
setting, Xie et al. (2016) showed that critical points with large “diversity" are nearly globally optimal.
Choromanska et al. (2015) used several assumptions to simplify the loss function to a polynomial
with i.i.d. Gaussian coefficients. They then showed that every local minima of the simplified loss has
objective value comparable to the global minima. Kawaguchi (2016) used similar assumptions to
show that all local minimum are global minimum in a nonlinear network. However the assumptions
of Choromanska et al. (2015); Kawaguchi (2016) require independent activations, meaning that the
activations of the hidden units are independent of the input and/or mutually independent, which is
violated in practice.

Multiple works have been proposed to circumvent this assumption when dealing with the two-layer
ReLU network F (x;W ) =

∑K
j=1 σ(w

T
j x), where σ = max(0, x) is the ReLU activation function.

Under the realizable setting (i.e. the labels are generated from a network with “teaching” parameters
w∗) and isotropic Gaussian input, Tian (2017) shows that when there is only a single ReLU node
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gradient descent converges to the global optimum. For K = 2, he conjectured that there are no
spurious local minima, and provided a partial characterization of the critical point structure. With the
same assumptions, Brutzkus and Globerson (2017) proved, for a two-layer ReLU network with a
single non-overlapping convolutional filter, all local minimizers are global. Zhang et al. (2017a) show
that for two-layer networks with non-standard activation functions that gradient descent converges to
global minimizers.

In this paper, we focus on the case when K = 2 and prove that every local minimum is global. As
in previous works (Brutzkus and Globerson, 2017; Tian, 2017; Hardt and Ma, 2016), we focus on
the population loss. The ReLU function is positive homogeneous, so we can rewrite the function
as F (x;W ) = v1σ(w

T
1 x) + v2σ(w

T
2 x) where w1 and w2 are unit vectors; for simplicity, we will

assume that v1 = v2 = 1. Using these assumptions and an additional orthogonality assumption, we
prove that all local minima of the loss surface are global. Although the setting is a simplification of
practical neural networks, this is a meaningful step towards understanding the success of gradient-
based methods in deep learning and other non-convex optimization problems. For the non-orthogonal
case, we provide a partial characterization of the critical point structure.

The paper is organized as follows: Section 2 discusses related works, and Section 3 introduces the
notation and definitions. Section 4 shows our main result that all local minima are global and gives
a proof sketch and the formal proofs are in Section 5. Section 6 provides some extensions to the
non-orthogonal case. Section 7 presents the result of the experiments, and finally, Section 8 concludes
the paper.

2 RELATED WORK

Single Hidden Node Networks: For a neural network with a single hidden unit and monotone
activation function σ, numerous authors (Mei et al., 2016; Hazan et al., 2015; Kakade et al., 2011;
Kalai and Sastry, 2009; Soltanolkotabi, 2017; Tian, 2017) have shown that gradient-based methods
converge to the true parameter w∗. In the case of a single hidden unit, the loss function is weakly
quasi-convex, meaning that the gradient points in the direction of w∗, which explains the success of
gradient-based methods. For K > 1 hidden units, the loss function is no longer quasi-convex, so
this analysis does not easily generalize. Safran and Shamir (2017) shows that for K ≥ 6 spurious
local minima are common in Two-Layer ReLU neural networks. In fact, our analysis for K = 2 is
considerably more involved, and requires analyzing the gradient and hessian simultaneously.

Improper Learning: On the improper learning side, Shalev-Shwartz et al. (2011) pioneered a
kernel-based approach that can be used for learning a single halfspace or smoothed ReLU. This was
generalized to fully-connected deep neural networks in Zhang et al. (2016b) using the recursive kernel
method. Goel et al. (2016) designed a new smoothed ReLU function that is a better approximation to
the ReLU. Instead of learning a neural network, these methods learn a function in a RKHS, hence
improper learning. Zhang et al. (2017b) improved upon this by learning a neural network, instead of a
kernel machine, via a boosting approach, and with much lower sample complexity. The disadvantages
of improper learning are two-fold: 1) the sample complexity for these methods is exponentially larger
than the Rademacher complexity of the network, and 2) the practical success of deep learning is
intricately tied to using gradient-based training procedures, and the learnability of these networks
using improper learning does not explain the success of gradient-based methods. On a related line of
work, Janzamin et al. (2015) propose a method of moments estimator using tensor decomposition.

Over-Parametrization There have been several works on studying the effect of over-parametrization
on the training of neural networks (Poston et al., 1991; Haeffele and Vidal, 2015). These results
require the width of a hidden layer to be greater than the number of training samples, which is not
the case for commonly used networks. Finally, Zhang et al. (2016a) empirically demonstrated that
commonly used over-parametrized networks can be efficiently optimized to near global optimality
with stochastic gradient descent.

Non-Convex Optimization: Since the loss function of neural networks is non-convex, the theory of
training neural networks is closely related to the theory of non-convex optimization. Recently, there is
considerable progress on convergence guarantees of first-order and second-order methods, including
some applications in machine learning problems. Lee et al. (2016) and Lee et al. (2017) show gradient
descent and other first-order methods converge only to local minima, and not saddle points. Jin
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et al. (2017) and Ge et al. (2015) show that variants of stochastic gradient method converge to local
minimizers in polynomial time. Ge et al. (2016) and Ge et al. (2017) show there is no spurious local
minima in matrix completion problem and non-convex low rank problems. For the phase retrieval
problem, Sun et al. (2016) show that there is no spurious local minimum.

3 PRELIMINARIES

We study a simple two RELU hidden node network with output function

F (x;w) = σ(wT1 x) + σ(wT2 x).

For the duration of this paper, we will assume that x is standard normal in Rn and all expectations
are with respect to the standard normal. The population loss function is:

L(x,W ) =
1

2
E[(F (x,W )− F (x,W ∗))2]. (1)

Define

g(v1, v2) = E[σ(vT1 x)σ(v
T
2 x)], (2)

so the loss can be rewritten as (ignoring additive constants, then multiplied by 4):

f(W ) =
∑

i,j∈{1,2}

(
g(wi, wj)− 2g(wi, w

∗
j )
)
. (3)

From Brutzkus and Globerson (2017) we get

g(u, v) =
1

2π
‖u‖ ‖v‖ (sin θu,v − (π − θu,v) cos θu,v) . (4)

and
∂g

∂u
=

1

2π
‖v‖ u

‖u‖
sin θu,v +

1

2π
(π − θu,v)v. (5)

In this paper, we study the landscape of f over the manifold R = {‖w1‖ = ‖w2‖ = 1}. The
manifold gradient descent algorithm is:

xk+1 = PR(xk − α∇Rf(xk)),
where PR is the orthogonal projector onto the manifoldR, and ∇R is the manifold gradient of f .

4 MAIN RESULT AND PROOF SKETCH

First we state the main result of this paper:
Theorem 4.1. Assume ‖w∗1‖ = ‖w∗2‖ = 1 andw∗T1 w∗2 = 0, then there is no spurious local minimizer
of the objective function (3) on the manifoldR = {‖w1‖ = ‖w2‖ = 1}. Furthermore, every saddle
point or local maximizer has a direction of negative curvature.

The next theorem shows that manifold gradient descent with random initialization converges to the
global minimizer
Theorem 4.2. With probability one, manifold gradient descent will converge to the global minimizers.

Proof. The objective function f is infinitely differentiable on manifoldR. Using Proposition 9 of
Lee et al. (2017), manifold gradient descent will converge to a local minimizer with probability
one. Since the only local minima for function f are w1 = w∗1 , w2 = w∗2 and w1 = w∗2 , w2 = w∗1 ,
manifold gradient descent converges to the true solutions.

Proof of Theorem 4.1. The proof of the main result is complicated, so let’s start with a simpler case,
in which both w1 and w2 are in span{w∗1 , w∗2}.
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Proposition 4.3. Assume ‖w∗1‖ = ‖w∗2‖ = 1, w∗T1 w∗2 = 0 and w1, w2 ∈ span{w∗1 , w∗2}, then there
is no spurious local minimizer of the objective function (3) on the manifoldR = {‖w1‖ = ‖w2‖ = 1}.
Furthermore, every saddle point or local maximizer has a direction of negative curvature.

Proof. The complete proof is given in Appendix B and C, so here we just give a proof sketch.

To prove this, we need some observations. The first important observation is that we are always on
manifold {‖w1‖ = ‖w2‖ = 1}, and for each vector in the plane with fixed norm, there is only one
degree of freedom, which means we can express each vector with only one variable. Thus, we can
express the vectors in polar coordinates, where θ1 and θ2 are the angles for w1 and w2.

The second observation is we only need to compute the gradient on the manifold and check whether
it’s zero. Define m(w1) = sin θ1

∂f
∂w11

− cos θ1
∂f
∂w12

and m(w2) = sin θ2
∂f
∂w21

− cos θ2
∂f
∂w22

. Then
for w1 and w2, the norm of the manifold gradients are |m(w1)| and |m(w2)|. Thus, we only need to
check whether the value of function m is 0 and get rid of the absolute value sign.

Then we apply the polar coordinates onto the manifold gradients, and obtain:

m(w2) =
1

π
(π − θw1,w2

) sin(θ2 − θ1) + cos θ2 − sin θ2 (6)

+
1

π

(
θw2,w∗1

sin θ2 − θw2,w∗2
cos θ2

)
. (7)

The last observation we need for this theorem is that we must divide this problem into several cases
because each angle in (312) is a piecewise linear function. If we discuss each case independently, the
resulting functions are linear in the angles. The details are in Appendix B. After the calculation of all
cases, we found the positions of all the critical points: WLOG assume θ1 ≤ θ2, then there are four
critical points in the 2D case: (θ1, θ2) = (0, π2 ), (

π
4 ,

π
4 ), (

π
4 ,

5π
4 ) and ( 5π4 ,

5π
4 ).

After finding all the critical points, we compute the manifold Hessian matrix for those points and
show that there is a direction of negative curvature. The details can be found in Appendix C.

The next step is to reduce to a three dimensional problem. As stated in the two-dimensional case,
the gradient is in span{w1, w2, w

∗
1 , w

∗
2}, which is four-dimensional. However, using the following

lemma, we can reduce it to three dimensions and simplify the whole problem.

Lemma 4.4. If (w1, w2) is a critical point, then there exists a set of standard orthogonal basis
(e1, e2, e3) such that e1 = w∗1 , e2 = w∗2 and w1, w2 lies in span{e1, e2, e3}.

The second observation is that critical points satisfy the following relation.

Lemma 4.5.

arccos(−w11)

arccos(−w21)
=

arccos(−w12)

arccos(−w22)
= −w23

w13
. (8)

Proposition 4.6. Assume ‖w∗1‖ = ‖w∗2‖ = 1, w∗T1 w∗2 = 0 and ∃i ∈ [2], wi /∈ span{w∗1 , w∗2}, then
there is no spurious local minimizer of the objective function (3) on the manifold {‖w1‖ = ‖w2‖ = 1}.
Furthermore, every saddle point or local maximizer has a direction of negative curvature.

Proof. The complete proof is given in Appendix D, so here we just give a proof sketch.

The ratio in Lemma 4.5 captures an important property of all critical points. For simplicity, based on
D.5, we define k0 = −k, θ1 = π − θw2,w∗1

and θ2 = π − θw2,w∗2
. Then

π − θw1,w∗1
= k0θ1 (9)

π − θw1,w∗2
= k0θ2. (10)

From this ratio, we can construct a new function F :
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Lemma 4.7. Define

F (θ) =
−k0θ

k0 cos(k0θ) + cos(θ)
, (11)

then F (θ1) = F (θ2)(θ1, θ2 ∈ [0, πk0 ]).

Then from the properties of that particular function and upper bound the value of k0 we get

Lemma 4.8. θ1 = θ2.

That lemma shows that w1 and w2 must be on a plane whose projection onto span{w∗1 , w∗2} is the
bisector of w∗1 and w∗2 . Combining this with the computation of Hessian, we conclude that we have
found negative curvature for all possible critical points, which completes the proof.

Combining both Propositions 4.3 and 4.6, we have proved Theorem 4.1, which is the main result of
this paper.

5 PROOFS

Here we provide some detailed proofs which are important for the understanding of the main theorem.

5.1 WHY WE ONLY NEED 3 DIMENSION

Lemma 5.1. If (w1, w2) is a critical point, then there exists a set of standard orthogonal basis
(e1, e2, e3) such that e1 = w∗1 , e2 = w∗2 and w1, w2 lies in span{e1, e2, e3}.

Proof. If (w1, w2) is a critical point, then

(I − w1w
T
1 )

∂f

∂w1
= 0. (12)

where matrix (I − w1w
T
1 ) projects a vector onto the tangent space of w1. Since

(I − w1w
T
1 )w1 = w1 − w1 = 0, (13)

we get

(I − w1w
T
1 )

∂f

∂w1
(14)

=
1

π
(I − w1w

T
1 )
(
(π − θw1,w2

)w2 − (π − θw1,w∗1
)w∗1 − (π − θw1,w∗2

)w∗2
)
, (15)

which means that (π − θw1,w2)w2 − (π − θw1,w∗1
)w∗1 − (π − θw1,w∗2

)w∗2 lies in the direction of w1.
If θw1,w2 = π, i.e., w1 = −w2, then of course the four vectors have rank at most 3, so we can find
the proper basis. If θw1,w2 < π, then we know that there exists a real number r such that

(π − θw1,w2
)w2 − (π − θw1,w∗1

)w∗1 − (π − θw1,w∗2
)w∗2 + r · w1 = 0. (16)

Since θw1,w2
< π, we know that the four vectors w1, w2, w∗1 and w∗2 are linear dependent. Thus, they

have rank at most 3 and we can find the proper basis.

5.2 SOME PROPERTIES OF CRITICAL POINTS

Next we will focus on the properties of critical points. Assume (w1, w2) is one of the critical points,
from lemma D.1 we can find a set of standard orthogonal basis (e1, e2, e3) such that e1 = w∗1 ,
e2 = w∗2 and w1, w2 lies in span{e1, e2, e3}. Furthermore, assume w1 = w11e1 + w12e2 + w13e3
and w2 = w21e1 + w22e2 + w23e3, i.e., w1 = (w11, w12, w13) and w2 = (w21, w22, w23). Since
we have already found out all the critical points when w13 = w23 = 0, in the following we assume
w2

13 + w2
23 6= 0.

Lemma 5.2. θw1,w2 < π.
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Proof. If θw1,w2
= π, then w1 = −w2, so w2 is in the direction of w1. We have already known

from (208) that (π − θw1,w2
)w2 − (π − θw1,w∗1

)w∗1 − (π − θw1,w∗2
)w∗2 lies in the direction of w1,

so further we know (π − θw1,w∗1
)w∗1 + (π − θw1,w∗2

)w∗2 lies in the direction of w1. However, (π −
θw1,w∗1

)w∗1 − (π − θw1,w∗2
)w∗2 lies in span{e1, e2}, so w1 ∈ span{e1, e2} and w2 ∈ span{e1, e2}.

Thus, w13 = w23 = 0 and that contradicts with the assumption.

In a word, θw1,w2 < π.

Lemma 5.3. w13 ∗ w23 6= 0.

Proof. We have already known from (208) that (π−θw1,w2)w2− (π−θw1,w∗1
)w∗1− (π−θw1,w∗2

)w∗2
lies in the direction of w1. Writing it in each dimension and we know that there exists a real number
r0 such that

(π − θw1,w2
)w21 − (π − θw1,w∗1

) = r0 · w11 (17)

(π − θw1,w2
)w22 − (π − θw1,w∗2

) = r0 · w12 (18)

(π − θw1,w2)w23 = r0 · w13. (19)

From lemma D.2 we know that θw1,w2 < π, so we can define

k =
r0

π − θw1,w2

. (20)

Then the equations become

w21 −
π − θw1,w∗1

π − θw1,w2

= k · w11 (21)

w22 −
π − θw1,w∗2

π − θw1,w2

= k · w12 (22)

w23 = k · w13. (23)

Similarly, we have

w11 −
π − θw2,w∗1

π − θw1,w2

= k′ · w21 (24)

w12 −
π − θw2,w∗2

π − θw1,w2

= k′ · w22 (25)

w13 = k′ · w23. (26)

Since w2
13 + w2

23 6= 0, at least one of those two variables cannot be 0. WLOG, we assume that
w13 6= 0. If w23 = 0, then from (219) we know that w13 6= 0, which contradicts the assumption.
Thus, w23 6= 0, which means that w13 ∗ w23 6= 0.

Lemma 5.4. w13 ∗ w23 < 0.

Proof. Adapting from the proof of lemma D.3, we know that kk′ = w23

w13
· w13

w23
= 1, so k′ = 1

k .

From lemma D.2 we know that θw1,w2
< π, and from lemma D.3 we know that both w1 and w2 are

outside span{w∗1 , w∗2}, so ∀i, j ∈ [2], θwi,w∗j < π. Thus, ∀i, j ∈ [2],
π−θwi,w∗j
π−θw1,w2

> 0. Therefore, we
have

w21 > k · w11 (27)

w11 >
1

k
w21. (28)

That means k < 0, so w23

w13
> 0.

In a word, w13 ∗ w23 < 0.
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Lemma 5.5.
arccos(−w11)

arccos(−w21)
=

arccos(−w12)

arccos(−w22)
= −w23

w13
. (29)

Proof. Adapting from the proof of lemma D.4 and we know that

w21 −
π−θw1,w

∗
1

π−θw1,w2

w11
=
w22 −

π−θw1,w
∗
2

π−θw1,w2

w12
=
w23

w13
= k. (30)

Similarly, we have

w11 −
π−θw2,w

∗
1

π−θw1,w2

w21
=
w12 −

π−θw2,w
∗
2

π−θw1,w2

w22
=
w13

w23
=

1

k
. (31)

Taking the first component of (229) and (230) gives us

w21 = k · w11 +
π − θw1,w∗1

π − θw1,w2

(32)

w21 = k · w11 − k
π − θw2,w∗1

π − θw1,w2

. (33)

Thus,

π − θw1,w∗1

π − θw2,w∗1

= −k. (34)

Similarly, we get

π − θw1,w∗2

π − θw2,w∗2

= −k. (35)

Since ∀i, j ∈ [2], π − θwi,w∗j = arccos(−θwij ), we know that

arccos(−w11)

arccos(−w21)
=

arccos(−w12)

arccos(−w22)
= −w23

w13
. (36)

6 ANALYSIS OF CRITICAL POINTS FOR NON-ORTHOGONAL W ∗

In this section, we partially characterize the structure of the critical points when w∗1 , w
∗
2 are non-

orthogonal, but form an acute angle. In other words, the angle between w∗1 and w∗2 is α ∈ (0, π2 ).
Let us first consider the 2D cases, i.e., both w1 and w2 are in the span of w∗1 and w∗2 . Similar to the
original problem, after the technique of changing variables(i.e., using polar coordinates and assume
θ1 and θ2 are the angles of w1 and w2 in polar coordinates), we divide the whole plane into 4 parts,
which are the angle in [0, α], [α, π], [π, π + α] and [π + α, 2π). We have the following lemma:
Lemma 6.1. Assume ‖w∗1‖ = ‖w∗2‖ = 1, w∗T1 w∗2 > 0 and w1, w2 ∈ span{w∗1 , w∗2}. When w1 and
w2 are in the same part(one of four parts), the only critical points except the global minima are those
when both w1 and w2 are on the bisector of w∗1 and w∗2 .

Proof. The complete proof is given in appendix E, the techniques are nearly the same as things in the
original problem and a bit harder, so to be brief, we omit the proof details here.

For the three-dimensional cases cases of this new problem, it’s interesting that the first few lemmatas
are still true. Specifically, Lemma D.1(restated as Lemma 4.4) to Lemma D.5(restated as Lemma 4.5)
are still correct. The proof is very similar to the proofs of those lemmas, except we need modification
to the coefficients of terms in the expressions of the manifold gradients.
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Figure 1: Spurious Local Minima for K ≥ 2 ReLU Network.

7 EXPERIMENTS

We did experiments to verify the theoretical results. Since our results are restricted to the case of
K = 2 hidden units, it is also natural to investigate whether general two-layer ReLU networks also
have the property that all local minima are global minima. Unfortunately as we show via numerical
simulation, this is not the case. We consider the cases of K from 2 to 11 hidden units and we set the
dimension d = K. For each K, the true parameters are orthogonal to each other. For each K, we
run projected gradient descent with 300 different random initializations, and count the number of
local minimum (critical points where the manifold Hessian is positive definite) with non-zero training
error. If we reach a sub-optimal local minimum, we can conclude the loss surface exhibits spurious
local minima. The bar plot showing the number of times gradient descent converged to spurious local
minima is in Figure 1. From the plot, we see there is no spurious local minima from K = 2 to K = 6.
However for K ≥ 7, we observe a clear trend that there are more spurious local minima when there
are more hidden units.

8 CONCLUSION AND FUTURE WORK

In this paper, we provided recovery guarantee of stochastic gradient descent with random initialization
for learning a two-layer neural network with two hidden nodes, unit-norm weights, ReLU activation
functions and Gaussian inputs. Experiments are also done to verify our results. For future work, here
we list some possible directions.

8.1 GENERAL CASE OF NETWORKS

This paper focused on a ReLU network with only two hidden units, . And the teaching weights must
be orthogonal. Those are many conditions, in which we think there are some conditions that are not
quite essential, e.g., the orthogonal assumption. In experiments we have already seen that even if they
are not orthogonal, it still has some good properties such as the positions of critical points. Therefore,
in the future we can further relax or abandon some of the assumptions of this paper and preserve or
improve the result we have.

8.2 BAD LOCAL MINIMA

The neural network we discussed in this paper is in some sense very simple and far from practice,
although it is already the most complex model when we want to analyze the whole loss surface. By
experiments we have found that when it comes to seven hidden nodes with orthogonal true parameters,
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there will be some bad local minima, i.e., there are some local minima that are not global. We believe
that research in this paper can capture the characteristics of the whole loss surface and can help
analyze the loss surface when there are three or even more hidden units, which may give some bounds
on the performance of bad local minima and help us understand the specific non-convexity of loss
surfaces.
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A PRELIMINARIES

Consider a neural network with 2 hidden nodes and ReLU as the activation function:

F (x) =
σ(wT1 x) + σ(wT2 x)

2
, (37)

where σ(x) = max(0, x) is the ReLU function.

First we study the 2-D case, i.e., the input and all parameters are two dimensional. Assume that the
input follows standard normal distribution.

The loss function is population loss:

l(W ) = Ex

[(
σ(wT1 x) + σ(wT2 x)

2
− σ(w∗T1 x) + σ(w∗T2 x)

2

)2
]
. (38)

Define
g(u, v) = Ex

[
σ(uTx)σ(vTx)

]
, (39)

then from Brutzkus and Globerson (2017) we get

g(u, v) =
1

2π
‖u‖ ‖v‖ (sin θu,v − (π − θu,v) cos θu,v) . (40)

Thus,
∂g

∂u
=

1

2π
‖v‖ u

‖u‖
sin θu,v +

1

2π
(π − θu,v)v. (41)

Moreover, from (38) we get

l(W ) =
1

4

∑
i,j∈[2]

(
g(wi, wj)− 2g(wi, w

∗
j ) + g(w∗i , w

∗
j )
)
. (42)

Assume ‖w∗1‖ = ‖w∗2‖ and w∗T1 w∗2 = 0. WLOG, let e1 = w∗1 and e2 = w∗2 . Then we know that
∀i, j ∈ [2], g(w∗i , w

∗
j ) is a constant number. Thus, define the objective function(which equals to

4l(W ) up to an additive constant)

f(W ) = g(w1, w1) + g(w2, w2) + 2g(w1, w2)− 2
∑
i,j∈[2]

g(wi, w
∗
j ). (43)

Thus,
∂f

∂w1
= w1 +

1

π
‖w2‖

w1

‖w1‖
sin θw1,w2

+
1

π
(π − θw1,w2

)w2 (44)

− 1

π
‖w∗1‖

w1

‖w1‖
sin θw1,w∗1

− 1

π
(π − θw1,w∗1

)w∗1 (45)

− 1

π
‖w∗2‖

w1

‖w1‖
sin θw1,w∗2

− 1

π
(π − θw1,w∗2

)w∗2 (46)

= w1 +
1

π
‖w2‖

w1

‖w1‖
sin θw1,w2

+
1

π
(π − θw1,w2

)w2 (47)

− 1

π

w1

‖w1‖
sin θw1,w∗1

− 1

π
(π − θw1,w∗1

)w∗1 (48)

− 1

π

w1

‖w1‖
sin θw1,w∗2

− 1

π
(π − θw1,w∗2

)w∗2 . (49)

Similarly, for w2, the gradient is
∂f

∂w2
= w2 +

1

π
‖w1‖

w2

‖w2‖
sin θw1,w2 +

1

π
(π − θw1,w2)w1 (50)

− 1

π

w2

‖w2‖
sin θw2,w∗1

− 1

π
(π − θw2,w∗1

)w∗1 (51)

− 1

π

w2

‖w2‖
sin θw2,w∗2

− 1

π
(π − θw2,w∗2

)w∗2 . (52)
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Assume that w1 = (w11, w12) and w2 = (w21, w22), then the gradient can be expressed in this form:

∂f

∂w11
= w11 +

1

π

‖w2‖
‖w1‖

w11 sin θw1,w2
+

1

π
(π − θw1,w2

)w21 (53)

− 1

π

w11

‖w1‖
sin θw1,w∗1

− 1

π
(π − θw1,w∗1

) (54)

− 1

π

w11

‖w1‖
sin θw1,w∗2

(55)

and

∂f

∂w12
= w12 +

1

π

‖w2‖
‖w1‖

w12 sin θw1,w2
+

1

π
(π − θw1,w2

)w22 (56)

− 1

π

w12

‖w1‖
sin θw1,w∗1

(57)

− 1

π

w12

‖w1‖
sin θw1,w∗2

− 1

π
(π − θw1,w∗2

). (58)

Because of symmetry, for w2, the gradient is

∂f

∂w21
= w21 +

1

π

‖w1‖
‖w2‖

w21 sin θw1,w2
+

1

π
(π − θw1,w2

)w11 (59)

− 1

π

w21

‖w2‖
sin θw2,w∗1

− 1

π
(π − θw2,w∗1

) (60)

− 1

π

w21

‖w2‖
sin θw2,w∗2

(61)

and

∂f

∂w22
= w22 +

1

π

‖w1‖
‖w2‖

w22 sin θw1,w2
+

1

π
(π − θw1,w2

)w12 (62)

− 1

π

w22

‖w2‖
sin θw2,w∗1

(63)

− 1

π

w22

‖w2‖
sin θw2,w∗2

− 1

π
(π − θw2,w∗2

). (64)

B CRITICAL POINTS IN 2D CASES

B.1 2D PRELIMINARIES

In 2D cases, we can translate W to polar coordinates and fix ‖w1‖ = ‖w2‖ = 1, so there are two
variables left: θ1 and θ2, i.e., w1 = (cos θ1, sin θ1) and w2 = (cos θ2, sin θ2).

For manifold gradient, we only need to consider its norm and check whether it’s zero. For w1 and w2,
the (directed) norm of manifold gradients(expressed by m) are m(w1) = sin θ1

∂f
∂w11

− cos θ1
∂f
∂w12

and m(w2) = sin θ2
∂f
∂w21

− cos θ2
∂f
∂w22

.
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To make life easier, it’s better to simplify the m functions a bit using w1 = (cos θ1, sin θ1) and
w2 = (cos θ2, sin θ2):

m(w1) = sin θ1
∂f

∂w11
− cos θ1

∂f

∂w12
(65)

= sin θ1

(
cos θ1 +

1

π
cos θ1 sin θw1,w2

+
1

π
(π − θw1,w2

) cos θ2 (66)

− 1

π
cos θ1 sin θw1,w∗1

− 1 +
θw1,w∗1

π
− 1

π
cos θ1 sin θw1,w∗2

)
(67)

− cos θ1

(
sin θ1 +

1

π
sin θ1 sin θw1,w2 +

1

π
(π − θw1,w2) sin θ2 (68)

− 1

π
sin θ1 sin θw1,w∗1

− 1 +
θw1,w∗2

π
− 1

π
sin θ1 sin θw1,w∗2

)
(69)

=
1

π
(π − θw1,w2

) sin(θ1 − θ2) + cos θ1 − sin θ1 (70)

+
1

π

(
θw1,w∗1

sin θ1 − θw1,w∗2
cos θ1

)
. (71)

Similarly,

m(w2) =
1

π
(π − θw1,w2

) sin(θ2 − θ1) + cos θ2 − sin θ2 (72)

+
1

π

(
θw2,w∗1

sin θ2 − θw2,w∗2
cos θ2

)
. (73)

Then we can divide them into several cases and analyze them one by one to specify the positions and
properties of the critical points.

WLOG, assume θ1 ≤ θ2.

B.2 0 ≤ θ1 ≤ θ2 ≤ π
2

The norm of the manifold gradient w.r.t. w1 is

m(w1) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2) + cos θ1 − sin θ1 (74)

+
1

π

(
θ1 sin θ1 −

(π
2
− θ1

)
cos θ1

)
. (75)

Similarly, the norm of m(w2) is

m(w2) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) + cos θ2 − sin θ2 (76)

+
1

π

(
θ2 sin θ2 −

(π
2
− θ2

)
cos θ2

)
. (77)

Define

h1(θ) = cos θ − sin θ +
1

π

(
θ sin θ −

(π
2
− θ
)
cos θ

)
. (78)

If m(w1) = m(w2) = 0, then

h1(θ1) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) (79)

and

h1(θ2) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2). (80)
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Thus,
h1(θ1) + h1(θ2) = 0. (81)

Note that when 0 ≤ θ ≤ π
2 ,

h′1(θ) = −
π
2 − 1 + θ

π
sin θ − π − 1− θ

π
cos θ < 0. (82)

Also note that

h1(θ) + h1(
π

2
− θ) = cos θ − sin θ +

1

π

(
θ sin θ −

(π
2
− θ
)
cos θ

)
(83)

+ cos
(π
2
− θ
)
− sin

(π
2
− θ
)

(84)

+
1

π

((π
2
− θ
)
sin
(π
2
− θ
)
− θ cos

(π
2
− θ
))

(85)

= cos θ − sin θ +
1

π

(
θ sin θ −

(π
2
− θ
)
cos θ

)
(86)

+ sin θ − cos θ +
1

π

((π
2
− θ
)
cos θ − θ sin θ

)
(87)

= 0. (88)
Thus, if m(w1) = m(w2) = 0, then θ1 + θ2 = π

2 . From θ1 ≤ θ2 we know that θ1 ≤ π
4 . Plug

θ2 = π
2 − θ1 into (75) and we get

m(w1) = 0⇔ h1(θ1) =
2θ1 +

π
2

π
cos(2θ1). (89)

Lemma B.1. If 0 ≤ θ ≤ π
4 , then

h1(θ) ≤
2θ + π

2

π
cos(2θ) (90)

and the inequality becomes equality only then θ = 0 or θ = π
4 .

Proof. When 0 ≤ θ ≤ π
4 ,

2θ + π
2

π
cos(2θ)− h1(θ) (91)

=

(
1

2
+

2θ

π

)
cos(2θ) +

(
1− θ

π

)
sin θ −

(
1

2
+
θ

π

)
cos θ (92)

≥
(
1

2
+
θ

π

)
cos(2θ) +

(
1− θ

π

)
sin θ −

(
1

2
+
θ

π

)
cos θ (93)

≥
(
1

2
+
θ

π

)
cos(2θ) +

3

4
sin θ −

(
1

2
+
θ

π

)
cos θ (94)

=

(
1

2
+
θ

π

)
(cos(2θ)− cos θ) +

3

4
sin θ (95)

≥ 3

4
(cos(2θ)− cos θ) +

3

4
sin θ (96)

=
3

4
(cos(2θ)− (cos θ − sin θ)) (97)

=
3

4

(
cos2 θ − sin2 θ − (cos θ − sin θ)

)
(98)

=
3

4
(cos θ − sin θ) (cos θ + sin θ − 1) (99)

≥ 0. (100)
Note that (96) is because cos(2θ)− cos θ is always non-positive when 0 ≤ θ ≤ π

4 .

From (93), the inequality becomes an equality only when θ cos(2θ) = 0, which means that the only
possibilities are θ = 0 or θ = π

4 . After plugging in those two possibilities in (90), we know that
h(θ) =

2θ+π
2

π cos(2θ) holds when θ = 0 or θ = π
4 .
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Using the above lemma, we conclude that m(w1) = 0 iff θ1 + θ2 = π
2 and θ = 0 or π4 , i.e.,

m(w1) = 0 iff (θ1, θ2) = (0, π2 ) or (θ1, θ2) = (π4 ,
π
4 ).

In a word, there are two critical points in this case: (θ1, θ2) = (0, π2 ) and (θ1, θ2) = (π4 ,
π
4 ).

B.3 π
2 ≤ θ1 ≤ θ2 ≤ π

The norm of the manifold gradient w.r.t. w1 is

m(w1) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2) + cos θ1 − sin θ1 (101)

+
1

π

(
θ1 sin θ1 −

(
θ1 −

π

2

)
cos θ1

)
. (102)

Similarly,

m(w2) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) + cos θ2 − sin θ2 (103)

+
1

π

(
θ2 sin θ2 −

(
θ2 −

π

2

)
cos θ2

)
. (104)

Define

h2(θ) = cos θ − sin θ +
1

π

(
θ sin θ −

(
θ − π

2

)
cos θ

)
, (105)

Let θ′ = θ − π
2 , then

h2(θ) = h2

(
θ′ +

π

2

)
(106)

= − sin θ′ − cos θ′ +
1

π

((
θ′ +

π

2

)
sin
(
θ′ +

π

2

)
− θ′ cos

(
θ′ +

π

2

))
(107)

= − sin θ′ − cos θ′ +
1

π

((
θ′ +

π

2

)
cos θ′ + θ′ sin θ′

)
(108)

= − sin θ′ +
1

π

((
θ′ − π

2

)
cos θ′ + θ′ sin θ′

)
(109)

= − sin θ′ +
1

π

(
θ′ sin θ′ −

(π
2
− θ′

)
cos θ′

)
(110)

= h1(θ
′)− cos θ′ (111)

(112)
Lemma B.2. When θ ∈ [π2 , π],

h2(θ) ≤ −
1

2
, (113)

and the inequality becomes equality only then θ = π
2 or θ = π.

Proof. Let θ′ = θ − π
2 , then θ′ ∈ [0, π2 ] and

h2(θ) = h1(θ
′)− cos θ′ (114)

= − sin θ′ +
1

π

(
θ′ sin θ′ −

(π
2
− θ′

)
cos θ′

)
(115)

=

(
θ′

π
− 1

2

)
cos θ′ +

(
θ′

π
− 1

)
sin θ′ (116)

≤ −1

2
cos θ′ − 1

2
sin θ′ (117)

= −1

2
(cos θ′ + sin θ′) (118)

≤ −1

2
. (119)

Note that the inequality becomes equality only when θ′ cos θ′ = 0 and
(
θ′

π −
1
2

)
sin θ′ = 0, i.e.,

θ = π
2 or θ = π.
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If m(w1) = m(w2) = 0, then

h2(θ1) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) (120)

and

h2(θ2) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2). (121)

Thus,

h2(θ1) + h2(θ2) = 0. (122)

However, we know that h2(θ1) < 0 and h2(θ1) < 0, which makes a contradiction.

In a word, there is no critical point in this case.

B.4 π ≤ θ1 ≤ θ2 ≤ 3π
2

The norm of the manifold gradient w.r.t. w1 is

m(w1) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2) + cos θ1 − sin θ1 (123)

+
1

π

(
(2π − θ1) sin θ1 −

(
θ1 −

π

2

)
cos θ1

)
. (124)

Similarly, the norm of m(w2) is

m(w2) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) + cos θ2 − sin θ2 (125)

+
1

π

(
(2π − θ2) sin θ2 −

(
θ2 −

π

2

)
cos θ2

)
. (126)

Define

h3(θ) = cos θ − sin θ +
1

π

(
(2π − θ) sin θ −

(
θ − π

2

)
cos θ

)
. (127)

Let θ = θ′ + π, then

h3(θ) = h3(θ
′ + π) (128)

= cos(θ′ + π)− sin(θ′ + π) (129)

+
1

π

(
(π − θ′) sin(θ′ + π)−

(
θ′ +

π

2

)
cos(θ′ + π)

)
(130)

= − cos θ′ + sin θ′ +
1

π

(
(π − θ′)(− sin θ′)−

(
π + θ′ − π

2

)
(− cos θ′)

)
(131)

= − cos θ′ + sin θ′ +
1

π

(
−π sin θ′ + θ′ sin θ′ + π cos θ′ +

(
θ′ − π

2

)
cos θ′

)
(132)

= − cos θ′ + sin θ′ − sin θ′ + cos θ′ +
1

π

(
θ′ sin θ′ −

(π
2
− θ′

)
cos θ′

)
(133)

=
1

π

(
θ′ sin θ′ −

(π
2
− θ′

)
cos θ′

)
(134)

= h1(θ
′)− cos θ′ + sin θ′. (135)

Moreover, ∀θ ∈ [π, 3π2 ],

h3(θ) + h3(
5π

2
− θ) = h1(θ − π)− cos(θ − π) + sin(θ − π) (136)

+ h1(
5π

2
− θ − π)− cos(

5π

2
− θ − π) + sin(

5π

2
− θ − π) (137)

= h1(θ − π) + cos θ − sin θ + h1(
3π

2
− θ) + sin θ − cos θ (138)

= h1(θ − π) + h1(
3π

2
− θ) (139)

= 0. (140)
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Also, when θ ∈ [π, 3π2 ],

h′3(θ) =
π − θ − 1

π
cos θ +

θ − 3π
2 − 1

π
sin θ > 0, (141)

so h3 is an increasing function when θ ∈ [π, 3π2 ].

Thus, if m(w1) = m(w2) = 0, then θ1 + θ2 = 5π
2 . From θ1 ≤ θ2 we know that θ1 ≤ 5π

4 . Plug
θ2 = 5π

2 − θ1 in (124) and we get

m(w1) = 0⇔ h3(θ1) =
2θ1 − 3π

2

π
cos(2θ1). (142)

From Lemma B.1,

h3(θ1) = h1(θ1 − π)− cos(θ1 − π) + sin(θ1 − π) (143)

≤
2θ1 − 3π

2

π
cos(2(θ1)− π)− cos(θ1 − π) + sin(θ1 − π) (144)

=
2θ1 − 3π

2

π
cos(2θ1)− cos(θ1 − π) + sin(θ1 − π) (145)

≤
2θ1 − 3π

2

π
cos(2θ1). (146)

Note that (144) becomes equality only when θ1 = π or θ1 = 5π
4 , and (146) becomes equality only

when θ1 = 5π
4 . Therefore, in this case, m(w1) = 0 if and only if θ1 = 5π

4 .

In a word, the only critical point in this case is (θ1, θ2) = (5π4 ,
5π
4 ).

B.5 3π
2 ≤ θ1 ≤ θ2 ≤ 2π

Actually, this is symmetric to the B.3, so in this part I would like to specify this kind of symmetry.

We have already assumed that θ1 ≤ θ2 without loss of generality, and under this assumption, we can
find another symmetry: From w1 and w2, using line y = x as symmetry axis, we can get two new
vectors w′1 and w′2. w′1 is not necessarily the image of w1 because we need to preserve the assumption
that θ1 ≤ θ2, but there exists one and only one mapping such that θ′1 ≤ θ′2. In this kind of symmetry,
the angles, including θw1,w2 and θwi,w∗j where i, j ∈ [2], are the same, so the two symmetric cases
share the same gradients, thus the symmetric critical points.

We use (i, j) ,where i, j ∈ [4], to represent the case that θ1 is in the ith quadrant and θ2 is in the
jth one. Using this kind of symmetry, we conclude that (1, 2) is equivalent to (1, 4) and (2, 3) is
equivalent to (3, 4), so there are 4 cases left which are (1, 2), (1, 3), (2, 3) and (2, 4).

B.6 0 ≤ θ1 ≤ π
2 ≤ θ2 ≤ π

Similar to previous cases,

m(w1) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2) + cos θ1 − sin θ1 (147)

+
1

π

(
θ1 sin θ1 −

(π
2
− θ1

)
cos θ1

)
(148)

and

m(w2) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) + cos θ2 − sin θ2 (149)

+
1

π

(
θ2 sin θ2 −

(
θ2 −

π

2

)
cos θ2

)
. (150)

Using previous definitions, we conclude that

m(w1) =
1

π
(π − θ2 + θ1) sin(θ1 − θ2) + h1(θ1) (151)
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and

m(w2) =
1

π
(π − θ2 + θ1) sin(θ2 − θ1) + h2(θ2). (152)

If m(w1) = m(w2) = 0, then m(w1) +m(w2) = 0, i.e.,

h1(θ1) + h2(θ2) = 0. (153)
From (111) we know that

h1(θ1) = h2(θ1 +
π

2
) + cos θ1. (154)

Thus, using lemma B.2,

h1(θ1) + h2(θ2) = h2(θ1 +
π

2
) + h2(θ2) + cos θ1 ≤ −

1

2
− 1

2
+ 1 = 0. (155)

That means the only case that h1(θ1) + h2(θ2) = 0 is when the inequality (155) becomes equality,
which means that cos θ1 = 1 and h2(θ1 + π

2 ) = h2(θ2) = − 1
2 . Thus, we must have θ1 = 0, and

θ2 = π
2 or θ2 = π. Plugging them back in (148) and (150), we can verify that the first one is a critical

point while the other is not. Since (θ1, θ2) = (0, π2 ) has been counted in case 1, there are no new
critical points in this case.

B.7 0 ≤ θ1 ≤ π
2 , π ≤ θ2 ≤

3π
2

Similar to previous cases,

m(w1) =
1

π
(π − θw1,w2

) sin(θ1 − θ2) + cos θ1 − sin θ1 (156)

+
1

π

(
θ1 sin θ1 −

(π
2
− θ1

)
cos θ1

)
(157)

and

m(w2) =
1

π
(π − θw1,w2

) sin(θ2 − θ1) + cos θ2 − sin θ2 (158)

+
1

π

(
(2π − θ2) sin θ2 −

(
θ2 −

π

2

)
cos θ2

)
. (159)

Thus, using previous definitions

m(w1) =
1

π
(π − θw1,w2) sin(θ1 − θ2) + h1(θ1) (160)

and

m(w2) =
1

π
(π − θw1,w2) sin(θ2 − θ1) + h3(θ2). (161)

If m(w1) = m(w2) = 0, then m(w1) +m(w2) = 0, i.e.,
h1(θ1) + h3(θ2) = 0. (162)

For 0 ≤ θ ≤ π
2 , define

H(θ) = h1(θ) + h3(θ + π). (163)
Then we have the following lemma:
Lemma B.3. When 0 ≤ θ ≤ π

4 , H(θ) ≤ 0, and when π
4 ≤ θ ≤ π

2 , H(θ) ≥ 0. Besides, all zero
points of H in [0, π2 ] are θ = 0, π4 and π

2 .

Proof. From (135), h3(θ + π) = h1(θ)− cos θ + sin θ. Thus,
H(θ) = 2h1(θ)− cos θ + sin θ (164)

= cos θ − sin θ +
2

π

(
θ sin θ −

(π
2
− θ
)
cos θ

)
(165)

=
2θ

π
cos θ +

(
2θ

π
− 1

)
sin θ (166)

=
2θ

π
(cos θ + sin θ)− sin θ. (167)
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When 0 ≤ θ ≤ π
4 , since sin θ is a concave function for θ, we know that

sin θ ≥
sin π

4
π
4

θ =
2
√
2

π
θ. (168)

Thus,

H(θ) =
2θ

π
(cos θ + sin θ)− sin θ (169)

≤ 2
√
2

π
θ − sin θ (170)

≤ 0. (171)

To make H(θ) = 0, we must have sin θ = 2
√
2

π θ, so θ = 0 or θ = π
4 .

Besides, when π
4 < θ ≤ π

2 , note that

H(
π

2
− θ) +H(θ) = 2h1(θ)− cos θ + sin θ (172)

+ 2h1(
π

2
− θ)− cos(

π

2
− θ) + sin(

π

2
− θ) (173)

= 2
(
h1(θ) + h1(

π

2
− θ)

)
(174)

− cos θ + sin θ − cos(
π

2
− θ) + sin(

π

2
− θ) (175)

= 0. (176)

Thus, H(θ) = −H(π2 − θ) ≥ 0. And to make H(θ) = 0, the only possibility is θ = π
2 , which ends

the proof.

Remember that if m(w1) = m(w2) = 0, then we have h3(θ2) = −h1(θ1).
If h1(θ1) > 0, i.e., 0 ≤ θ1 < π

4 , then from lemma B.3, H(θ1) ≤ 0, which means that

h3(θ1 + π) ≤ −h1(θ1). (177)

Since h3 is a strictly increasing function, we know that if h3(θ2) = −h1(θ1), then θ2 ≥ θ1 + π, so
sin(θ1 − θ2) ≥ 0, and that means

m(w1) =
1

π
(π − θw1,w2

) sin(θ1 − θ2) + h1(θ1) > 0 + 0 = 0. (178)

Similarly, if h1(θ1) < 0, i.e., π4 < θ1 ≤ π
2 , then from lemma B.3, H(θ1) ≥ 0, which means that

h3(θ1 + π) ≥ −h1(θ1). (179)

Thus, if h3(θ2) = −h1(θ1), then θ2 ≤ θ1 + π, so sin(θ1 − θ2) ≤ 0, and that means

m(w1) =
1

π
(π − θw1,w2

) sin(θ1 − θ2) + h1(θ1) < 0 + 0 = 0. (180)

The last possibility is h1(θ1) = 0, i.e., θ1 = π
4 . Plugging it into (162) and we know that h3(θ2) = 0,

so θ2 = 5π
4 . And that is indeed a critical point.

In a word, the only critical point in this case is (θ1, θ2) = (π4 ,
5π
4 ).

B.8 π
2 ≤ θ1 ≤ π ≤ θ2 ≤

3π
2

Like previous cases,

m(w1) =
1

π
(π − θw1,w2

) sin(θ1 − θ2) + h2(θ1) (181)
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and

m(w2) =
1

π
(π − θw1,w2) sin(θ2 − θ1) + h3(θ2). (182)

If m(w1) = m(w2) = 0, then m(w1) +m(w2) = 0, i.e.,

h2(θ1) + h3(θ2) = 0. (183)

Let θ′ = θ2 − π, then from (111) and (135), we know that

h3(θ2) = h3(θ
′ + π) (184)

= h1(θ
′)− cos θ′ + sin θ′ (185)

= h2(θ
′ +

π

2
) + sin θ′. (186)

Thus, from lemma B.2,

h2(θ1) + h3(θ2) = h2(θ1) + h2(θ2 −
π

2
) + sin(θ2 − π) (187)

≤ −1

2
− 1

2
+ 1 (188)

= 0. (189)

Therefore, in order to achieve h2(θ1) + h3(θ2) = 0, the only way is let (188) becomes equality,
which means that θ2 = 3π

2 and θ1 = π
2 or π. Plugging them into (181) and (182) we conclude that

both of them are not critical points.

In a word, there is no critical point in this case.

B.9 π
2 ≤ θ1 ≤ π,

3π
2 ≤ θ2 < 2π

Similar to previous cases,

m(w1) =
1

π
(π − θw1,w2) sin(θ1 − θ2) + h2(θ1) (190)

and

m(w2) =
1

π
(π − θw1,w2

) sin(θ2 − θ1) + cos θ2 − sin θ2 (191)

+
1

π

(
(2π − θ2) sin θ2 −

(
5π

2
− θ2

)
cos θ2

)
. (192)

From π
2 ≤ θ1 ≤ π and 3π

2 ≤ θ2 ≤ 2π we know that θw1,w2 ≥ π
2 , so∣∣∣ 1

π
(π − θw1,w2

) sin(θ1 − θ2)
∣∣∣ ≤ π

2

π
· 1 =

1

2
. (193)

When
∣∣∣ 1π (π − θw1,w2) sin(θ1 − θ2)

∣∣∣ = 1
2 , we must have θw1,w2 = π

2 , so it must be true that

(θ1, θ2) = (π, 3π2 ). However, when (θ1, θ2) = (π, 3π2 ), we have 1
π (π − θw1,w2) sin(θ1 − θ2) = − 1

2 .
Thus,

1

π
(π − θw1,w2

) sin(θ1 − θ2) <
1

2
. (194)

Therefore, using lemma B.2,

m(w1) <
1

2
+ (−1

2
) = 0. (195)

In a word, there is no critical point in this case.

B.10 CONCLUSION

In conclusion, based on the assumption that θ1 ≤ θ2 there are four critical points in the 2D case:
(θ1, θ2) = (0, π2 ), (

π
4 ,

π
4 ), (

π
4 ,

5π
4 ) and ( 5π4 ,

5π
4 ).
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C HESSIAN FOR 2D CASES

There are 4 critical points: (π4 ,
π
4 ), (

π
4 ,

5π
4 ), ( 5π4 ,

5π
4 ), (0, π2 ). Obviously, the point (0, π2 ) is a global

minima. Next we want to compute the Hessian on other 3 points.

Assume the manifold isR = {(w1, w2) : ‖w1‖2 = ‖w2‖2 = 1}, then the Hessian on the manifold is

zT∇2
Rfz = zT∇2fz − (wT1

∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2 (196)

= zT1
∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 (197)

− (wT1
∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2 (198)

where z = (z1, z2) satisfies wT1 z1 = 0, wT2 z2 = 0.

Next, we compute each term in Hessian.

Since

∂f

∂w1
= w1 +

1

π
||w2||

w1

||w1||
sin θw1,w2

+
1

π
(π − θw1,w2

)w2 (199)

− 1

π

w1

||w1||
sin θw1,w∗1

− 1

π
(π − θw1,w∗1

)w∗1 (200)

− 1

π

w1

||w1||
sin θw1,w∗2

− 1

π
(π − θw1,w∗2

)w∗2 . (201)

and

∂f

∂w2
= w2 +

1

π
||w1||

w2

||w2||
sin θw1,w2 +

1

π
(π − θw1,w2)w1 (202)

− 1

π

w2

||w2||
sin θw2,w∗1

− 1

π
(π − θw2,w∗1

)w∗1 (203)

− 1

π

w2

||w2||
sin θw2,w∗2

− 1

π
(π − θw2,w∗2

)w∗2 . (204)
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Then we can get when w1 6= w2 and w1 6= −w2,

∂2f

∂w1∂wT1
= I +

||w2||
π

( sin θw1,w2

‖w1‖
I − sin θw1,w2

‖w1‖3
w1w

T
1

− cos θw1,w2

‖w1‖
1√

1− (
wT1 w2

‖w1‖‖w2‖ )
2

( w1w
T
2

‖w1‖ ‖w2‖
− wT1 w2

‖w1‖3 ‖w2‖
w1w

T
1

))

+
1

π
√
1− (

wT1 w2

‖w1‖‖w2‖ )
2

( w2w
T
2

‖w1‖ ‖w2‖
− wT1 w2

‖w1‖3 ‖w2‖
w2w

T
1

)
− 1

π

( sin θw1,w∗1

‖w1‖
I −

sin θw1,w∗1

‖w1‖3
w1w

T
1

−
cos θw1,w∗1

‖w1‖
1√

1− (
wT1 w

∗
1

‖w1‖‖w∗1‖
)2

( w1w
∗T
1

‖w1‖ ‖w∗1‖
− wT1 w

∗
1

‖w1‖3 ‖w∗1‖
w1w

T
1

))

− 1

π

√
1− (

wT1 w
∗
1

‖w1‖‖w∗1‖
)2

( w∗1w
∗T
1

‖w1‖ ‖w∗1‖
− wT1 w

∗
1

‖w1‖3 ‖w∗1‖
w∗1w

T
1

)

− 1

π

( sin θw1,w∗2

‖w1‖
I −

sin θw1,w∗2

‖w1‖3
w1w

T
1

−
cos θw1,w∗2

‖w1‖
1√

1− (
wT1 w

∗
2

‖w1‖‖w∗2‖
)2

( w1w
∗T
2

‖w1‖ ‖w∗2‖
− wT1 w

∗
2

‖w1‖3 ‖w∗2‖
w1w

T
1

))

− 1

π

√
1− (

wT1 w
∗
2

‖w1‖‖w∗2‖
)2

( w∗2w
∗T
2

‖w1‖ ‖w∗2‖
− wT1 w

∗
2

‖w1‖3 ‖w∗2‖
w∗2w

T
1

)

Using the fact that wT1 z1 = 0,

zT1
∂2f

∂w1∂wT1
z1 = 1 +

sin θw1,w2

π
+

1

π

√
1−

(
wT1 w2

)2 (zT1 w2

)2
−

sin θw1,w∗1

π
− 1

π

√
1−

(
wT1 w

∗
1

)2 (zT1 w∗1)2
−

sin θw1,w∗2

π
− 1

π

√
1−

(
wT1 w

∗
2

)2 (zT1 w∗2)2
Similarly,

zT2
∂2f

∂w2∂wT2
z2 = 1 +

sin θw1,w2

π
+

1

π

√
1−

(
wT1 w2

)2 (zT2 w1

)2
−

sin θw2,w∗1

π
− 1

π

√
1−

(
wT2 w

∗
1

)2 (zT2 w∗1)2
−

sin θw2,w∗2

π
− 1

π

√
1−

(
wT2 w

∗
2

)2 (zT2 w∗2)2
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Next,

∂2f

∂w1∂wT2
=

sin θw1,w2

π ‖w1‖ ‖w2‖
w1w

T
2

− ‖w2‖ cos θw1,w2

π ‖w1‖
1√

1− (
wT1 w2

‖w1‖‖w2‖ )
2

( 1

‖w1‖ ‖w2‖
w1w

T
1 −

wT1 w2

‖w1‖ ‖w2‖3
w1w

T
2

)

+
1

π
√
1− (

wT1 w2

‖w1‖‖w2‖ )
2

( 1

‖w1‖ ‖w2‖
w2w

T
1 −

wT1 w2

‖w1‖ ‖w2‖3
w2w

T
2

)
+

1

π
(π − θw1,w2)I

and

zT1
∂2f

∂w1∂wT2
z2 =

1

π

√
1−

(
wT1 w2

)2 zT1 w2w
T
1 z2 +

1

π
(π − θw1,w2)z

T
1 z2

In conclusion,

zT∇2
Rfz =(

1

π

√
1−

(
wT1 w2

)2 (zT1 w2

)2 − 1

π

√
1−

(
wT1 w

∗
1

)2 (zT1 w∗1)2 − 1

π

√
1−

(
wT1 w

∗
2

)2 (zT1 w∗2)2
)

+
1

π

√
1−

(
wT1 w2

)2 (zT2 w1

)2 − 1

π

√
1−

(
wT2 w

∗
1

)2 (zT2 w∗1)2 − 1

π

√
1−

(
wT2 w

∗
2

)2 (zT2 w∗2)2
+

(
2

π

√
1−

(
wT1 w2

)2 zT1 w2w
T
1 z2 +

2

π
(π − θw1,w2

)zT1 z2

)

−
( 1
π
(π − θw1,w2)w

T
1 w2 −

1

π
(π − θw1,w∗1

)wT1 w
∗
1 −

1

π
(π − θw1,w∗2

)wT1 w
∗
2

)
−
( 1
π
(π − θw1,w2)w

T
2 w1 −

1

π
(π − θw2,w∗1

)wT2 w
∗
1 −

1

π
(π − θw2,w∗2

)wT2 w
∗
2

)
.

When w1 = w2 or w1 = −w2, we should consider the limit of the Hessian.

First, let’s compute the limit of some functions that we will use later. For simplicity, we just consider
the case when w1 → w2. The case w1 → −w2 will be the same.

Claim: lim
w2→w1

(
zT1 w2

)2√
1−
(
wT1 w2

)2 = 0

Proof: WLOG, we assume w1 = (1, 0), w2 = (cos θ, sin θ), θ → 0. Otherwise, we can do a rotation
which doesn’t affect the inner product. Since zT1 w1 = 0 , z1 = (0, 1). Then

lim
w2→w1

(
zT1 w2

)2√
1−

(
wT1 w2

)2 = lim
θ→0

sin2 θ√
1− cos2 θ

= lim
θ→0
| sin θ|

= 0

�

Similarly, we have the following claims.

Claim: lim
w2→w1

(
zT2 w1

)2√
1−
(
wT1 w2

)2 = 0
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Claim: lim
w2→w1

zT1 w2w
T
1 z2√

1−
(
wT1 w2

)2 = 0

Using these claims, we can computet the Hessian when w1 = w2.

lim
w2→w1

zT1
∂2f

∂w1∂wT1
z1 = 1−

sin θw1,w∗1

π
− 1

π

√
1−

(
wT1 w

∗
1

)2 (zT1 w∗1)2
−

sin θw1,w∗2

π
− 1

π

√
1−

(
wT1 w

∗
2

)2 (zT1 w∗2)2

lim
w2→w1

zT2
∂2f

∂w2∂wT2
z2 = 1−

sin θw1,w∗1

π
− 1

π

√
1−

(
wT1 w

∗
1

)2 (zT1 w∗1)2
−

sin θw1,w∗2

π
− 1

π

√
1−

(
wT1 w

∗
2

)2 (zT1 w∗2)2

lim
w2→w1

zT1
∂2f

∂w1∂wT2
z2 = zT1 z2

Now, we can compute the hessian on critical points. For simplicity we just consider the case that
k = 1.

C.1 (π4 ,
π
4 )

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,
√
2
2 ,−

√
2
2

)
,

wT1
∂f

∂w1
= 2−

√
2

π
− 3
√
2

4

wT2
∂f

∂w2
= 2−

√
2

π
− 3
√
2

4

So

zT∇2
Rfz = zT∇2fz − (wT1

∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2

= zT1
∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 4 +

2
√
2

π
+

3
√
2

2

=
3
√
2

2
− 2
√
2

π
> 0

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,−

√
2
2 ,
√
2
2

)
,

zT∇2
Rfz = zT∇2fz − (wT1

∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2

= zT1
∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 4 +

2
√
2

π
+

3
√
2

2

= 1− 2
√
2

π
+ 1− 2

√
2

π
− 2− 4 +

2
√
2

π
+

3
√
2

2

=
3
√
2

2
− 2
√
2

π
− 4 < 0

So this point is a saddle point.
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C.2 ( 5π4 ,
5π
4 )

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,
√
2
2 ,−

√
2
2

)
,

wT1
∂f

∂w1
= 2−

√
2

π
−
√
2

4

wT2
∂f

∂w2
= 2−

√
2

π
−
√
2

4

zT∇2
Rfz = zT∇2fz − (wT1

∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2

= zT1
∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 4 +

2
√
2

π
+

√
2

2

= 1 + 1 + 2− 4 +
2
√
2

π
+

√
2

2

=
2
√
2

π
+

√
2

2
> 0

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,−

√
2
2 ,
√
2
2

)
,

zT∇2
Rfz = zT1

∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 4 +

2
√
2

π
+

√
2

2

= 1− 2
√
2

π
+ 1− 2

√
2

π
− 2− 4 +

2
√
2

π
+

√
2

2

=

√
2

2
− 2
√
2

π
− 4 < 0

So this point is a saddle point.

C.3 (π4 ,
5π
4 )

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,
√
2
2 ,−

√
2
2

)
,

wT1
∂f

∂w1
= 1−

√
2

π
− 3
√
2

4

wT2
∂f

∂w2
= 1−

√
2

π
−
√
2

4

zT∇2
Rfz = zT∇2fz − (wT1

∂f

∂w1
) ‖z1‖2 − (wT2

∂f

∂w2
) ‖z2‖2

= zT1
∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 2 +

2
√
2

π
+
√
2

= 1 + 1 + 2− 2 +
2
√
2

π
+
√
2

= 2 +
2
√
2

π
+
√
2 > 0

On the direction z = (z1, z2) =
(√

2
2 ,−

√
2
2 ,−

√
2
2 ,
√
2
2

)
,
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zT∇2
Rfz = zT1

∂2f

∂w1∂wT1
z1 + zT2

∂2f

∂w2∂wT2
z2 + 2zT1

∂2f

∂w1∂wT2
z2 − 2 +

2
√
2

π
+
√
2

= 1− 2
√
2

π
+ 1− 2

√
2

π
− 2− 2 +

2
√
2

π
+
√
2

=
√
2− 2

√
2

π
− 2 < 0

So this point is a saddle point.

C.4 CONCLUSION

In conclusion, we have four critical points: one is global maximal, the other three are saddle points.

D 3D CASES

D.1 WHY WE ONLY NEED 3 DIMENSION

Lemma D.1. If (w1, w2) is a critical point, then there exists a set of standard orthogonal basis
(e1, e2, e3) such that e1 = w∗1 , e2 = w∗2 and w1, w2 lies in span{e1, e2, e3}.

Proof. If (w1, w2) is a critical point, then

(I − w1w
T
1 )

∂f

∂w1
= 0. (205)

where matrix (I − w1w
T
1 ) projects a vector onto the tangent space of w1. Since

(I − w1w
T
1 )w1 = w1 − w1 = 0, (206)

we get

(I − w1w
T
1 )

∂f

∂w1
(207)

=
1

π
(I − w1w

T
1 )
(
(π − θw1,w2

)w2 − (π − θw1,w∗1
)w∗1 − (π − θw1,w∗2

)w∗2
)
, (208)

which means that (π − θw1,w2
)w2 − (π − θw1,w∗1

)w∗1 − (π − θw1,w∗2
)w∗2 lies in the direction of w1.

If θw1,w2
= π, i.e., w1 = −w2, then of course the four vectors have rank at most 3, so we can find

the proper basis. If θw1,w2
< π, then we know that there exists a real number r such that

(π − θw1,w2)w2 − (π − θw1,w∗1
)w∗1 − (π − θw1,w∗2

)w∗2 + r · w1 = 0. (209)

Since θw1,w2
< π, we know that the four vectors w1, w2, w∗1 and w∗2 are linear dependent. Thus, they

have rank at most 3 and we can find the proper basis.

D.2 SOME PROPERTIES OF CRITICAL POINTS

Next we will focus on the properties of critical points. Assume (w1, w2) is one of the critical points,
from lemma D.1 we can find a set of standard orthogonal basis (e1, e2, e3) such that e1 = w∗1 ,
e2 = w∗2 and w1, w2 lies in span{e1, e2, e3}. Furthermore, assume w1 = w11e1 + w12e2 + w13e3
and w2 = w21e1 + w22e2 + w23e3, i.e., w1 = (w11, w12, w13) and w2 = (w21, w22, w23). Since
we have already found out all the critical points when w13 = w23 = 0, in the following we assume
w2

13 + w2
23 6= 0.

Lemma D.2. θw1,w2
< π.

Proof. If θw1,w2
= π, then w1 = −w2, so w2 is in the direction of w1. We have already known

from (208) that (π − θw1,w2
)w2 − (π − θw1,w∗1

)w∗1 − (π − θw1,w∗2
)w∗2 lies in the direction of w1,

so further we know (π − θw1,w∗1
)w∗1 + (π − θw1,w∗2

)w∗2 lies in the direction of w1. However, (π −
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θw1,w∗1
)w∗1 − (π − θw1,w∗2

)w∗2 lies in span{e1, e2}, so w1 ∈ span{e1, e2} and w2 ∈ span{e1, e2}.
Thus, w13 = w23 = 0 and that contradicts with the assumption.

In a word, θw1,w2 < π.

Lemma D.3. w13 ∗ w23 6= 0.

Proof. We have already known from (208) that (π−θw1,w2)w2− (π−θw1,w∗1
)w∗1− (π−θw1,w∗2

)w∗2
lies in the direction of w1. Writing it in each dimension and we know that there exists a real number
r0 such that

(π − θw1,w2
)w21 − (π − θw1,w∗1

) = r0 · w11 (210)

(π − θw1,w2)w22 − (π − θw1,w∗2
) = r0 · w12 (211)

(π − θw1,w2
)w23 = r0 · w13. (212)

From lemma D.2 we know that θw1,w2
< π, so we can define

k =
r0

π − θw1,w2

. (213)

Then the equations become

w21 −
π − θw1,w∗1

π − θw1,w2

= k · w11 (214)

w22 −
π − θw1,w∗2

π − θw1,w2

= k · w12 (215)

w23 = k · w13. (216)

Similarly, we have

w11 −
π − θw2,w∗1

π − θw1,w2

= k′ · w21 (217)

w12 −
π − θw2,w∗2

π − θw1,w2

= k′ · w22 (218)

w13 = k′ · w23. (219)

Since w2
13 + w2

23 6= 0, at least one of those two variables cannot be 0. WLOG, we assume that
w13 6= 0. If w23 = 0, then from (219) we know that w13 6= 0, which contradicts the assumption.
Thus, w23 6= 0, which means that w13 ∗ w23 6= 0.

Lemma D.4. w13 ∗ w23 < 0.

Proof. Adapting from the proof of lemma D.3, we know that

w21 −
π − θw1,w∗1

π − θw1,w2

= k · w11 (220)

w22 −
π − θw1,w∗2

π − θw1,w2

= k · w12 (221)

w23 = k · w13 (222)

and

w11 −
π − θw2,w∗1

π − θw1,w2

= k′ · w21 (223)

w12 −
π − θw2,w∗2

π − θw1,w2

= k′ · w22 (224)

w13 = k′ · w23. (225)

Furthermore, kk′ = w23

w13
· w13

w23
= 1, so k′ = 1

k .
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From lemma D.2 we know that θw1,w2
< π, and from lemma D.3 we know that both w1 and w2 are

outside span{w∗1 , w∗2}, so ∀i, j ∈ [2], θwi,w∗j < π. Thus, ∀i, j ∈ [2],
π−θwi,w∗j
π−θw1,w2

> 0. Therefore, we
have

w21 > k · w11 (226)

w11 >
1

k
w21. (227)

That means k < 0, so w23

w13
> 0.

In a word, w13 ∗ w23 < 0.

Lemma D.5.
arccos(−w11)

arccos(−w21)
=

arccos(−w12)

arccos(−w22)
= −w23

w13
. (228)

Proof. Adapting from the proof of lemma D.4 and we know that

w21 −
π−θw1,w

∗
1

π−θw1,w2

w11
=
w22 −

π−θw1,w
∗
2

π−θw1,w2

w12
=
w23

w13
= k. (229)

Similarly, we have

w11 −
π−θw2,w

∗
1

π−θw1,w2

w21
=
w12 −

π−θw2,w
∗
2

π−θw1,w2

w22
=
w13

w23
=

1

k
. (230)

Taking the first component of (229) and (230) gives us

w21 = k · w11 +
π − θw1,w∗1

π − θw1,w2

(231)

w21 = k · w11 − k
π − θw2,w∗1

π − θw1,w2

. (232)

Thus,
π − θw1,w∗1

π − θw2,w∗1

= −k. (233)

Similarly, we get
π − θw1,w∗2

π − θw2,w∗2

= −k. (234)

Since ∀i, j ∈ [2], π − θwi,w∗j = arccos(−θwij ), we know that

arccos(−w11)

arccos(−w21)
=

arccos(−w12)

arccos(−w22)
= −w23

w13
. (235)

For simplicity, based on D.5, we define k0 = −k, θ1 = π − θw2,w∗1
and θ2 = π − θw2,w∗2

. Then

π − θw1,w∗1
= k0θ1 (236)

π − θw1,w∗2
= k0θ2. (237)

WLOG, assume k0 ≥ 1, otherwise we can switch w1 and w2.

Thus,

w11 = − cos(k0θ1) (238)
w12 = − cos(k0θ2) (239)
w21 = − cos(θ1) (240)
w22 = − cos(θ2). (241)
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Lemma D.6. θ1 + θ2 ≥ π
2 .

Proof. Since θ1 = π − θw2,w∗1
and θ2 = π − θw2,w∗2

, we know that θ1, θ2 ∈ [0, π]. Besides,

w2
11 + w2

12 = 1− w2
13 ≤ 1 (242)

w2
21 + w2

22 = 1− w2
23 ≤ 1. (243)

Thus,

cos2(k0θ1) + cos2(k0θ2) ≤ 1 (244)

cos2(θ1) + cos2(θ2) ≤ 1. (245)

If one of θ1 and θ2 is larger than π
2 , say θ1 > π

2 , then of course θ1 + θ2 ≥ π
2 . If θ1, θ2 ∈ [0, π2 ], then

sin2
(π
2
− θ1

)
= cos2(θ1) ≤ 1− cos2(θ2) = sin2(θ2), (246)

so π
2 − θ1 ≤ θ2, which means that θ1 + θ2 ≥ π

2 .

In a word, θ1 + θ2 ≥ π
2 .

Lemma D.7. 1 ≤ k0 ≤ 3.

Proof. First we prove that k0 ≤ 4: From lemma D.6, we know that θ1 + θ2 ≥ π
2 , so at least one of

θ1 and θ2 is no less than π
4 , say θ1 ≥ π

4 . If k0 > 4, then π − θw1,w∗1
= k0θ1 > π, which makes a

contradiction. Thus, k0 ≤ 4.

Furthermore, if 3 < k0 ≤ 4, then θ1, θ2 ∈ [0, π3 ] because k0θ1, k0θ2 ∈ [0, π].

If θ1, θ2 ∈ [0, π4 ), then θ1 + θ2 <
π
2 which contradicts lemma D.6.

If θ1, θ2 ∈ [π4 ,
π
3 ], then k0θ1, k0θ2 ∈ ( 3π4 , π], which means that cos2(k0θ1)+cos2(k0θ2) >

1
2+

1
2 = 1

and contradicts (244).

If θ1 ≤ π
4 ≤ θ2 and k0θ1 < π

2 , then θ1 < π
2k0

< π
6 , so from lemma D.6, θ2 ≥ π

2 − θ1 >
π
3 , which

contradicts k0θ2 ≤ π.

If θ1 ≤ π
4 ≤ θ2 and k0θ1 ≥ π

2 , then k0θ1, k0θ2 ∈ [π2 , π]. Since cos2(k0θ1) + cos2(k0θ2) ≤ 1, we
know that

sin2
(
k0θ1 −

π

2

)
= cos2(k0θ1) ≤ 1− cos2(k0θ2) = sin2(π − k0θ2), (247)

so k0θ1− π
2 ≤ π−k0θ2, which means that k0θ1+k0θ2 ≤ 3π

2 . Thus, θ1+θ2 < π
2 , which contradicts

lemma D.6.

In a word, 1 ≤ k0 ≤ 3.

Lemma D.8. Define

F (θ) =
−k0θ

k0 cos(k0θ) + cos(θ)
, (248)

then F (θ1) = F (θ2)(θ1, θ2 ∈ [0, πk0 ]).

Proof. Since k0θ1, k0θ2 ∈ [0, π], we know that θ1, θ2 ∈ [0, πk0 ].

From (229), applying the change of variables on the first component and we get

− cos θ1 − k0θ1
π−θw1,w2

− cos(k0θ1)
= −k0. (249)

Thus,

π − θw1,w2
=

−k0θ1
k0 cos(k0θ1) + cos(θ1)

= F (θ1). (250)
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Similarly, if we apply the change of variables onto the second component of (229), we will get

π − θw1,w2
=

−k0θ2
k0 cos(k0θ2) + cos(θ2)

= F (θ2). (251)

Thus,

F (θ1) = F (θ2)(θ1, θ2 ∈ [0,
π

k0
]). (252)

Lemma D.9. ∃θ0 ∈ [ π2k0 ,
3π
4k0

), s.t.,

F (θ) =

 < 0 0 ≤ θ < θ0
=∞ θ = θ0
> 0 θ0 < θ ≤ π

k0

. (253)

Proof. Note that when θ ∈ [0, πk0 ], −k0θ is always non-positive. Define G(θ) = k0 cos(k0θ) +

cos(θ), then G(θ) is a strict decreasing function w.r.t. θ. Note that G(0) = k0 + 1 > 0 and
G
(
π
k0

)
= cos

(
π
k0

)
− k0 < 0, so there must be an θ0 ∈ (0, πk0 ) such that G(θ0) = 0. Thus, when

0 ≤ θ < θ0, G(θ) > 0, and when θ0 ≤ π
k0

, G(θ) < 0.

Thus,

F (θ) =

 < 0 0 ≤ θ < θ0
=∞ θ = θ0
> 0 θ0 < θ ≤ π

k0

. (254)

Then the only thing we need to prove is π
2k0
≤ θ0 < 3π

4k0
. Note that

G(
π

2k0
) = cos

(
π

2k0

)
≥ 0 (255)

G(
3π

4k0
) = cos

(
3π

4k0

)
− k0√

2
≤
√
2

2
−
√
2

2
= 0. (256)

Since the inequality (256) holds only when cos
(

3π
4k0

)
=
√
2
2 and k0√

2
=
√
2
2 , which means k0 = 3

and k0 = 1, which makes a contradiction. Thus,

G(
3π

4k0
) < 0. (257)

Therefore, π
2k0
≤ θ0 < 3π

4k0
, which completes the proof.

Lemma D.10. F (θ) is either strictly decreasing or first decrease and then increase when θ ∈ (θ0,
π
k0
].

Proof.

F ′(θ) = −
k0 (k0 cos(k0θ) + cos(θ))− k0θ

(
−k20 sin(k0θ)− sin θ

)
(k0 cos(k0θ) + cos(θ))

2 (258)

= −k0
k0 cos(k0θ) + cos θ + k20θ sin(k0θ) + θ sin θ

(k0 cos(k0θ) + cos(θ))
2 . (259)

DefineH(θ) = k0 cos(k0θ)+cos θ+k20θ sin(k0θ)+θ sin θ(θ ∈ (θ0,
π
k0
]), thenH(θ)·F ′(θ) < 0(i.e.,

when H(θ) is positive, F (θ) is decreasing, otherwise F (θ) is increasing), and we know that
H ′(θ) = −k20 sin(k0θ)− sin θ + k30θ cos(k0θ) + k20 sin(k0θ) + θ cos θ + sin θ (260)

= k30θ cos(k0θ) + θ cos θ (261)

= θ(k30 cos(k0θ) + cos θ) (262)
≤ θ(k0 cos(k0θ) + cos θ) (263)
= θ ·G(θ) (264)
< 0. (265)
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Note that (263) holds because θ > θ0 ≥ π
2k0

.

Thus, H(θ) is a strictly decreasing function when θ ∈ (θ0,
π
k0
].

We can see that

H(θ0) = G(θ0) + k20θ0 sin(k0θ0) + θ0 sin θ0 (266)

= k20θ0 sin(k0θ0) + θ0 sin θ0 > 0. (267)

Thus, if H( πk0 ) ≥ 0, then F (θ) is monotonically decreasing when θ ∈ (θ0,
π
k0
]. Otherwise, F (θ) first

decrease and then increase when θ ∈ (θ0,
π
k0
].

Lemma D.11. ∀θ ∈ ( 3π
4k0

, πk0 ], F (θ) < F
(

3π
4k0

)
.

Proof. From lemma D.10 we have already known that F (θ) is either strictly decreasing or first
decrease and then increase when θ ∈ (θ0,

π
k0
], so the maximum of the function value on an interval can

only be at the endpoints of that interval, which means that we only need to prove F ( 3π
4k0

) > F ( πk0 ).

Note that

F (
3π

4k0
) > F (

π

k0
) (268)

⇔
3π
4√

2
2 k0 − cos

(
3π
4k0

) > π

k0 − cos π
k0

(269)

⇔
3
4√

2
2 k0 − cos

(
3π
4k0

) > 1

k0 − cos π
k0

(270)

⇔ 3

4

(
k0 − cos

π

k0

)
>

√
2

2

(
k0 − cos

(
3π

4k0

))
(271)

⇔

(
3

4
−
√
2

2

)
k0 >

3

4
cos

π

k0
− cos

(
3π

4k0

)
. (272)

Let h(x) = 3
4 cosx− cos

(
3x
4

)
(x ∈ [π3 , π]), then

h′(x) =
3

4

(
sin

(
3x

4

)
− sinx

)
. (273)

Thus, h(x) is decreasing in [π3 ,
4π
7 ] and increasing in [ 4π7 , π]. However, we know that h(π3 ) =

3
8 −

√
2
2 < 0 and h(π) = − 3

4 +
√
2
2 < 0, so h(x) is negative when x ∈ [π3 , π].

Therefore, (
3

4
−
√
2

2

)
k0 > 0 >

3

4
cos

π

k0
− cos

(
3π

4k0

)
, (274)

which means that F ( 3π
4k0

) > F ( πk0 ).

Thus, ∀θ ∈ ( 3π
4k0

, πk0 ], F (θ) < F
(

3π
4k0

)
.

Lemma D.12. θ1 = θ2.

Proof. From the proof of lemma D.8 we get

F (θ1) = π − θw1,w2 = F (θ2). (275)

Thus, F (θ1), F (θ2) ∈ [0, π].

Using lemma D.9, θ1, θ2 > θ0 ≥ π
2k0

, so that k0θ1, k0θ2 ∈ (π2 , π].
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From (244), we know that k0(θ1 + θ2) ≤ 3π
2 , which means that at least one of θ1 and θ2 are less than

or equal to 3π
4k0

, w.l.o.g. we assume θ1 ≤ 3π
4k0

.

Note that lemma D.11 tells us that F ( 3π
4k0

) > F ( πk0 ), so at the point θ = 3π
4k0

, the function cannot
be increasing, which combining with lemma D.10 shows that F (θ) is strictly decreasing when
θ ∈ (θ0,

3π
4k0

].

If θ2 > 3π
4k0

, then we know that F (θ1) ≥ F
(

3π
4k0

)
> F (θ2), which contradicts F (θ1) = F (θ2).

Thus, θ1, θ2(θ0, 3π
4k0

]. Since F (θ) is monotonically decreasing when θ ∈ (θ0,
3π
4k0

], we can conclude
that θ1 = θ2.

D.3 NEGATIVE CURVATURE

First we compute the Hessian matrix:

If z = (tz1, z2), ||z1|| = ||z2|| = 1 and wT1 z1 = wT2 z2 = 0, then

zT∇2
Rfz = (276)

t2

(
1

π

√
1−

(
wT1 w2

)2 (zT1 w2

)2 − 1

π

√
1−

(
wT1 w

∗
1

)2 (zT1 w∗1)2 − 1

π

√
1−

(
wT1 w

∗
2

)2 (zT1 w∗2)2
)

(277)

+
1

π

√
1−

(
wT1 w2

)2 (zT2 w1

)2 − 1

π

√
1−

(
wT2 w

∗
1

)2 (zT2 w∗1)2 − 1

π

√
1−

(
wT2 w

∗
2

)2 (zT2 w∗2)2
(278)

+ t

(
2

π

√
1−

(
wT1 w2

)2 zT1 w2w
T
1 z2 +

2

π
(π − θw1,w2)z

T
1 z2

)
(279)

− t2
( 1
π
(π − θw1,w2

)wT1 w2 −
1

π
(π − θw1,w∗1

)wT1 w
∗
1 −

1

π
(π − θw1,w∗2

)wT1 w
∗
2

)
(280)

−
( 1
π
(π − θw1,w2)w

T
2 w1 −

1

π
(π − θw2,w∗1

)wT2 w
∗
1 −

1

π
(π − θw2,w∗2

)wT2 w
∗
2

)
. (281)

Lemma D.13. For every critical point (w1, w2) outside span{w∗1 , w∗2},
1

π
(π − θw1,w2)w

T
1 w2 −

1

π
(π − θw1,w∗1

)wT1 w
∗
1 −

1

π
(π − θw1,w∗2

)wT1 w
∗
2 (282)

= −k0(π − θw1,w2) (283)
1

π
(π − θw1,w2)w

T
2 w1 −

1

π
(π − θw2,w∗1

)wT2 w
∗
1 −

1

π
(π − θw2,w∗2

)wT2 w
∗
2 (284)

= − 1

k0
(π − θw1,w2). (285)

Proof. In lemma D.3, we have three equations, and we write them again for convenience:
(π − θw1,w2

)w21 − (π − θw1,w∗1
) = r0 · w11 (286)

(π − θw1,w2)w22 − (π − θw1,w∗2
) = r0 · w12 (287)

(π − θw1,w2
)w23 = r0 · w13. (288)

Multiply 286 by w11, 287 by w12, 288 by w13, we get
(π − θw1,w2

)w21w11 − (π − θw1,w∗1
)w11 = r0 · w2

11 (289)

(π − θw1,w2
)w22w12 − (π − θw1,w∗2

)w12 = r0 · w2
12 (290)

(π − θw1,w2
)w23w13 = r0 · w2

13. (291)
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Combine these three equations, we know that
1

π
(π − θw1,w2

)wT1 w2 −
1

π
(π − θw1,w∗1

)wT1 w
∗
1 −

1

π
(π − θw1,w∗2

)wT1 w
∗
2 (292)

= r0 (293)

= (π − θw1,w2
)
w23

w13
(294)

= −k0(π − θw1,w2). (295)
Similarly,

1

π
(π − θw1,w2

)wT2 w1 −
1

π
(π − θw2,w∗1

)wT2 w
∗
1 −

1

π
(π − θw2,w∗2

)wT2 w
∗
2 (296)

= (π − θw1,w2
)
w13

w23
(297)

= − 1

k0
(π − θw1,w2). (298)

Lemma D.14. For every critical point (w1, w2) outside span{w∗1 , w∗2}, there is negative curvature.

Proof. We select z1 = (−
√
2
2 ,
√
2
2 , 0) and z2 = (

√
2
2 ,−

√
2
2 , 0), then

zT∇2
Rfz = −

1√
1− w2

11

− 1√
1− w2

21

+

(
k0 +

1

k0
− 2

)
(π − θw1,w2

). (299)

From lemma D.7 we know that 1 ≤ k0 ≤ 3.

If 1 ≤ k0 ≤ 2, then

zT∇2
Rfz ≤ −2 +

1

2
· π < 0. (300)

If 2 < k0 ≤ 3, from (244) and lemma D.12 we get 2 cos2(k0θ1) ≤ 1, so k0θ1 ≤ 3π
4 , which means

that

θ1 ≤
3π

4k0
<

3π

8
. (301)

Thus,

|w11| = | cos θ1| > cos
3π

8
. (302)

Besides, from (245) and lemma D.12 we know that 2 cos2 θ1 ≤ 1, so θ1 ≥ π
4 , which means that

k0θ1 > 2 · π
4
=
π

2
. (303)

Using (301) and (303),
w11 = w12 = − cos(k0θ1) > 0 (304)
w21 = w22 = − cos θ1 < 0. (305)

From lemma D.4, we conclude that
〈w1, w2〉 = w11 · w21 + w12 · w22 + w13 · w23 < 0, (306)

which means that

θw1,w2
>
π

2
. (307)

Thus,

zT∇2
Rfz ≤ −

1√
1− cos2 3π

8

− 1 +

(
3 +

1

3
− 2

)(
π − π

2

)
(308)

= − 4
√
2− 1 +

2π

3
(309)

< 0. (310)

In a word, for every critical point (w1, w2) outside span{w∗1 , w∗2}, there is negative curvature.
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E 2D CASES WITH ASSUMPTION RELAXATION

Since this section is pretty similar to B, I will try my best to make it brief and point out the most
important things in the proof.

E.1 PRELIMINARIES

After the changing of variables(i.e., polar coordinates), we know that w1 = (cos θ1, sin θ1) and w2 =

(cos θ2, sin θ2). And the manifold gradient(expressed by m) are m(w1) = sin θ1
∂f
∂w11

− cos θ1
∂f
∂w12

and m(w2) = sin θ2
∂f
∂w21

− cos θ2
∂f
∂w22

.

Applying the changing of variables and multiply it by π, we get
m(w1) = (π − θw1,w2

) sin(θ1 − θ2) + (π − θw1,w∗2
) sin(α− θ1)− (π − θw1,w∗1

) sin θ1. (311)
And
m(w2) = (π − θw1,w2

) sin(θ2 − θ1) + (π − θw2,w∗2
) sin(α− θ2)− (π − θw2,w∗1

) sin θ2. (312)
Define(where w = (cos θ, sin θ))

h(θ) = (π − θw,w∗2 ) sin(α− θ)− (π − θw,w∗1 ) sin θ. (313)
Then when θ is in the first part to the fourth part, the function h will change to four different functions:

h1(θ) = (π − α+ θ) sin(α− θ)− (π − θ) sin θ (314)
h2(θ) = (π − θ + α) sin(α− θ)− (π − θ) sin θ (315)
h3(θ) = (π − θ + α) sin(α− θ)− (θ − π) sin θ (316)
h4(θ) = (θ − α− π) sin(α− θ)− (π − θ) sin θ. (317)

WLOG, we assume θ1 ≤ θ2.

E.2 0 ≤ θ1 ≤ θ2 ≤ α

First, it’s easy to verify that ∀θ ∈ [0, θ], h1(θ) + h1(α− θ) = 0.

Besides,
h′1(θ) = sin θ + sin(α− θ)− (π − θ) cos θ − (π − α+ θ) cos(α− θ) (318)

= 2 sin
α

2
cos(θ − α

2
)− (π − θ) cos θ − (π − α+ θ) cos(α− θ) (319)

≤ 2 sin
α

2
− π

2
(cos θ + cos(α− θ)) (320)

= 2 sin
α

2
− π cos α

2
cos(θ − α

2
) (321)

≤ 2 sin
α

2
− π cos α

2
< 0. (322)

Whenm(w1) = m(w2) = 0, we know that h1(θ1)+h1(θ2) = 0, and because of those two properties
above, we know that θ1 + θ2 = α. Thus, θ1 ∈ [0, α2 ]. And we have the following lemma
Lemma E.1. m(w1) ≤ 0.

Proof.
m(w1) = sin(α− 2θ1)(π − α+ 2θ1)− (π − α+ θ1) sin(α− θ1) + (π − θ1) sin θ1 (323)

≥ sin(α− 2θ1)(π − α+ θ1)− (π − α+ θ1) sin(α− θ1) + (π − θ1) sin θ1 (324)

≥ sin(α− 2θ1)(π − α+ θ1)− (π − α+ θ1) sin(α− θ1) + (π − α

2
) sin θ1 (325)

= (π − α+ θ1)(sin(α− 2θ1)− sin(α− θ1)) + (π − α

2
) sin θ1 (326)

≥ (π − α

2
)(sin(α− 2θ1)− sin(α− θ1) + sin θ1) (327)

= (π − α

2
)(sin(α− 2θ1)− sin θ1 − sin θ1 cos(α− 2θ1)− cos θ1 sin(α− 2θ1)) (328)

≥ 0. (329)
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Thus, the only possible critical points are m(w1) = 0, which are 0 and α
2 . After verification,

we conclude that there are only two critical points in this case: (θ1, θ2) = (0, α) or (θ1, θ2) =
(α2 ,

α
2 ).

E.3 α ≤ θ1 ≤ θ2 ≤ π

When m(w1) = m(w2) = 0, we know that h1(θ1) + h1(θ2) = 0. However, when θ ∈ [α, π], we
know that

h2(θ) = (π − θ + α) sin(α− θ)− (π − θ) sin θ ≤ 0. (330)

The inequality cannot become equal because the possible values of θs such that each term equals
zero has no intersection. Thus, h2(θ) is always negative, which means that in this case there are no
critical points.

E.4 π ≤ θ1 ≤ θ2 ≤ π + α

It’s easy to verify that ∀θ ∈ [π, π + α], h3(θ) + h3(2π + α− θ) = 0. Furthermore,

h′3(θ) = − sin(α− θ)− cos(α− θ)(π + α− θ)− sin θ − (θ − π) cos θ (331)

= −2 sin α
2
cos(θ − α

2
)− (θ − π) cos θ − (π + α− θ) cos(α− θ) (332)

> 0. (333)

Thus, from m(w1) = m(w2) = 0, we know that h1(θ1) + h1(θ2) = 0 we get θ1 + θ2 = 2π + α,
which means that θ1 ∈ [π, π + α

2 ], so we can prove the following lemma:
Lemma E.2. m(w1) ≤ 0.

Proof. Let θ′ = θ1 − π, then

m(w1) = (π − θ2 + θ1) sin(θ1 − θ2) + h3(θ1) (334)

= (π + θ′ − α+ θ′) sin(2θ′ − α) + h1(θ
′) + π sin θ′ − π sin(α− θ′) (335)

≤ (π + 2θ′ − α) sin(2θ′ − α) + sin(α− 2θ′)(π + 2θ′ − α) + π(sin θ′ − sin(α− θ′))
(336)

≤ π(sin θ′ − cos θ′) (337)
≤ 0. (338)

The first inequality is from lemma E.1.

Thus, the only possible critical points are m(w1) = 0, which are π and π + α
2 . After verification,

we conclude that there are only two critical points in this case: (θ1, θ2) = (π, π + α) or (θ1, θ2) =
(π + α

2 , π + α
2 ).
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