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ABSTRACT

We introduce causal implicit generative models (CiGMs): models that allow sam-
pling from not only the true observational but also the true interventional distri-
butions. We show that adversarial training can be used to learn a CiGM, if the
generator architecture is structured based on a given causal graph. We consider the
application of conditional and interventional sampling of face images with binary
feature labels, such as mustache, young. We preserve the dependency structure
between the labels with a given causal graph. We devise a two-stage procedure
for learning a CiGM over the labels and the image. First we train a CiGM over
the binary labels using a Wasserstein GAN where the generator neural network
is consistent with the causal graph between the labels. Later, we combine this
with a conditional GAN to generate images conditioned on the binary labels. We
propose two new conditional GAN architectures: CausalGAN and CausalBEGAN.
We show that the optimal generator of the CausalGAN, given the labels, samples
from the image distributions conditioned on these labels. The conditional GAN
combined with a trained CiGM for the labels is then a CiGM over the labels and the
generated image. We show that the proposed architectures can be used to sample
from observational and interventional image distributions, even for interventions
which do not naturally occur in the dataset.

1 INTRODUCTION

An implicit generative model (Mohamed & Lakshminarayanan (2016)) is a mechanism that can sam-
ple from a probability distribution without an explicit parameterization of the likelihood. Generative
adversarial networks (GANs) arguably provide one of the most successful ways to train implicit
generative models. GANs are neural generative models that can be trained using backpropagation
to sample from very high dimensional nonparametric distributions (Goodfellow et al. (2014)). A
generator network models the sampling process through feedforward computation given a noise
vector. The generator output is constrained and refined through feedback by a competitive adversary
network, called the discriminator, that attempts to distinguish between the generated and real samples.
The objective of the generator is to maximize the loss of the discriminator (convince the discriminator
that it outputs samples from the real data distribution). GANs have shown tremendous success in
generating samples from distributions such as image and video (Vondrick et al. (2016)).

An extension of GANs is to enable sampling from the class conditional data distributions by feeding
class labels to the generator alongside the noise vectors. Various neural network architectures have
been proposed for solving this problem (Mirza & Osindero (2014); Odena et al. (2016); Antipov et al.
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(a) Top: Intervened on Bald=1. Bottom: Condi-
tioned on Bald = 1. Male→ Bald.

(b) Top: Intervened on Mustache=1. Bottom: Con-
ditioned on Mustache = 1. Male→Mustache.

Figure 1: Observational and interventional samples from CausalBEGAN. Our architecture can
be used to sample not only from the joint distribution (conditioned on a label) but also from the
interventional distribution, e.g., under the intervention do(Mustache = 1). The two distributions
are clearly different since P(Male = 1|Mustache = 1) = 1 and P(Bald = 1|Male = 0) = 0 in
the data distribution P.

(2017)). However, these architectures do not capture the dependence between the labels. Therefore,
they do not have a mechanism to sample images given a subset of the labels, since they cannot sample
the remaining labels. In this paper, we are interested in extending the previous work on conditional
image generation by i) capturing the dependence between labels and ii) capturing the causal effect
between labels. We can think of conditional image generation as a causal process: Labels determine
the image distribution. The generator is a non-deterministic mapping from labels to images. This is
consistent with the causal graph "Labels cause the Image", denoted by L→ I , where L is the random
vector for labels and I is the image random variable. Using a finer model, we can also include the
causal graph between the labels, if available.

As an example, consider the causal graph between Gender (G) and Mustache (M ) labels. The causal
relation is clearly Gender causes Mustache, denoted by the graph G→M . Conditioning on Gender
= male, we expect to see males with or without mustaches, based on the fraction of males with
mustaches in the population. When we condition on Mustache = 1, we expect to sample from males
only since the population does not contain females with mustaches. In addition to sampling from
conditional distributions, causal models allow us to sample from various different distributions called
interventional distributions. An intervention is an experiment that fixes the value of a variable in
a causal graph. This affects the distributions of the descendants of the intervened variable in the
graph. But unlike conditioning, it does not affect the distribution of its ancestors. For the same causal
graph, intervening on Mustache = 1 would not change the distribution of Gender. Accordingly, the
label combination (Gender = female, Mustache = 1) would appear as often as Gender = female after
the intervention. Please see Figure 1 for some of our conditional and interventional samples, which
illustrate this concept on the Bald and Mustache variables.

In this work we propose causal implicit generative models (CiGM): mechanisms that can sample
not only from the correct joint probability distributions but also from the correct conditional and
interventional probability distributions. Our objective is not to learn the causal graph: we assume
that the true causal graph is given to us. We show that when the generator structure inherits its neural
connections from the causal graph, GANs can be used to train causal implicit generative models. We
use Wasserstein GAN (WGAN) (Arjovsky et al. (2017)) to train a CiGM for binary image labels, as
the first step of a two-step procedure for training a CiGM for the images and image labels. For the
second step, we propose two novel conditional GANs called CausalGAN and CausalBEGAN. We
show that the optimal generator of CausalGAN can sample from the true conditional distributions
(see Theorem 1).

We show that combining CausalGAN with a CiGM on the labels yields a CiGM on the labels and the
image, which is formalized in Corollary 1 in Section 5. Our contributions are as follows:

• We observe that adversarial training can be used after structuring the generator architecture
based on the causal graph to train a CiGM. We empirically show that WGAN can be used to
learn a CiGM that outputs essentially discrete1 labels, creating a CiGM for binary labels.
• We consider the problem of conditional and interventional sampling of images given a

causal graph over binary labels. We propose a two-stage procedure to train a CiGM over the
binary labels and the image. As part of this procedure, we propose a novel conditional GAN

1Each of the generated labels is sharply concentrated around 0 or 1 (Please see Figure 11a in the Appendix).
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architecture and loss function. We show that the global optimal generator provably samples
from the class conditional distributions.
• We propose a natural but nontrivial extension of BEGAN to accept labels: using the same

motivations for margins as in BEGAN (Berthelot et al. (2017)), we arrive at a "margin
of margins" term. We show empirically that this model, which we call CausalBEGAN,
produces high quality images that capture the image labels.
• We evaluate our CiGM training framework on the labeled CelebA data (Liu et al. (2015)).

We empirically show that CausalGAN and CausalBEGAN can produce label-consistent
images even for label combinations realized under interventions that never occur during
training, e.g., "woman with mustache"2.

2 RELATED WORK

Using a GAN conditioned on the image labels has been proposed before: In Mirza & Osindero
(2014), authors propose conditional GAN (CGAN): They extend generative adversarial networks
to the setting where there is extra information, such as labels. Image labels are given to both the
generator and the discriminator. In Odena et al. (2016), authors propose ACGAN: Instead of receiving
the labels as input, the discriminator is now tasked with estimating the label. In Sricharan et al.
(2017), the authors compare the performance of CGAN and ACGAN and propose an extension to the
semi-supervised setting. In Chen et al. (2016), authors propose a new architecture called InfoGAN,
which attempts to maximize a variational lower bound of mutual information between the inputs
given to the generator and the image. To the best of our knowledge, the existing conditional GANs
do not allow sampling from label combinations that do not appear in the dataset (Sricharan (2017)).

BiGAN (Donahue et al. (2017b)) and ALI (Dumoulin et al. (2017)) extend the standard GAN
framework by also learning a mapping from the image space to a latent space. In CoGAN (Liu &
Oncel (2016)) the authors learn a joint distribution over an image and its binary label by enforcing
weight sharing between generators and discriminators. SD-GAN (Donahue et al. (2017a)) is a similar
architecture which splits the latent space into "Identity" and "Observation" portions. To generate
faces of the same person, one can then fix the identity portion of the latent code. If we consider the
"Identity" and "Observation" codes to be the labels then SD-GAN can be seen as an extension of
BEGAN to labels. This is, to the best of our knowledge, the only extension of BEGAN to accept
labels before CausalBEGAN. It is not trivial to extend CoGAN and SD-GAN to more than two labels.
Authors in Antipov et al. (2017) use CGAN of Mirza & Osindero (2014) with a one-hot encoded
vector that encodes the age interval. A generator conditioned on this one-hot vector can then be
used for changing the age attribute of a face image. Another application of generative models is in
compressed sensing: Authors in Bora et al. (2017) give compressed sensing guarantees for recovering
a vector, if the data lies close to the output of a trained generative model.

Using causal principles for deep learning and using deep learning techniques for causal inference has
been recently gaining attention. In Lopez-Paz & Oquab (2016), the authors observe the connection
between GAN layers, and structural equation models. Based on this observation, they use CGAN
(Mirza & Osindero (2014)) to learn the causal direction between two variables from a dataset. In
Lopez-Paz et al. (2017), the authors propose using a neural network in order to discover the causal
relation between image class labels based on static images. In Bahadori et al. (2017), authors propose
a new regularization for training a neural network, which they call causal regularization, in order to
assure that the model is predictive in a causal sense. In a very recent work Besserve et al. (2017),
authors point out the connection of GANs to causal generative models. However they see image as a
cause of the neural net weights, and do not use labels. In an independent parallel work, authors in
Goudet et al. (2017) propose using neural networks for learning causal graphs. Similar to us, they
also use neural connections to mimic structural equations, but for learning the causal graph.

3 CAUSALITY BACKGROUND

In this section, we give a brief introduction to causality. Specifically, we use Pearl’s framework (Pearl
(2009)), i.e., structural causal models (SCMs), which uses structural equations and directed acyclic
graphs between random variables to represent a causal model.

2This observation is not supported by theory since the distribution over the labels is not strictly positive.
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Consider two random variables X,Y . Within the SCM framework and under the causal sufficiency
assumption3, X causes Y means that there exists a function f and some unobserved random variable
E, independent from X , such that the value of Y is determined based on the values of X and E
through the function f , i.e., Y = f(X,E). Unobserved variables are also called exogenous. The
causal graph that represents this relation is X → Y . In general, a causal graph is a directed acyclic
graph implied by the structural equations: The parents of a node Xi in the causal graph, shown by
Pai, represent the causes of that variable. The causal graph can be constructed from the structural
equations as follows: The parents of a variable are those that appear in the structural equation that
determines the value of that variable.

Formally, a structural causal model is a tupleM = (V, E ,F ,PE(.)) that contains a set of functions
F = {f1, f2, . . . , fn}, a set of random variables V = {X1, X2, . . . , Xn}, a set of exogenous random
variables E = {E1, E2, . . . , En}, and a product probability distribution over the exogenous variables
PE . The set of observable variables V has a joint distribution implied by the distribution of E , and the
functional relations F . The causal graph D is then the directed acyclic graph on the nodes V , such
that a nodeXj is a parent of nodeXi if and only ifXj is in the domain of fi, i.e.,Xi = fi(Xj , S, Ei),
for some S ⊂ V . See the Appendix for more details.

An intervention is an operation that changes the underlying causal mechanism, hence the corre-
sponding causal graph. An intervention on Xi is denoted as do(Xi = xi). It is different from
conditioning on Xi in the following way: An intervention removes the connections of node Xi to its
parents, whereas conditioning does not change the causal graph from which data is sampled. The
interpretation is that, for example, if we set the value of Xi to 1, then it is no longer determined
through the function fi(Pai, Ei). An intervention on a set of nodes is defined similarly. The joint
distribution over the variables after an intervention (post-interventional distribution) can be calculated
as follows: Since D is a Bayesian network for the joint distribution, the observational distribution
can be factorized as P(x1, x2, . . . xn) =

∏
i∈[n] P(xi|Pai), where the nodes in Pai are assigned

to the corresponding values in {xi}i∈[n]. After an intervention on a set of nodes XS := {Xi}i∈S ,
i.e., do(XS = s), the post-interventional distribution is given by

∏
i∈[n]\S P(xi|PaSi ), where PaSi

represents the following assignment: Xj = xj for Xj ∈ Pai if j /∈ S and Xj = s(j) if j ∈ S4.

In general it is not possible to identify the true causal graph for a set of variables without performing
experiments or making additional assumptions. This is because there are multiple causal graphs that
allow the same joint probability distribution even for two variables (Spirtes et al. (2001)). This paper
does not address the problem of learning the causal graph: We assume that the causal graph is given
to us, and we learn a causal model, i.e., the functions comprising the structural equations for some
choice of exogenous variables5. There is significant prior work on learning causal graphs that could
be used before our method (Spirtes et al. (2001); Heckerman (1995); Chickering (2002); Hoyer et al.
(2008); Hyttinen et al. (2013); Hauser & Bühlmann (2014); Shanmugam et al. (2015); Lopez-Paz
et al. (2015); Peters et al. (2016); Etesami & Kiyavash (2016); Quinn et al. (2015); Kocaoglu et al.
(2017b;a)). When the true causal graph is unknown using a Bayesian network that respects the
conditional independences in the data allows us to sample from the correct observational distributions.
We explore the effect of the used Bayesian network in Section 8.10, 8.11.

4 CAUSAL IMPLICIT GENERATIVE MODELS

Implicit generative models can sample from the data distribution. However they do not provide the
functionality to sample from interventional distributions. We propose causal implicit generative
models, which provide a way to sample from both observational and interventional distributions.

We show that generative adversarial networks can also be used for training causal implicit generative
models. Consider the simple causal graph X → Z ← Y . Under the causal sufficiency assumption,
this model can be written asX = fX(EX), Y = fY (EY ), Z = fZ(X,Y,EZ), where fX , fY , fZ are
some functions and EX , EY , EZ are jointly independent variables. The following simple observation

3In a causally sufficient system, every unobserved variable affects not more than a single observed variable.
4With slight abuse of notation, we use s(j) to represent the value assigned to variable Xj by the intervention

rather than the jth coordinate of s.
5Even when the causal graph is given, there will be many different sets of functions and exogenous noise

distributions that explain the observed joint distribution for that causal graph. We are learning one such model.
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(a) Naive feedforward generator architecture
and the causal graph it represents.

NX Feed Forward NN

X

NY Feed Forward NN
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NZ Feed Forward NN

Z

(b) Generator neural network ar-
chitecture that represent the causal
graph X → Z ← Y .

Figure 2: (a) The causal graph implied by the naive feedforward generator architecture. (b) A neural
network implementation of the causal graph X → Z ← Y : Each feed forward neural net captures
the function f in the structural equation model V = f(PaV , E).

is useful: In the GAN training framework, generator neural network connections can be arranged to
reflect the causal graph structure. Please see Figure 2b for this architecture. The feedforward neural
networks can be used to represent the functions fX , fY , fZ . The noise terms (NX , NY , NZ) can be
chosen as independent, complying with the condition that (EX , EY , EZ) are jointly independent.
Note that although we do not know the distributions of the exogenous variables, for a rich enough
function class, we can use Gaussian distributed variables (Mooij et al. (2010)) NX , NY , NZ . Hence
this feedforward neural network can be used to represents the causal models with graphX → Z ← Y .

The following proposition is well known in the causality literature. It shows that given the true causal
graph, two causal models that have the same observational distribution have the same interventional
distributions for any intervention. PV and QV stands for the distributions induced on the set of
variables in V by PN1

and QN2
, respectively.

Proposition 1. LetM1 = (D1 = (V,E), N1,F1,PN1
(.)),M2 = (D2 = (V,E), N2,F2,QN2

(.))
be two causal models, where PN1

(.),QN2
(.) are strictly positive densities. If PV (.) = QV (.), then

PV (.|do(S)) = QV (.|do(S))

We have the following definition, which ties a feedforward neural network with a causal graph:
Definition 1. Let Z = {Z1, Z2, . . . , Zm} be a set of mutually independent random variables. A
feedforward neural networkG that outputs the vectorG(Z) = [G1(Z), G2(Z), . . . , Gn(Z)] is called
consistent with a causal graph D = ([n], E), if ∀i ∈ [n], ∃ a set of feedforward layers fi such that
Gi(Z) can be written as Gi(Z) = fi({Gj(Z)}j∈Pai , ZSi), where Pai are the set of parents of i in
D, and ZSi

:= {Zj : j ∈ Si} are collections of subsets of Z such that {Si : i ∈ [n]} is a partition
of [m].

Based on the definition, we can define causal implicit generative models as follows:
Definition 2 (CiGM). A feedforward neural network G with output

G(Z) = [G1(Z), G2(Z), . . . , Gn(Z)], (1)

is called a causal implicit generative model for the causal modelM = (D = ([n], E), N,F ,PN (.))
if G is consistent with the causal graph D and P(G(Z) = x) = P[n](x) > 0,∀x.

We propose using adversarial training where the generator neural network is consistent with the
causal graph according to Definition 1, which is explained in the next section.

5 CAUSAL GENERATIVE ADVERSARIAL NETWORKS

CiGMs can be trained with samples from a joint distribution given the causal graph between the
variables. However, for the application of image generation with binary labels, we found it difficult
to simultaneously learn the joint label and image distribution6. For this application, we focus on

6Please see the Section 8.16 in the Appendix for our primitive result using this naive attempt.
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Figure 3: CausalGAN architecture: Causal controller is a pretrained causal implicit generative model
for the image labels. Labeler is trained on the real data, Anti-Labeler is trained on generated data.
Generator minimizes Labeler loss and maximizes Anti-Labeler loss.

dividing the task of learning a CiGM into two subtasks: First, we train a generative model over the
labels, then train a generative model for the images conditioned on the labels. For this training to be
consistent with the causal structure, we assume that the image node is always the sink node of the
causal graph for image generation problems (Please see Figure 8 in Appendix). As we show next,
our new architecture and loss function (CausalGAN) assures that the optimum generator outputs the
label conditioned image distributions, under the assumption that the joint probability distribution over
the labels is strictly positive7. Then for a strictly positive joint distribution between labels and the
image, combining CiGM for only the labels with a label-conditioned image generator gives a CiGM
for images and labels (see Corollary 1).

5.1 CAUSAL CONTROLLER

First we describe the adversarial training of a CiGM for binary labels. This generative model, which
we call the Causal Controller, will be used for controlling which distribution the images will be
sampled from when intervened or conditioned on a set of labels. As in Section 4, we structure
the Causal Controller network to sequentially produce labels according to the causal graph. Since
our theoretical results hold for binary labels, we prefer a generator which can sample from an
essentially discrete label distribution8. However, the standard GAN training is not suited for learning
a discrete distribution, since Jensen-Shannon divergence requires the support to be the same for giving
meaningful gradients, which is harder with discrete data distributions. To be able to sample from a
discrete distribution, we employ WGAN (Arjovsky et al. (2017)). We used the model of Gulrajani
et al. (2017), where the Lipschitz constraint on the gradient is replaced by a penalty term in the loss.

5.2 CAUSALGAN

5.2.1 ARCHITECTURE

As part of the two-step process proposed in Section 4 for learning a CiGM over the labels and the
image variables, we design a new conditional GAN architecture to generate the images based on the
labels of the Causal Controller. Unlike previous work, our new architecture and loss function assures
that the optimum generator outputs the label conditioned image distributions. We use a pretrained
Causal Controller which is not further updated.

Labeler and Anti-Labeler: We have two separate labeler neural networks. The Labeler is trained to
estimate the labels of images in the dataset. The Anti-Labeler is trained to estimate the labels of the
images sampled from the generator, where image labels are those produced by the Causal Controller.

Generator: The objective of the generator is 3-fold: producing realistic images by competing with
the discriminator, producing images consistent with the labels by minimizing the Labeler loss and
avoiding unrealistic image distributions that are easy to label by maximizing the Anti-Labeler loss.

The most important distinction of CausalGAN with the existing conditional GAN architectures is that
it uses an Anti-Labeler network in addition to a Labeler network. Notice that the theoretical guarantee

7This assumption does not hold in the CelebA dataset: P(Male = 0,Mustache = 1) = 0. However, we
will see that the trained model is able to extrapolate to these interventional distributions.

8Ignoring the theoretical considerations, adding noise to transform the labels artificially into continuous
targets also works. However we observed better empirical convergence with this technique.
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we develop in Section 5.2.3 does not hold without the Anti-Labeler. Intuitively, the Anti-Labeler
loss discourages the generator network to output only few typical faces for a fixed label combination.
This is a phenomenon that we call label-conditioned mode collapse. Minibatch-features are one
of the most popular techniques used to avoid mode-collapse (Salimans et al. (2016)). However,
the diversity within a batch of images due to different label combinations can make this approach
ineffective for combating label-conditioned mode collapse. This effect is most prominent for rare
label combinations. In general, using Anti-Labeler helps with faster convergence. Please see Section
9.4 in the Appendix for results.

5.2.2 LOSS FUNCTIONS

We present the results for a single binary label l. The results can be extended to more labels. For
a single binary label l and the image x, we use Pr(l, x) for the data distribution between the image
and the labels. Similarly Pg(l, x) denotes the joint distribution between the labels given to the
generator and the generated images. In our analysis we assume a perfect Causal Controller9 and use
the shorthand Pg(l = 1) = Pr(l = 1) = ρ = 1 − ρ̄. Let G(.), D(.), DLR(.), and DLG(.) are the
mappings due to generator, discriminator, Labeler, and Anti-Labeler respectively.

The generator loss function of CausalGAN contains label loss terms, the GAN loss in Goodfellow
et al. (2014), and an added loss term due to the discriminator. With the addition of this term to the
generator loss, we are able to prove that the optimal generator outputs the class conditional image
distribution. This result is also true for multiple binary labels, which is shown in the Appendix.

For a fixed generator, Anti-Labeler solves the following optimization problem:

max
DLG

ρEx∼Pg(x|l=1) [log(DLG(x))] + ρ̄Ex∼Pg(x|l=0) [log(1−DLG(x)] . (2)

The Labeler solves the following optimization problem:

max
DLR

ρEx∼Pr(x|l=1) [log(DLR(x))] + ρ̄Ex∼Pr(x|l=0) [log(1−DLR(x)] . (3)

For a fixed generator, the discriminator solves the following optimization problem:

max
D

E(l,x)∼Pr(l,x) [log(D(x))] + E(l,x)∼Pg(l,x) [log (1−D(x))] . (4)

For a fixed discriminator, Labeler and Anti-Labeler, the generator solves the following problem:

min
G

E(l,x)∼Pg(l,x)

[
log

(
1−D(x)

D(x)

)]
− ρEx∼Pg(x|l=1) [log(DLR(X))]

− ρ̄Ex∼Pg(x|l=0) [log(1−DLR(X))] + ρEx∼Pg(x|l=1) [log(DLG(X))]

+ ρ̄Ex∼Pg(x|l=0) [log(1−DLG(X))] . (5)

5.2.3 THEORETICAL GUARANTEES

We show that the best CausalGAN generator for the given loss function samples from the class
conditional image distribution when Causal Controller samples from the true label distribution and
the discriminator and labeler networks always operate at their optimum. We show this result for
the case of a single binary label l ∈ {0, 1}. The proof can be extended to multiple binary variables,
which is given in the Appendix. As far as we are aware of, this is the only conditional generative
adversarial network architecture with this guarantee after CGAN10.

First, we find the optimal discriminator for a fixed generator. Note that in (4), the terms that the
discriminator can optimize are the same as the GAN loss in Goodfellow et al. (2014). Hence the
optimal discriminator behaves the same. To characterize the optimum discriminator, labeler and
anti-labeler, we have Proposition 2, Lemma 1 and Lemma 2 given in the appendix.

Let C(G) be the generator loss for when the discriminator, Labeler and Anti-Labeler are at the
optimum. Then the generator that minimizes C(G) samples from the class conditional distributions:

9Even for multiple labels, we observe convergence in total variation distance. Please see Figure 11b.
10CGAN (Mirza & Osindero (2014)) can be shown to have the same guarantee. The difference of our

architecture is that we do not feed image labels to the discriminator.
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Theorem 1. Assume Pg(l) = Pr(l). Then the global minimum of the virtual training criterion C(G)
is achieved if and only if Pg(l, x) = Pr(l, x), i.e., if and only if given a label l, generator output
G(z, l) has the same distribution as the class conditional image distribution Pr(x|l).

Now we can show that our two stage procedure can be used to train a causal implicit generative model
for any causal graph where the Image variable is a sink node, captured by the following corollary.
L, I,Z1,Z2 represent the space of labels, images, and noise variables, respectively.
Corollary 1. Suppose C : Z1 → L is a causal implicit generative model for the causal
graph D = (V, E) where V is the set of image labels and the observational joint distribu-
tion over these labels are strictly positive. Let G : L × Z2 → I be a generator that can
sample from the image distribution conditioned on the given label combination L ∈ L. Then
G(C(Z1), Z2) is a causal implicit generative model for the causal graph D′ = (V ∪ {Image}, E ∪
{(V1, Image), (V2, Image), . . . (Vn, Image)}).

In Theorem 1 we show that the optimum generator samples from the class conditional distributions
given a single binary label. Our objective is to extend this result to the case with d binary labels.
First we show that if the Labeler and Anti-Labeler are trained to output 2d scalars, each interpreted
as the posterior probability of a particular label combination given the image, then the minimizer
of C(G) samples from the class conditional distributions given d labels. This result is shown in
Theorem 2 in the appendix. However, when d is large, this architecture may be hard to implement.
To resolve this, we propose an alternative architecture, which we implement for our experiments: We
extend the single binary label setup and use cross entropy loss terms for each label. This requires
Labeler and Anti-Labeler to have only d outputs. However, although we need the generator to capture
the joint label posterior given the image, this only assures that the generator captures each label’s
posterior distribution, i.e., Pr(li|x) = Pg(li|x) (Proposition 3). This, in general, does not guarantee
that the class conditional distributions will be true to the data distribution. However, for many joint
distributions of practical interest, where the set of labels are completely determined by the image11,
we show that this guarantee implies that the joint label posterior will be true to the data distribution,
implying that the optimum generator samples from the class conditional distributions. Please see
Section 8.7 for the formal results and more details.

Remark: Note that the trained causal implicit generative models can also be used to sample from
the counterfactual distributions if the exogenous noise terms are known. Counterfactual sampling
require conditioning on an event and sampling from the push-forward of the posterior distributions of
the exogenous noise terms under the interventional causal graph due to a possible intervention. This
can be done through rejection sampling to observe the evidence, holding the exogenous noise terms
consistent with the observed evidence and interventional sampling afterwards.

5.3 CAUSALBEGAN

In this section, we sketch a simple, but non-trivial extension of BEGAN where we feed image labels
to the generator, leaving the details to the Appendix (Section 8.8). To accommodate interventional
sampling, we again use the Causal Controller to produce labels.

In terms of architecture modifications, we use a Labeler network with a dual purpose: to label real
images well and generated images poorly. This network can be seen as both analogous to the original
two-roled BEGAN discriminator and analogous to the CausalGAN Labeler and Anti-Labeler.

In terms of margin modifications, we are motivated by the following observations: (1) Just as a better
trained BEGAN discriminator creates more useful gradients for image quality, (2) a better trained
Labeler is a prerequisite for meaningful gradients for label quality. Finally, (3) label gradients are
most informative when the image quality is high. Each observation suggests a margin term; the final
observation suggests a (necessary) margin of margins term comparing the first two margins.

6 RESULTS

In this section, we train CausalGAN and CausalBEGAN on the CelebA Causal Graph given in Figure
8. For this, we first trained the Causal Controller (See Section 8.11 for Causal Controller results.) on

11The dataset we are using arguably satisfies this condition.
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the image labels of CelebA Causal Graph. Please see Section 9.2 for implementation details. The
results are given in Figures 4, 5 for CausalGAN and Figures 6, 7 for CausalBEGAN. The difference
between intervening and conditioning is clear through certain features. We implement conditioning
through rejection sampling. See Naesseth et al. (2017); Graham & Storkey (2017) for other works on
conditioning for implicit generative models.

Top: Intervene Mustache=1, Bottom: Condition Mustache=1

Figure 4: Intervening/Conditioning on Mustache label in CelebA Causal Graph with CausalGAN.
Since Male→Mustache in CelebA Causal Graph, we do not expect do(Mustache = 1) to affect
the probability of Male = 1, i.e., P(Male = 1|do(Mustache = 1)) = P(Male = 1) = 0.42.
Accordingly, the top row shows both males and females with mustaches, even though the generator
never sees the label combination {Male = 0,Mustache = 1} during training. The bottom row of
images sampled from the conditional distribution P(.|Mustache = 1) shows only male images.

Top: Intervene Mouth Slightly Open=1, Bottom: Condition Mouth Slightly Open=1

Figure 5: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal Graph with
CausalGAN. Since Smiling → MouthSlightlyOpen in CelebA Causal Graph, we do not ex-
pect do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However on the bottom row, condi-
tioning on Mouth Slightly Open = 1 increases the proportion of smiling images (From 0.48 to 0.76
in the dataset), although 10 images may not be enough to show this difference statistically.

Top: Intervene Mustache=1, Bottom: Condition Mustache=1

Figure 6: Intervening/Conditioning on Mustache label in CelebA Causal Graph with CausalBEGAN.
Since Male→Mustache in CelebA Causal Graph, we do not expect do(Mustache = 1) to affect
the probability of Male = 1, i.e., P(Male = 1|do(Mustache = 1)) = P(Male = 1) = 0.42.
Accordingly, the top row shows both males and females with mustaches, even though the generator
never sees the label combination {Male = 0,Mustache = 1} during training. The bottom row of
images sampled from the conditional distribution P(.|Mustache = 1) shows only male images.

7 CONCLUSION

We proposed a novel generative model with label inputs. In addition to being able to create samples
conditioned on labels, our generative model can also sample from the interventional distributions. Our
theoretical analysis provides provable guarantees about correct sampling under such interventions.

9
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Top: Intervene Narrow Eyes=1, Bottom: Condition Narrow Eyes=1

Figure 7: Intervening/Conditioning on Narrow Eyes label in CelebA Causal Graph with
CausalBEGAN. Since Smiling → Narrow Eyes in CelebA Causal Graph, we do not ex-
pect do(Narrow Eyes = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Narrow Eyes = 1)) = P(Smiling = 1) = 0.48. However on the bottom row, condition-
ing on Narrow Eyes = 1 increases the proportion of smiling images (From 0.48 to 0.59 in the
dataset), although 10 images may not be enough to show this difference statistically. As a rare
artifact, in the dark image in the third column the generator appears to rule out the possibility of
Narrow Eyes = 0 instead of demonstrating Narrow Eyes = 1.

Causality leads to generative models that are more creative since they can produce samples that are
different from their training samples in multiple ways. We have illustrated this point for two models
(CausalGAN and CausalBEGAN).
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8 APPENDIX

8.1 CAUSALITY BACKGROUND

Formally, a structural causal model is a tupleM = (V, E ,F ,PE(.)) that contains a set of functions
F = {f1, f2, . . . , fn}, a set of random variables V = {X1, X2, . . . , Xn}, a set of exogenous random
variables E = {E1, E2, . . . , En}, and a probability distribution over the exogenous variables PE 12.
The set of observable variables V has a joint distribution implied by the distributions of E , and the
functional relations F . This distribution is the projection of PE onto the set of variables V and is
shown by PV . The causal graph D is then the directed acyclic graph on the nodes V , such that a node
Xj is a parent of node Xi if and only if Xj is in the domain of fi, i.e., Xi = fi(Xj , S, Ei), for some
S ⊂ V . The set of parents of variable Xi is shown by Pai. D is then a Bayesian network for the
induced joint probability distribution over the observable variables V . We assume causal sufficiency:
Every exogenous variable is a direct parent of at most one observable variable.

8.2 PROOF OF PROPOSITION 1

Note that D1 and D2 are the same causal Bayesian networks Pearl (2009). Under the causal
sufficiency assumption, interventional distributions for causal Bayesian networks can be directly
calculated from the conditional probabilities and the causal graph. Thus,M1 andM2 have the same
interventional distributions.

8.3 HELPER LEMMAS FOR CAUSALGAN

In this section we use Pr(l, x) for the joint data distribution over a single binary label l and the image
x. We use Pg(l, x) for the joint distribution over the binary label l fed to the generator and the image
x produced by the generator. Later in Theorem 2, l is generalized to be a vector.

The following restates Proposition 1 from Goodfellow et al. (2014) as it applies to our discriminator:
Proposition 2 (Goodfellow et al. (2014)). For fixed G, the optimal discriminator D is given by

D∗G(x) =
Pr(x)

Pr(x) + Pg(x)
. (6)

Second, we identify the optimal Labeler and Anti-Labeler. We have the following lemma:
Lemma 1. The optimum Labeler has DLR(x) = Pr(l = 1|x).

Proof. The proof follows the same lines as in the proof for the optimal discriminator. Consider the
objective

ρEx∼Pr(x|l=1) [log(DLR(x))] + (1− ρ)Ex∼Pr(x|l=0) [log(1−DLR(x)]

=

∫
ρPr(x|l = 1) log(DLR(x)) + (1− ρ)Pr(x|l = 0) log(1−DLR(x))dx (7)

Since 0 < DLR < 1, DLR that maximizes (3) is given by

D∗LR(x) =
ρPr(x|l = 1)

Pr(x|l = 1)ρ+ Pr(x|l = 0)(1− ρ)
=
ρPr(x|l = 1)

Pr(x)
= Pr(l = 1|x) (8)

Similarly, we have the corresponding lemma for Anti-Labeler:
Lemma 2. For a fixed generator with x ∼ Pg(x), the optimum Anti-Labeler has DLG(x) = Pg(l =
1|x).

Proof. Proof is the same as the proof of Lemma 1.
12The definition provided here assumes causal sufficiency, i.e., there are no exogenous variables that affect

more than one observable variable. Under causal sufficiency, Pearl’s model assumes that the distribution over
the exogenous variables is a product distribution, i.e., exogenous variables are mutually independent.

13



Published as a conference paper at ICLR 2018

MaleYoung

BaldEye-
glasses

Narrow
Eyes

SmilingMustache Wearing 
Lipstick

Mouth 
Slightly 

Open

Image

Figure 8: The causal graph used for simulations for both CausalGAN and CausalBEGAN, called
CelebA Causal Graph (G1). We also add edges (see Appendix Section 8.10) to form the complete
graph "cG1". We also make use of the graph rcG1, which is obtained by reversing the direction of
every edge in cG1.

8.4 PROOF OF THEOREM 1

Theorem 1.
Define C(G) as the generator loss for when discriminator, Labeler and Anti-Labeler are at their
optimum. Assume Pg(l) = Pr(l), i.e., the Causal Controller samples from the true label distribution.
Then the global minimum of the virtual training criterion C(G) is achieved if and only if Pg(l, x) =
Pr(l, x), i.e., if and only if given a label l, generator output G(z, l) has the same distribution as the
class conditional image distribution Pr(x|l).

Proof. For a fixed generator, the optimum Labeler D∗LR, Anti-Labeler D∗LG, and discriminator D∗
obey the following relations by Prop 2, Lemma 1, and Lemma 2:

(1−D∗(x))/D∗(x) = Pg(x)/Pr(x)

D∗LR(x) = Pr(l = 1|x)

D∗LG(x) = Pg(l = 1|x).

(9)

Then substitution into the generator objective in (5) yields

C(G) = Ex∼pg(x)

[
log

(
1−D∗(x)

D∗(x)

)]
− ρEx∼p1

g(x)
[log(D∗LR(X))]− ρ̄Ex∼p0

g(x)
[log(1−D∗LR(X))]

+ ρEx∼p1
g(x)

[log(D∗LG(X))] + ρ̄Ex∼p0
g(x)

[log(1−D∗LG(X))]

= Ex∼pg(x)

[
log

(
Pg(x)

Pr(x)

)]
− E(l,x)∼Pg(l,x) [log(Pr(l|x))] + E(l,x)∼Pg(l,x) [log(Pg(l|x))]

(10)

= E(l,x)∼Pg(l,x)

[
log

(
Pg(x)

Pr(x)

)
+ log(Pg(l|x))− log(Pr(l|x))

]
= E(l,x)∼Pg(l,x)

[
log

(
Pg(l, x)

Pd(l, x)

)]
= KL(Pg ‖ Pd). (11)

where KL is the Kullback-Leibler divergence, which is minimized if and only if Pg = Pd jointly over
labels and images. (10) is due to the fact that Pr(l = 1) = Pg(l = 1) = ρ.

8.5 PROOF OF COROLLARY 1

Corollary 1. Suppose C : Z1 → L is a causal implicit generative model for the causal
graph D = (V, E) where V is the set of image labels and the observational joint distribu-
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tion over these labels are strictly positive. Let G : L × Z2 → I be a generator that can
sample from the image distribution conditioned on the given label combination L ∈ L. Then
G(C(Z1), Z2) is a causal implicit generative model for the causal graph D′ = (V ∪ {Image}, E ∪
{(V1, Image), (V2, Image), . . . (Vn, Image)}).

Proof. Since C is a causal implicit generative model for the causal graph D, by definition
it is consistent with the causal graph D. Since in a conditional GAN, generator G is given
the noise terms and the labels, it is easy to see that the concatenated generator neural net-
work G(C(Z1), Z2) is consistent with the causal graph D′, where D′ = (V ∪ {Image}, E ∪
{(V1, Image), (V2, Image), . . . (Vn, Image)}). Assume that C and G are perfect, i.e., they sam-
ple from the true label joint distribution and conditional image distribution. Then the joint dis-
tribution over the generated labels and image is the true distribution since P(Image, Label) =
P(Image|Label)P(Label). By Proposition 1, the concatenated model can sample from the true
observational and interventional distributions. Hence, the concatenated model is a causal implicit
generative model for graph D′.

8.6 CAUSALGAN ANALYSIS FOR MULTIPLE LABELS

In this section, we explain the modifications required to extend the proof to the case with multiple
binary labels. The central difficulty with generalizing to a vector of labels l = (lj)1≤j≤d is that each
labeler can only hope to learn about the posterior P(lj |x) for each j. This is in general insufficient to
characterize Pr(l|x) and therefore the generator can not hope to learn the correct joint distribution.
We show two solutions to this problem. (1) From a theoretical (but perhaps impractical) perspective
each labeler can be made to estimate the probability of each of the 2d label combinations instead of
each label. We do not adopt this in practice. (2) If in fact the label vector is a deterministic function
of the image (which seems likely for the present application), then using Labelers to estimate the
probabilities of each of the d labels is sufficient to assure Pg(l1, l2, . . . , ld, x) = Pr(l1, l2, . . . , ld, x)
at the minimizer of C(G). In this section, we present the extension in (1) and present the results of
(2) in Section 8.7.

Consider Figure 3 in the main text. The Labeler outputs the scalar DLR(x) given an image x.
Previously in Section 8.3 we showed that the optimum Labeler satisfies D∗LR(x) = Pr(l = 1|X = x)
for a single label. We first extend the Labeler objective as follows: Suppose we have d binary labels.
Then we allow the Labeler to output a 2d dimensional vector DLR(x), where DLR(x)[j] is the jth
coordinate of this vector. The Labeler then solves the following optimization problem:

max
DLR

2d∑
j=1

ρjEx∼Pr(x|l=j)log(DLR(x)[j]), (12)

where ρj = Pr(l = j). We have the following Lemma:

Lemma 3. Consider a Labeler DLR that outputs the 2d-dimensional vector DLR(x) such that∑2d

j=1DLR(x)[j] = 1, where x ∼ Pr(x, l). Then the optimum Labeler with respect to the loss in
(12) has D∗LR(x)[j] = Pr(l = j|x).

Proof. Suppose Pr(l = j|x) = 0 for a set of (label, image) combinations. Then Pr(x, l = j) = 0,
hence these label combinations do not contribute to the expectation. Thus, without loss of generality,
we can consider only the combinations with strictly positive probability. We can also restrict our
attention to the functionsDLR that are strictly positive on these (label,image) combinations; otherwise,
loss becomes infinite, and as we will show we can achieve a finite loss. Consider the vector DLR(x)
with coordinates DLR(x)[j] where j ∈ [2d]. Introduce the discrete random variable Zx ∈ [2d], where
P(Zx = j) = DLR(x)[j]. The Labeler loss can be written as

min−E(x,l)∼Pr(x,l) log(P(Zx = j)) (13)

= minEx∼Pr(x)KL(Lx ‖ Zx)−H(Lx), (14)

where Lx is the discrete random variable such that P(Lx = j) = Pr(l = j|x). H(Lx) is the
Shannon entropy of Lx, and it only depends on the data. Since KL divergence is greater than zero
and p(x) is always non-negative, the loss is lower bounded by −H(Lx). Notice that this minimum
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can be achieved by satisfying P(Zx = j) = Pr(l = j|x). Since KL divergence is minimized if
and only if the two random variables have the same distribution, this is the unique optimum, i.e.,
D∗LR(x)[j] = Pr(l = j|x).

The lemma above simply states that the optimum Labeler network will give the posterior probability
of a particular label combination, given the observed image. In practice, the constraint that the
coordinates sum to 1 could be satisfied by using a softmax function in the implementation. Next, we
have the corresponding loss function and lemma for the Anti-Labeler network. The Anti-Labeler
solves the following optimization problem

max
DLG

2d∑
j=1

ρjEPg(x|l=j)log(DLG(x)[j]), (15)

where Pg(x|l = j) := P(G(z, l) = x|l = j) and ρj = P(l = j). We have the following Lemma:

Lemma 4. The optimum Anti-Labeler has D∗LG(x)[j] = Pg(l = j|x).

Proof. The proof is the same as the proof of Lemma 3, since Anti-Labeler does not have control over
the joint distribution between the generated image and the labels given to the generator, and cannot
optimize the conditional entropy of labels given the image under this distribution.

For a fixed discriminator, Labeler and Anti-Labeler, the generator solves the following optimization
problem:

min
G

Ex∼pg(x)

[
log

(
1−D(x)

D(x)

)]

−
2d∑
j=1

ρjEx∼Pg(x|l=j) [log(DLR(X)[j])]

+

2d∑
j=1

ρjEx∼Pg(x|l=j) [log(DLG(X)[j])] . (16)

We then have the following theorem along the same lines as Theorem 1 showing that the optimal
generator samples from the class conditional image distributions given a particular label combination:

Theorem 2 (Theorem 1 formal for multiple binary labels). Define C(G) as the generator loss as in
Eqn. 16 when discriminator, Labeler and Anti-Labeler are at their optimum. Assume Pg(l) = Pr(l),
i.e., the Causal Controller samples from the true joint label distribution. The global minimum of the
virtual training criterion C(G) is achieved if and only if Pg(l, x) = Pr(l, x) for the vector of labels
l = {li}1≤i≤2d .

Proof. For a fixed generator, the optimum Labeler D∗LR, Anti-Labeler D∗LG, and discriminator D∗
obey the following relations by Prop 2, Lemma 3, and Lemma 4:

(1−D∗(x))/D∗(x) = Pg(x)/Pr(x)

D∗LR(x)[j] = Pr(l = j|x) ∀j
D∗LG(x)[j] = Pg(l = 1|x) ∀j.

(17)

Then substitution into the generator objective C(G) yields
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C(G) =

2d∑
j=1

ρjEx∼Pg(x|l=j)

[
log

(
Pg(x)

Pr(x)

)
+ log(Pg(l = j|x))− log(Pr(l = j|x))

]

=

2d∑
j=1

ρjEx∼Pg(x|l=j)

[
log

(
Pg(l = j, x)

Pr(l = j, x)

)]

= E(l,x)∼Pg(l,x)

[
log

(
Pg(l, x)

Pd(l, x)

)]
= KL(Pg ‖ Pd).

(18)

where KL is the Kullback-Leibler divergence, which is minimized if and only if Pg = Pd jointly over
labels and images.

8.7 CAUSALGAN EXTENSION TO d LABELS UNDER DETERMINISTIC LABELS

While the previous section showed how to ensure Pg(l, x) = Pr(l, x) by relabeling combinations of
a d binary labels as a 2d label, this may be difficult in practice for a large number of labels and we do
not adopt this approach in practice.

Instead, in this section, we provide the theoretical guarantees for the implemented CausalGAN
architecture with d labels under the assumption that the relationship between the image and its
labels is deterministic in the dataset, i.e., there is a deterministic function that maps an image to the
corresponding label vector. Later we show that this assumption is sufficient to gaurantee that the
global optimal generator samples from the class conditional distributions.

First, let us restate the loss functions more formally. Note that DLR(x), DLG(x) are d−dimensional
vectors. The Labeler solves the following optimization problem:

max
DLR

ρjEx∼Pr(x|lj=1) log(DLR(x)[j]) + (1− ρj)Ex∼Pr(x|lj=0) log(1−DLR(x)[j]). (19)

where Pr(x|lj = 0) := P(X = x|lj = 0), Pr(x|lj = 0) := P(X = x|lj = 0) and ρj = P(lj = 1).
For a fixed generator, the Anti-Labeler solves the following optimization problem:

max
DLG

ρjEPg(x|lj=1) log(DLG(x)[j]) + (1− ρj)EPg(x|lj=0) log(1−DLG(x)[j]), (20)

where Pg(x|lj = 0) := Pg(x|lj = 0), Pg(x|lj = 0) := Pg(x|lj = 0). For a fixed discriminator,
Labeler and Anti-Labeler, the generator solves the following optimization problem:

min
G

Ex∼pdata(x) [log(D(x))] + Ex∼pg(x)

[
log

(
1−D(x)

D(x)

)]
− 1

d

d∑
j=1

ρjEx∼Pg(x|lj=1) [log(DLR(X)[j])]− (1− ρj)Ex∼Pg(x|lj=0) [log(1−DLR(X)[j])]

+
1

d

d∑
j=1

ρjEx∼Pg(x|lj=1) [log(DLG(X)[j])] + (1− ρj)Ex∼Pg(x|lj=0) [log(1−DLG(X)[j])] .

(21)

We have the following proposition, which characterizes the optimum generator for optimum Labeler,
Anti-Labeler and Discriminator:

Proposition 3. Define C(G) as the generator loss for when discriminator, Labeler and Anti-Labeler
are at their optimum obtained from (21). The global minimum of the virtual training criterion C(G)
is achieved if and only if Pg(x|li) = Pr(x|li)∀i ∈ [d] and Pg(x) = Pr(x).
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Proof. Proof follows the same lines as in the proof of Theorem 1 and Theorem 2 and is omitted.

Thus we have
Pr(x, li) = Pg(x, li),∀i ∈ [d] and Pr(x) = Pg(x). (22)

However, this does not in general imply Pr(x, l1, l2, . . . , ld) = Pg(x, l1, l2, . . . , ld), which is equiva-
lent to saying the generated distribution samples from the class conditional image distributions. To
guarantee the correct conditional sampling given all labels, we introduce the following assumption:
We assume that the image x determines all the labels. This assumption is very relevant in practice.
For example, in the CelebA dataset, which we use, the label vector, e.g., whether the person is a male
or female, with or without a mustache, can be thought of as a deterministic function of the image.
When this is true, we can say that Pr(l1, l2, . . . , ln|x) = Pr(l1|x)Pr(l2|x) . . .Pr(ln|x).

We need the following lemma, where kronecker delta function refers to the functions that take the
value of 1 only on a single point, and 0 everywhere else:
Lemma 5. Any discrete joint probability distribution, where all the marginal probability distributions
are kronecker delta functions is the product of these marginals.

Proof. Let δ{x−u} be the kronecker delta function which is 1 if x = u and is 0 otherwise. Con-
sider a joint distribution p(X1, X2, . . . , Xn), where p(Xi) = δ{Xi−ui},∀i ∈ [n], for some set of
elements {ui}i∈[n]. We will show by contradiction that the joint probability distribution is zero
everywhere except at (u1, u2, . . . , un). Then, for the sake of contradiction, suppose for some
v = (v1, v2, . . . , vn) 6= (u1, u2, . . . , un), p(v1, v2, . . . , vn) 6= 0. Then ∃j ∈ [n] such that vj 6= uj .
Then we can marginalize the joint distribution as

p(vj) =
∑

X1,...,Xj−1,Xj ,...,Xn

p(X1, . . . , Xj−1, vj , Xj+1, . . . , Xn) > 0, (23)

where the inequality is due to the fact that the particular configuration (v1, v2, . . . , vn) must have
contributed to the summation. However this contradicts with the fact that p(Xj) = 0,∀Xj 6= uj .
Hence, p(.) is zero everywhere except at (u1, u2, . . . , un), where it should be 1.

We can now simply apply the above lemma on the conditional distribution Pg(l1, l2, . . . , ld|x).
Proposition 3 shows that the image distributions and the marginals Pg(li|x) are true to the data
distribution due to Bayes’ rule. Since the vector (l1, . . . , ln) is a deterministic function of x by
assumption, Pr(li|x) are kronecker delta functions, and so are Pg(li|x) by Proposition 3. Thus,
since the joint Pg(x, l1, l2, . . . , ld) satisfies the condition that every marginal distribution p(li|x) is a
kronecker delta function, then it must be a product distribution by Lemma 5. Thus we can write

Pg(l1, l2, . . . , ld|x) = Pg(l1|x)Pg(l2|x) . . .Pg(ln|x).

Then we have the following chain of equalities.

Pr(x, l1, l2, . . . , ld) = Pr(l1, . . . , ln|x)Pr(x)

= Pr(l1|x)Pr(l2|x) . . .Pr(ln|x)Pr(x)

= Pg(l1|x)Pg(l2|x) . . .Pg(ln|x)Pg(x)

= Pg(l1, l2, . . . , ld|x)Pg(x)

= Pg(x, l1, l2, . . . , ld).

Thus, we also have Pr(x|l1, l2, . . . , ln) = Pg(x|l1, l2, . . . , ln) since Pr(l1, l2, . . . , ln) =
Pg(l1, l2, . . . , ln), concluding the proof that the optimum generator samples from the class con-
ditional image distributions.

8.8 CAUSALBEGAN ARCHITECTURE

In this section, we propose a simple, but non-trivial extension of BEGAN where we feed image labels
to the generator. One of the central contributions of BEGAN (Berthelot et al. (2017)) is a control
theory-inspired boundary equilibrium approach that encourages generator training only when the
discriminator is near optimum and its gradients are the most informative. The following observation
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helps us carry the same idea to the case with labels: Label gradients are most informative when the
image quality is high. Here, we introduce a new loss and a set of margins that reflect this intuition.

Formally, let L(x) be the average L1 pixel-wise autoencoder loss for an image x, as in BEGAN. Let
Lsq(u, v) be the squared loss term, i.e., ‖u− v‖22. Let (x, lx) be a sample from the data distribution,
where x is the image and lx is its corresponding label. Similarly, G(z, lg) is an image sample from
the generator, where lg is the label used to generate this image. Denoting the space of images by I,
let G : Rn × {0, 1}m 7→ I be the generator. As a naive attempt to extend the original BEGAN loss
formulation to include the labels, we can write the following loss functions:

LossD = L(x)− L(Labeler(G(z, l))) + Lsq(lx, Labeler(x))− Lsq(lg, Labeler(G(z, lg))),

LossG = L(G(z, lg)) + Lsq(lg, Labeler(G(z, lg))). (24)

However, this naive formulation does not address the use of margins, which is extremely critical in the
BEGAN formulation. Just as a better trained BEGAN discriminator creates more useful gradients for
image generation, a better trained Labeler is a prerequisite for meaningful gradients. This motivates
an additional margin-coefficient tuple (b2, c2), as shown in (25,26).

The generator tries to jointly minimize the two loss terms in the formulation in (24). We empirically
observe that occasionally the image quality will suffer because the images that best exploit the Labeler
network are often not obliged to be realistic, and can be noisy or misshapen. Based on this, label
loss seems unlikely to provide useful gradients unless the image quality remains good. Therefore
we encourage the generator to incorporate label loss only when the image quality margin b1 is large
compared to the label margin b2. To achieve this, we introduce a new margin of margins term, b3.
As a result, the margin equations and update rules are summarized as follows, where λ1, λ2, λ3 are
learning rates for the coefficients.

b1 = γ1 ∗ L(x)− L(G(z, lg)).

b2 = γ2 ∗ Lsq(lx, Labeler(x))− Lsq(lg, Labeler(G(z, lg))). (25)
b3 = γ3 ∗ relu(b1)− relu(b2).

c1 ← clip[0,1](c1 + λ1 ∗ b1).

c2 ← clip[0,1](c2 + λ2 ∗ b2). (26)

c3 ← clip[0,1](c3 + λ3 ∗ b3).

LossD = L(x)− c1 ∗ L(G(z, lg)) + Lsq(lx, Labeler(x))− c2 ∗ Lsq(lg, G(z, lg)). (27)
LossG = L(G(z, lg)) + c3 ∗ Lsq(lg, Labeler(G(z, lg))).

One of the advantages of BEGAN is the existence of a monotonically decreasing scalar which can
track the convergence of the gradient descent optimization. Our extension preserves this property as
we can define

Mcomplete = L(x) + |b1|+ |b2|+ |b3|, (28)

and show thatMcomplete decreases progressively during our optimizations. See Figure 19.

8.9 DEPENDENCE OF GAN BEHAVIOR ON CAUSAL GRAPH

In Section 4 we showed how a GAN could be used to train a causal implicit generative model by
incorporating the causal graph into the generator structure. Here we investigate the behavior and
convergence of causal implicit generative models when the true data distribution arises from another
(possibly distinct) causal graph.

We consider causal implicit generative model convergence on synthetic data whose three features
{X,Y, Z} arise from one of three causal graphs: "line" X → Y → Z , "collider" X → Y ← Z, and
"complete" X → Y → Z,X → Z. For each node a (randomly sampled once) cubic polynomial in
n+ 1 variables computes the value of that node given its n parents and 1 uniform exogenous variable.
We then repeat, creating a new synthetic dataset in this way for each causal model and report the
averaged results of 20 runs for each model.

For each of these data generating graphs, we compare the convergence of the joint distribution to
the true joint in terms of the total variation distance, when the generator is structured according to a
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(c) X → Y → Z, X → Z

Figure 9: Convergence in total variation distance of generated distribution to the true distribution for
causal implicit generative model, when the generator is structured based on different causal graphs.
(a) Data generated from line graph X → Y → Z. The best convergence behavior is observed when
the true causal graph is used in the generator architecture. (b) Data generated from collider graph
X → Y ← Z. Fully connected layers may perform better than the true graph depending on the
number of layers. Collider and complete graphs performs better than the line graph which implies the
wrong Bayesian network. (c) Data generated from complete graph X → Y → Z, X → Z. Fully
connected with 3 layers performs the best, followed by the complete and fully connected with 5
and 10 layers. Line and collider graphs, which implies the wrong Bayesian network does not show
convergence behavior.

line, collider, or complete graph. For completeness, we also include generators with no knowledge of
causal structure: {fc3, fc5, fc10} are fully connected neural networks that map uniform random
noise to 3 output variables using either 3,5, or 10 layers respectively.

The results are given in Figure 9. Data is generated from line causal graph X → Y → Z (left panel),
collider causal graph X → Y ← (middle panel), and complete causal graph X → Y → Z,X → Z
(right panel). Each curve shows the convergence behavior of the generator distribution, when
generator is structured based on each one of these causal graphs. We expect convergence when the
causal graph used to structure the generator is capable of generating the joint distribution due to the
true causal graph: as long as we use the correct Bayesian network, we should be able to fit to the true
joint. For example, complete graph can encode all joint distributions. Hence, we expect complete
graph to work well with all data generation models. Standard fully connected layers correspond to the
causal graph with a latent variable causing all the observable variables. Ideally, this model should be
able to fit to any causal generative model. However, the convergence behavior of adversarial training
across these models is unclear, which is what we are exploring with Figure 9.

For the line graph data X → Y → Z, we see that the best convergence behavior is when line graph is
used in the generator architecture. As expected, complete graph also converges well, with slight delay.
Similarly, fully connected network with 3 layers show good performance, although surprisingly fully
connected with 5 and 10 layers perform much worse. It seems that although fully connected can
encode the joint distribution in theory, in practice with adversarial training, the number of layers
should be tuned to achieve the same performance as using the true causal graph. Using the wrong
Bayesian network, the collider, also yields worse performance.

For the collider graph, surprisingly using a fully connected generator with 3 and 5 layers shows
the best performance. However, consistent with the previous observation, the number of layers is
important, and using 10 layers gives the worst convergence behavior. Using complete and collider
graphs achieves the same decent performance, whereas line graph, a wrong Bayesian network,
performs worse than the two.

For the complete graph, fully connected 3 performs the best, followed by fully connected 5, 10 and
the complete graph. As we expect, line and collider graphs, which cannot encode all the distributions
due to a complete graph, performs the worst and does not actually show any convergence behavior.

8.10 ADDITIONAL SIMULATIONS FOR CAUSAL CONTROLLER

First, we evaluate the effect of using the wrong causal graph on an artificially generated dataset.
Figure 10 shows the scatter plot for the two coordinates of a three dimensional distribution. As we
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Figure 10: Synthetic data experiments: (a) Scatter plot for actual data. Data is generated using the
causal graph X1 → X2 → X3. (b) Generated distribution when generator causal graph is

X1 → X2 → X3. (c) Generated distribution when generator causal graph is
X1 → X2 → X3 ∪X1 → X3. (d) Generated distribution when generator causal graph is

X1 → X2 ← X3. (e) Generated distribution when generator is from a fully connected last layer of a
5 layer FF neural net.

Label Male
Pair 0 1

Young 0 0.14[0.07](0.07) 0.09[0.15](0.15)
1 0.47[0.51](0.51) 0.29[0.27](0.26)

Mustache 0 0.61[0.58](0.58) 0.34[0.38](0.38)
1 0.00[0.00](0.00) 0.04[0.04](0.04)

Table 1: Pairwise marginal distribution for select label pairs when Causal Controller is trained
on G1 in plain text, its completion cG1[square brackets], and the true pairwise distribution(in
parentheses). Note that G1 treats Male and Young labels as independent, but does not completely
fail to generate a reasonable (product of marginals) approximation. Also note that when an edge is
added Y oung →Male, the learned distribution is nearly exact. Note that both graphs contain the
edge Male→Mustache and so are able to learn that women have no mustaches.

observe, using the correct graph gives the closest scatter plot to the original data, whereas using the
wrong Bayesian network, collider graph, results in a very different distribution.

Second, we expand on the causal graphs used for experiments for the CelebA dataset. We use a causal
graph on a subset of the image labels of CelebA dataset, which we call CelebA Causal Graph (G1),
illustrated in Figure 8. The graph cG1, which is a completed version of G1, is the complete graph
associated with the ordering: Young, Male, Eyeglasses, Bald, Mustache, Smiling, Wearing Lipstick,
Mouth Slightly Open, Narrow Eyes. For example, in cG1 Male causes Smiling because Male comes
before Smiling in the ordering. The graph rcG1 is formed by reversing every edge in cG1.

Next, we check the effect of using the incorrect Bayesian network for the data. The causal graph G1
generates Male and Young independently, which is incorrect in the data. Comparison of pairwise
distributions in Table 1 demonstrate that for G1 a reasonable approximation to the true distribution
is still learned for {Male, Young} jointly. For cG1 a nearly perfect distributional approximation is
learned. Furthermore we show that despite this inaccuracy, both graphs G1 and cG1 lead to Causal
Controllers that never output the label combination {Female,Mustache}, which will be important
later.

Wasserstein GAN in its original form (with Lipshitz discriminator) assures convergence in distribution
of the Causal Controller output to the discretely supported distribution of labels. We use a slightly
modified version of Wasserstein GAN with a penalized gradient (Gulrajani et al. (2017)). We first
demonstrate that learned outputs actually have "approximately discrete" support. In Figure 11a,
we sample the joint label distribution 1000 times, and make a histogram of the (all) scalar outputs
corresponding to any label.

Although Figure 11b demonstrates conclusively good convergence for both graphs, TVD is not
always intuitive. For example, "how much can each marginal be off if there are 9 labels and the TVD
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Label, L PG1(L = 1) PcG1(L = 1) PD(L = 1)

Bald 0.02244 0.02328 0.02244
Eyeglasses 0.06180 0.05801 0.06406

Male 0.38446 0.41938 0.41675
Mouth Slightly Open 0.49476 0.49413 0.48343

Mustache 0.04596 0.04231 0.04154
Narrow Eyes 0.12329 0.11458 0.11515

Smiling 0.48766 0.48730 0.48208
Wearing Lipstick 0.48111 0.46789 0.47243

Young 0.76737 0.77663 0.77362

Table 2: Marginal distribution of pretrained Causal Controller labels when Causal Controller is
trained on CelebA Causal Graph (PG1) and its completion(PcG1), where cG1 is the (nonunique)
largest DAG containing G1 (see appendix). The third column lists the actual marginal distributions
in the dataset
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Figure 11: (a) A number line of unit length binned into 4 unequal bins along with the percent
of Causal Controller (G1) samples in each bin. Results are obtained by sampling the joint label
distribution 1000 times and forming a histogram of the scalar outputs corresponding to any label.
Note that our Causal Controller output labels are approximately discrete even though the input is a
continuum (uniform). The 4% between 0.05 and 0.95 is not at all uniform and almost zero near 0.5.
(b) Progression of total variation distance between the Causal Controller output with respect to the
number of iterations: CelebA Causal Graph is used in the training with Wasserstein loss.

is 0.14?". To expand upon Figure 2 where we showed that the causal controller learns the correct
distribution for a pairwise subset of nodes, here we also show that both CelebA Causal Graph (G1)
and the completion we define (cG1) allow training of very reasonable marginal distributions for all
labels (Table 1) that are not off by more than 0.03 for the worst label. PD(L = 1) is the probability
that the label is 1 in the dataset, and PG(L = 1) is the probability that the generated label is (around
a small neighborhood of ) 1.

8.11 WASSERSTEIN CAUSAL CONTROLLER ON CELEBA LABELS

We test the performance of our Wasserstein Causal Controller on a subset of the binary labels of
CelebA datset. We use the causal graph given in Figure 8.

For causal graph training, first we verify that our Wasserstein training allows the generator to learn
a mapping from continuous uniform noise to a discrete distribution. Figure 11a shows where the
samples, averaged over all the labels in CelebA Causal Graph, from this generator appears on the real
line. The result emphasizes that the proposed Causal Controller outputs an almost discrete distribution:
96% of the samples appear in 0.05−neighborhood of 0 or 1. Outputs shown are unrounded generator
outputs.
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A stronger measure of convergence is the total variational distance (TVD). For CelebA Causal Graph
(G1), our defined completion (cG1), and cG1 with arrows reversed (rcG1), we show convergence of
TVD with training (Figure 11b). Both cG1 and rcG1 have TVD decreasing to 0, and TVD for G1
assymptotes to around 0.14 which corresponds to the incorrect conditional independence assumptions
that G1 makes. This suggests that any given complete causal graph will lead to a nearly perfect
implicit causal generator over labels and that bayesian partially incorrect causal graphs can still give
reasonable convergence.

8.12 MORE CAUSALGAN RESULTS

In this section, we present additional CausalGAN results in Figure 12, 13.

Intervening vs Conditioning on Wearing Lipstick, Top: Intervene Wearing Lipstick=1,
Bottom: Condition Wearing Lipstick=1

Figure 12: Intervening/Conditioning on Wearing Lipstick label in CelebA Causal Graph. Since
Male→WearingLipstick in CelebA Causal Graph, we do not expect do(Wearing Lipstick = 1)
to affect the probability of Male = 1, i.e., P(Male = 1|do(Wearing Lipstick = 1)) = P(Male =
1) = 0.42. Accordingly, the top row shows both males and females who are wearing lipstick.
However, the bottom row of images sampled from the conditional distribution P(.|Wearing Lipstick =
1) shows only female images because in the dataset P(Male = 0|Wearing Lipstick = 1) ≈ 1.

Intervening vs Conditioning on Narrow Eyes, Top: Intervene Narrow Eyes=1, Bottom:
Condition Narrow Eyes=1

Figure 13: Intervening/Conditioning on Narrow Eyes label in CelebA Causal Graph. Since
Smiling → Narrow Eyes in CelebA Causal Graph, we do not expect do(Narrow Eyes = 1) to affect
the probability of Smiling = 1, i.e., P(Smiling = 1|do(Narrow Eyes = 1)) = P(Smiling =
1) = 0.48. However on the bottom row, conditioning on Narrow Eyes = 1 increases the proportion
of smiling images (From 0.48 to 0.59 in the dataset), although 10 images may not be enough to show
this difference statistically.

8.13 MORE CAUSALBEGAN RESULTS

In this section, we train CausalBEGAN on CelebA dataset using CelebA Causal Graph. The Causal
Controller is pretrained with a Wasserstein loss and used for training the CausalBEGAN.

To first empirically justify the need for the margin of margins we introduced in (27) (c3 and b3), we
train the same CausalBEGAN model setting c3 = 1, removing the effect of this margin. We show
that the image quality for rare labels deteriorates. Please see Figure 18 in the appendix. Then for
the labels Bald, and Mouth Slightly Open, we illustrate the difference between interventional and
conditional sampling when the label is 1. (Figures 14, 15).
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Intervening vs Conditioning on Bald, Top: Intervene Bald=1, Bottom: Condition Bald=1

Figure 14: Intervening/Conditioning on Bald label in CelebA Causal Graph. Since Male→ Bald
in CelebA Causal Graph, we do not expect do(Bald = 1) to affect the probability of Male = 1,
i.e., P(Male = 1|do(Bald = 1)) = P(Male = 1) = 0.42. Accordingly, the top row shows both
bald males and bald females. The bottom row of images sampled from the conditional distribution
P(.|Bald = 1) shows only male images because in the dataset P(Male = 1|Bald = 1) ≈ 1.

Intervening vs Conditioning on Mouth Slightly Open, Top: Intervene Mouth Slightly
Open=1, Bottom: Condition Mouth Slightly Open=1

Figure 15: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal Graph.
Since Smiling → MouthSlightlyOpen in CelebA Causal Graph, we do not expect
do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However on the bottom row, condi-
tioning on Mouth Slightly Open = 1 increases the proportion of smiling images (From 0.48 to 0.76
in the dataset), although 10 images may not be enough to show this difference statistically.

8.14 LABEL SWEEPING AND DIVERSITY FOR CAUSALGAN

In this section, we provide additional simulations for CausalGAN. In Figures 16a-16d, we show the
conditional image generation properties of CausalGAN by sweeping a single label from 0 to 1 while
keeping all other inputs/labels fixed. In Figure 17, to examine the degree of mode collapse and show
the image diversity, we show 256 randomly sampled images.

8.15 ADDITIONAL CAUSALBEGAN SIMULATIONS

In this section, we provide additional simulation results for CausalBEGAN. First we show that
although our third margin term b3 introduces complications, it can not be ignored. Figure 18
demonstrates that omitting the third margin on the image quality of rare labels.

Furthermore just as the setup in BEGAN permitted the definiton of a scalar "M", which was
monotonically decreasing during training, our definition permits an obvious extensionMcomplete

(defined in 28) that preserves these properties. See Figure 19 to observe Mcomplete decreaing
monotonically during training.

We also show the conditional image generation properties of CausalBEGAN by using "label sweeps"
that move a single label input from 0 to 1 while keeping all other inputs fixed (Figures 20a -20d ). It
is interesting to note that while generators are often implicitly thought of as continuous functions, the
generator in this CausalBEGAN architecture learns a discrete function with respect to its label input
parameters. (Initially there is label interpolation, and later in the optimization label interpolation
becomes more step function like (not shown)). Finally, to examine the degree of mode collapse and
show the image diversity, we show a random sampling of 256 images (Figure 21).
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(a) Interpolating Bald label (b) Interpolating Male label

(c) Interpolating Young label (d) Interpolating Eyeglasses label

Figure 16: The effect of interpolating a single label for CausalGAN, while keeping the noise terms
and other labels fixed.
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Figure 17: Diversity of the proposed CausalGAN showcased with 256 samples.
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Figure 18: Omitting the nonobvious margin b3 = γ3 ∗ relu(b1)− relu(b2) results in poorer image
quality particularly for rare labels such as mustache. We compare samples from two interventional dis-
tributions. Samples from P(.|do(Mustache = 1)) (top) have much poorer image quality compared
to those under P(.|do(Mustache = 0)) (bottom).
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Figure 19: Convergence of CausalBEGAN captured through the parameterMcomplete.
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(a) Interpolating Bald label (b) Interpolating Male label

(c) Interpolating Young label (d) Interpolating Eyeglasses label

Figure 20: The effect of interpolating a single label for CausalBEGAN, while keeping the noise terms
and other labels fixed. Although most labels are properly captured, we see that eyeglasses label is not.
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Figure 21: Diversity of Causal BEGAN showcased with 256 samples.
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Figure 22: Failed Image generation for simultaneous label and image generation after 20k steps.

8.16 DIRECTLY TRAINING CIGM FOR LABELS+IMAGE FAILS

In this section, we present the result of attempting to jointly train an implicit causal generative model
for labels and the image. This approach treats the image as part of the causal graph. It is not clear
how exactly to feed both labels and image to discriminator, but one way is to simply encode the label
as a constant image in an additional channel. We tried this for CelebA Causal Graph and observed
that the image generation is not learned (Figure 22). One hypothesis is that the discriminator focuses
on labels without providing useful gradients to the image generation.

9 IMPLEMENTATION

In this section, we explain the differences between implementation and theory, along with other
implementation details for both CausalGAN and CausalBEGAN.

9.1 PRETRAINING CAUSAL CONTROLLER FOR FACE LABELS

In this section, we explain the implementation details of the Wasserstein Causal Controller for
generating face labels. We used the total variation distance (TVD) between the distribution of
generator and data distribution as a metric to decide the success of the models.

The gradient term used as a penalty is estimated by evaluating the gradient at points interpolated
between the real and fake batches. Interestingly, this Wasserstein approach gives us the opportunity
to train the Causal Controller to output (almost) discrete labels (See Figure 11a). In practice though,
we still found benefit in rounding them before passing them to the generator.

The generator architecture is structured in accordance with Section 4 based on the causal graph
in Figure 8, using uniform noise as exogenous variables and 6 layer neural networks as functions
mapping parents to children. For the training, we used 25 Wasserstein discriminator (critic) updates
per generator update, with a learning rate of 0.0008.

9.2 IMPLEMENTATION DETAILS FOR CAUSALGAN

In practice, we use stochastic gradient descent to train our model. We use DCGAN Radford et al.
(2015), a convolutional neural net-based implementation of generative adversarial networks, and
extend it into our Causal GAN framework. We have expanded it by adding our Labeler networks,
training a Causal Controller network and modifying the loss functions appropriately. Compared to
DCGAN an important distinction is that we make 6 generator updates for each discriminator update
on average. The discriminator and labeler networks are concurrently updated in a single iteration.

Notice that the loss terms defined in Section 5.2.1 contain a single binary label. In practice we feed
a d-dimensional label vector and need a corresponding loss function. We extend the Labeler and
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Anti-Labeler loss terms by simply averaging the loss terms for every label. The ith coordinates of
the d-dimensional vectors given by the labelers determine the loss terms for label i. Note that this is
different than the architecture given in Section 8.6, where the discriminator outputs a length-2d vector
and estimates the probabilities of all label combinations given the image. Therefore this approach
does not have the guarantee to sample from the class conditional distributions, if the data distribution
is not restricted. However, for the type of labeled image dataset we use in this work, where labels
seem to be completely determined given an image, this architecture is sufficient to have the same
guarantees. For the details, please see Section 8.7 in the supplementary material.

Compared to the theory we have, another difference in the implementation is that we have swapped
the order of the terms in the cross entropy expressions for labeler losses. This has provided sharper
images at the end of the training.

9.3 CONDITIONAL IMAGE GENERATION FOR CAUSALBEGAN

The labels input to CausalBEGAN are taken from the Causal Controller. We use very few parameter
tunings. We use the same learning rate (0.00008) for both the generator and discriminator and
do 1 update of each simultaneously (calculating the for each before applying either). We simply
use γ1 = γ2 = γ3 = 0.5. We do not expect the model to be very sensitive to these parameter
values, as we achieve good performance without hyperparameter tweaking. We do use customized
margin learning rates λ1 = 0.001, λ2 = 0.00008, λ3 = 0.01, which reflect the asymmetry in how
quickly the generator can respond to each margin. For example c2 can have much more "spiky", fast
responding behavior compared to others even when paired with a smaller learning rate, although we
have not explored this parameter space in depth. In these margin behaviors, we observe that the best
performing models have all three margins "active": near 0 while frequently taking small positive
values.

9.4 ROLE OF ANTI-LABELER

In this section, we show results that compare the CausalGAN behavior with and without Anti-Labeler
network. In general, using Anti-Labeler allows for faster convergence. For very rare labels, the model
with Anti-Labeler provides more diverse images. See Figures 23, 24, 25.
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(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure 23: CausalGAN results with and without Anti-Labeler for the rare label combination Old
males with eyeglasses and mustache and narrow eyes who are not smiling. (a, b, c) Samples without
Anti-Labeler at iterations 20k, 30k, 40k respectively. (d) Samples with Anti-Labeler at iteration 20k.
Comparing (a) and (d), we observe that using Anti-Labeler allows for faster convergence. Comparing
(c) and (d), we observe that using Anti-Labeler provides more diverse images.

(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure 24: CausalGAN results with and without Anti-Labeler for the rare label combination Old
bald males who are not smiling but have an open mouth and narrow eyes. (a, b, c) Samples without
Anti-Labeler at iterations 20k, 30k, 40k respectively. (d) Samples with Anti-Labeler at iteration 20k.
Comparing (a) and (d), we observe that using Anti-Labeler allows for faster convergence.
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(a) No AL, t = 20k (b) No AL, t = 30k (c) No AL, t = 40k (d) With AL, t = 20k

Figure 25: CausalGAN results with and without Anti-Labeler for the common label combination
Young smiling women with lipstick. (a, b, c) Samples without Anti-Labeler at iterations 20k, 30k, 40k
respectively. (d) Samples with Anti-Labeler at iteration 20k. Comparing (a) and (d), we observe that
using Anti-Labeler allows for faster convergence.
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