
Cost-Efficient Training for Automated Algorithm Selection

Erdem Kuş1 Özgür Akgün1 Nguyen Dang1 Ian Miguel1

1
School of Computer Science, University of St Andrews, Scotland

Abstract When solving decision and optimisation problems, many competing algorithms have com-

plementary strengths. Typically, there is no single algorithm that works well for all instances

of a problem. Automated algorithm selection has been shown to work very well for choosing

a suitable algorithm for a given instance. However, the cost of training can be prohibitively

large due to the need of running all candidate algorithms on a set of training instances. In

this work, we explore reducing this cost by selecting specific instance/algorithm combina-

tions to train on, rather than requiring all algorithms for all instances. We approach this

problem in three ways: using active learning to decide based on prediction uncertainty,

augmenting the algorithm predictors with a timeout predictor, and collecting training data

using a progressively increasing timeout. We evaluate combinations of these approaches on

six datasets from ASLib and present the reduction in labelling cost.

1 Introduction

Solving combinatorial optimisation problems is a challenging task, where often multiple approaches

compete to offer the most effective solution. Typically, different algorithms are better suited

for different problem instances. Automated Algorithm Selection (AS) [20, 12, 11] techniques

focus on building machine learning models to predict the most suitable algorithm for a particular

problem instance. They have proven highly effective, often leading to significant improvements

in computational efficiency and overall problem-solving capability (e.g., [25, 26, 1]). However, to

collect (i.e., label) the training data, we need to evaluate the performance of all algorithms under

study on a set of training instances. This labelling cost can be computational expensive, limiting

the scalability and practicality of current algorithm selection methods.

Herein we propose to select instances for training AS models iteratively. This setting is called

Active Learning (AL)[5], a popular cost-effective family of techniques for training machine learning

models. We focus on AS scenarios that aim to optimise algorithm runtime, where each run of an

algorithm on a problem instance is limited by a typically large cutoff time and so full information

about performance data of timeout cases is expensive to collect but not necessarily useful.

In a typical AL scenario, the labelling cost of each data point is assumed to be uniform [5]. Our

AS context is more complicated: within the cutoff, there is often significant variance in the cost of

running an algorithm. Therefore, we propose two strategies within the active learning setting to

reduce labelling cost, namely timeout predictor and dynamic timeout, to improve learning efficiency.

We evaluate these strategies in combination with two methods for selecting new instances in the

active learning setting: an uncertainty-based and a naive random selection method. Experimental

results on six scenarios from ASLib [2], the standard benchmarking library for algorithm selection

demonstrate the effectiveness of our proposed strategies in the AS context: in most cases, we can

achieve 100% of the predictive power of an AS method that uses all of the training data, while

requiring less than 20% of total labelling cost when all proposed strategies are used in combination.

2 Frugal Algorithm Selection

In this section, we first explain the underlying ASmodel adopted in this work. We then describe how

to adopt active learning to select a subset of instances for labelling during the training (Section 2.1)

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:ek232@st-andrews.ac.uk
mailto:ozgur.akgun@st-andrews.ac.uk
mailto:nttd@st-andrews.ac.uk
mailto:ijm@st-andrews.ac.uk
https://creativecommons.org/licenses/by/4.0/

and the two additional strategies we propose, namely timeout predictors (Section 2.2) and dynamic
timeout (Section 2.3), to improve the saving in labelling cost during the instance selection process.

The AS model used in our experiment follows a pairwise classification approach, as it has been

shown to be effective for several AS scenarios (e.g. [26]). The approach is a collection of binary

classifiers, each designed to compare a pair of algorithms to determine which one is faster for a

given instance. The algorithm with the highest number of votes across all classifiers is chosen as

the best option. Following previous work [26], we use a random forest for each classifier.

Passive learning – an AS model trained using the entire training set. This is the baseline for

investigating the effectiveness of our frugal AS methods: we want the frugal AS to achieve the same

performance as this passive learning model, while using a significantly less amount of training

data.

Frugal methods – We explore three configuration options, each offering two alternatives,

to create a range of strategies for frugal algorithm selection. The first configuration option is

instance selection, which involves comparing uncertainty-based selection (focusing on potentially

informative instances) with random selection. The second configuration option is whether we use

timeout predictors and the third configuration option is whether we use dynamic timeouts. The

pseudocode for these configuration options can be found in Appendix A.

2.1 Instance Selection: Uncertainty-based vs Random

In our frugal algorithm selection methods, we begin by training all classifiers on a small number

of randomly selected instances. The remaining instances in the training set are kept in a pool of

candidates. For each classifier we maintain a separate pool of candidates: this allows us to run an

instance on a subset of the algorithms instead of necessarily running it on all algorithm options.

This flexibility can be particularly useful when some algorithms tend to timeout very often and

hence take up a lot of resources unnecessarily.

At each training iteration, we select N pairs of algorithm-instance combinations from the

available unlabelled set of instances. The selection can be done randomly, or alternatively, based
on a common selection strategy from the active learning literature where the uncertainty of the
prediction [5] is taken into account: we prioritise selecting the instances where the classifier returns

the highest uncertainty in its prediction. In our approach, we put all candidate pairs of classifiers

and instances in a single table, sorted by their uncertainty. This would enable the classifiers with a

high level of uncertainty to query more instances in comparison to those with very low levels of

uncertainty.

2.2 Timeout Predictor

When one algorithm solves an instance quickly and another times out, we gain little additional

information by allowing the slower algorithm to run to completion. We take into account this fact

in our frugal AS approach via introducing additional binary classifiers whose task is to predict

whether an unseen instance will time out for a specific algorithm. The hypothesis is that training

a timeout predictor is a simpler learning task and therefore can be trained with less data. We

adjust our voting mechanism by excluding pairs involving an algorithm predicted to timeout. If all

algorithms are predicted to timeout, we retain all options and use the full set of pairwise predictors.

2.3 Dynamic Timeout

The dynamic timeout strategy begins with an initially defined timeout period and incrementally

increases it up to the original cutoff time. After the initial training phase in active learning, the

algorithms selected for querying are executed on the selected data within the current time limit.

An algorithm that fails to solve the example within this specified time is classified as a timeout for

the active time limit. This approach is intended to minimise labelling costs by initially running

instances with a short time limit. Hence, resources are not wasted on instances that both algorithms

2

0.0 0.5 1.0
Runtime Ratio

0.05

0.10

0.15

0.20

0.25

M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.05

0.10

0.15

0.20

0.25

0.30

M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

0.4

M
in

 In
st

an
ce

 C
os

t

Uncertainty Random Without TO With TO Without DT With DT

Figure 1: Results aggregated by configuration option. Instance selection (random vs uncertainty-

based) does not make a big difference, timeout predictor (TO) improves runtime ratio slightly,

dynamic timeout (DT) improves runtime ratio significantly.

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

AS
P-

PO
TA

SS
CO

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3
CP

M
P-

20
15

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

M
AX

SA
T1

9-
UC

M
S

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6
QB

F-
20

11

 M
in

 In
st

an
ce

 C
os

t

Without TO & Without DT TO DT TO+DT

Figure 2: Performance of different timeout configurations (aggregated by instance selection). Notably,

the combination of timeout predictor and dynamic timeouts (TO+DT) and the standalone

dynamic timeout option exhibit significantly better performance.

are likely to fail to solve in the early stages. In single timeout cases, where one of the two algorithms

can solve the instance, samples can be labelled at a lower cost. The condition for increasing the

timeout is based on the model’s performance on a validation set, derived from the initial dataset

split. If the model predictions reach a plateau on the validation set, we increase the timeout at a

specific rate. Note that when timeout predictors and dynamic timeouts are used in combination,

we train the timeout predictors with respect to the particular timeout value at a given moment.

3 Experimental Results

We evaluate the performance of all eight combinations of the three frugal AS strategies described

in the previous section using six datasets from ASLib, chosen for their wide-ranging characteristics.

We refer to Appendix E for detailed descriptive statistics of the selected datasets. Our experiments

adopt 10-fold cross-validation per dataset. The evaluation of each configuration on each fold

is also repeated 5 times. We refer to Appendix D for details of our experiment setup and the

hyper-parameter values chosen.

3

Our results, shown in Figure 1 and Figure 2, demonstrate the efficiency of the frugal AS methods

in terms of data utilization. The horizontal axis represents the ratio between the performance

of the frugal method and passive learning, with a range of [0, 1], where 1 indicates equivalent

performance. The vertical axis, capped at 1, shows the percentage of labeling cost required to

achieve this performance. Notably, the cost shown is the lowest among all splits and seeds,

emphasizing cost-effectiveness. Our approach remains robust, as adding more data does not

harm prediction performance. Full details, including the source code and data, are available at

https://github.com/stacs-cp/CP2024-Frugal.

Key findings

Even in the worst configuration of frugal algorithm selection, we are able to reduce the labelling

cost without sacrificing predictive performance in comparison to passive learning (See Figure 2). In

several cases the training effort is reduced to 10% of the labelling cost of passive learning. It is clear

that our frugal approaches are able to reduce the training cost independent of configuration.

Figure 1 presents an overview of the entire set of experiments. The results are aggregated

one configuration option at a time, combining results of all configurations that share, for example,

Uncertainty as the instance selection method in the first plot. Overall, instance selection strategy

does not make a big difference, using timeout predictors (TO) improves performance slightly, and

using dynamic timeouts (DT) improves performance significantly.

The observation that uncertainty-based instance selection is not better than random may not

be unexpected, as selecting instances purely based on informativeness (via prediction uncertainty)

does not take the cost of running an instance on a particular algorithm into account. In settings

where there is a uniform cost across all candidates, uncertainty-based selection may perform better

than random. In our setting, however, some samples are significantly cheaper than others. In this

setting, we want to balance ‘bang for the buck’: maximise how much information is gained per time

spent. Therefore having explicit timeout predictors and a dynamic timeout strategy makes a more

significant contribution.

Since instance selection strategy does not make a big difference and we observe an interesting

interaction between TO and DT, we aggregate over the instance selection strategy and plot 4

options in Figure 2. We see that the combination of TO and DT provide further improvement

over using each option alone, confirming the effectiveness and complementary of each strategy in

runtime-based AS context.

4 Related Work

The question of how to effectively select a representative subset of benchmark instances from a

large pool for a reliable and cost-effective comparison of algorithms has been investigated across

different domains, including SAT [9, 16, 7], CP [17], combinatorial optimisation [18], evolutionary

computation [4], and machine learning [19]. While a majority of previous work focuses on selecting

instances in a static setting (i.e., all instances are chosen at once), some recent work has proposed

selecting instances in an iterative fashion: Matricon et al. [17] present a statistical-based method to

incrementally select instances for comparing performance between two solvers, while Fuchs et

al. [7] propose an active learning-based approach for cost-effective benchmark instance selection.

The key difference between those works and ours is that they focus on identifying the algorithm

with the best overall performance across a given problem instance distribution, while ours focuses

on the algorithm selection context, where the aim is to predict the best instance-specific algorithm.

The closest work to ours is Volpato and Song [24], where three commonly-used active learning

techniques were evaluated in an AS scenario for SAT
1
. However, one drawback of their work is

that they did not consider the significantly varying labelling costs among algorithms and instances,

1
To our binary classification models, the three techniques are identical, as detailed in Appendix B.

4

https://github.com/stacs-cp/CP2024-Frugal

despite it being a common characteristic of SAT scenarios. Consequently, the effectiveness of active

learning for instance selection was reported based on the percentage of labelled data being saved,

rather than their real saving cost.

Although the majority of active learning techniques assume the uniform labelling cost, there

exist a number of works on non-uniform labelling cost settings (e.g., [21, 22, 23]). A common

approach in those settings is to predict the labelling cost and to strive for a balance between

informativeness and the predicted cost of a new data point. We adopt a similar technique in our

work, where timeout predictors are used for identifying costly (unlabelled) data points. It can be

considered a “softened” version of the cost estimation approach, as predicting the precise runtime

of algorithms in the domain of combinatorial optimisation is often known to be difficult: most

prominent AS techniques focus on learning the ranking among algorithms instead of trying to

predict their runtime directly [8]. Note that a related technique to our dynamic timeout mechanism

is adaptive capping [15, 3, 13, 10], a common strategy in automated algorithm configuration that

sets a dynamic timeout based on performance of the current incumbent. Adaptive capping is not

applicable to our context as we do not have performance data of all configurations on the same

subset of instances, therefore, we adopt a simpler approach where the time limit is increased linearly

at each iteration.

5 Broader Impact Statement

The proposed frugal algorithm approach can potentially make algorithm selection methods more

efficient and cost-effective across a wide range of application domains. This could lead to improved

performance and efficiency when solving challenging combinatorial optimization problems arising

in domains such as SAT. Additionally, reduced costs and lower energy consumption associated

with this approach may help mitigate biases related to resource availability and contribute to more

eco-friendly computational practices.

6 Limitations

The approach, while promising, has limitations that need improvement. First, it relies on the as-

sumption that the extracted instance features have good predictive power of algorithm performance.

This assumption may not always hold in reality. Second, the evaluation is currently limited to a

subset of ASLib datasets. Third, the newly proposed strategies (timeout predictors and dynamic

timeout) are specifically tailored towards runtime AS scenarios only, while in practice, there are

important AS scenarios that are based on solution quality rather than runtime, for which the

additional strategies proposed cannot be applied directly in its current form.

7 Conclusion

We have proposed and evaluated a number of approaches to frugal algorithm selection, an active

learning approach that attempts to reduce the labelling cost by using only a subset of the training

data, together with a dynamic timeout strategy that uses incomplete information about the perfor-

mance of algorithms in the portfolio. Our results confirm the effectiveness of the proposed approach

and our analysis offers useful insights regarding the contribution of each individual component

of the approach. Interestingly, the standard data selection technique in active learning does not

contribute much to the overall performance, while our proposed dynamic timeout mechanism

results in significant improvement in cost saving.

In future, we plan to incorporate enhancement techniques in AS into the proposed active

learning framework, including the use of a pre-solving schedule [25] and cost-sensitive pairwise

classification AS models [26, 14]. Other important avenues include investigating the impact of

hyper-parameter tuning in the active learning setting, and developing an early-stopping mechanism

to terminate the learning process once diminishing returns are observed.

5

References

[1] C. Ansótegui, J. Gabas, Y. Malitsky, and M. Sellmann. Maxsat by improved instance-specific

algorithm configuration. Artificial Intelligence, 235:26–39, 2016.

[2] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter,

K. Leyton-Brown, K. Tierney, and J. Vanschoren. Aslib: A benchmark library for algorithm

selection. Artificial Intelligence, 237:41–58, 2016.

[3] L. P. Cáceres, M. López-Ibáñez, H. Hoos, and T. Stützle. An experimental study of adaptive

capping in irace. In R. Battiti, D. E. Kvasov, and Y. D. Sergeyev, editors, Learning and Intelligent
Optimization, pages 235–250, Cham, 2017. Springer International Publishing.

[4] G. Cenikj, R. D. Lang, A. P. Engelbrecht, C. Doerr, P. Korošec, and T. Eftimov. Selector: selecting

a representative benchmark suite for reproducible statistical comparison. In Proceedings of
The Genetic and Evolutionary Computation Conference, pages 620–629, 2022.

[5] D. Cohn. Active Learning, pages 10–14. Springer US, Boston, MA, 2010.

[6] T. Danka and P. Horváth. modal: A modular active learning framework for python. CoRR,
abs/1805.00979, 2018.

[7] T. Fuchs, J. Bach, and M. Iser. Active learning for sat solver benchmarking. In Tools and
Algorithms for the Construction and Analysis of Systems: 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Paris, France, April 22–27, 2023, Proceedings, Part I, pages 407–425. Springer, 2023.

[8] J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. Hybrid ranking and regression for

algorithm selection. In German Conference on Artificial Intelligence (Künstliche Intelligenz),
pages 59–72. Springer, 2020.

[9] H. H. Hoos, B. Kaufmann, T. Schaub, and M. Schneider. Robust benchmark set selection

for boolean constraint solvers. In Learning and Intelligent Optimization: 7th International
Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected Papers 7, pages 138–152.
Springer, 2013.

[10] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic algorithm

configuration framework. J. Artif. Int. Res., 36(1):267–306, sep 2009.

[11] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:

Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.

[12] L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. Data mining
and constraint programming: Foundations of a cross-disciplinary approach, pages 149–190, 2016.

[13] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,

R. Sass, and F. Hutter. Smac3: A versatile bayesian optimization package for hyperparameter

optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[14] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically configured

algorithm selector. Journal of Artificial Intelligence Research, 53:745–778, 2015.

[15] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle. The irace

package: Iterated racing for automatic algorithm configuration. Operations Research Perspec-
tives, 3:43–58, 2016.

6

[16] N. Manthey and S. Möhle. Better evaluations by analyzing benchmark structure. Proc. PoS,
2016.

[17] T. Matricon, M. Anastacio, N. Fijalkow, L. Simon, and H. H. Hoos. Statistical comparison

of algorithm performance through instance selection. In 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

[18] M. Mısır. Benchmark set reduction for cheap empirical algorithmic studies. In 2021 IEEE
Congress on Evolutionary Computation (CEC), pages 871–877. IEEE, 2021.

[19] J. L. J. Pereira, K. Smith-Miles, M. A. Muñoz, and A. C. Lorena. Optimal selection of bench-

marking datasets for unbiased machine learning algorithm evaluation. Data Mining and
Knowledge Discovery, 38(2):461–500, 2024.

[20] J. R. Rice. The algorithm selection problem. In Advances in computers, volume 15, pages

65–118. Elsevier, 1976.

[21] B. Settles. Active learning literature survey. 2009.

[22] K. Tomanek and U. Hahn. A comparison of models for cost-sensitive active learning. In Coling
2010: Posters, pages 1247–1255, 2010.

[23] Y.-L. Tsou and H.-T. Lin. Annotation cost-sensitive active learning by tree sampling. Machine
Learning, 108(5):785–807, 2019.

[24] R. Volpato and G. Song. Active learning to optimise time-expensive algorithm selection. arXiv
preprint arXiv:1909.03261, 2019.

[25] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm selection

for sat. Journal of artificial intelligence research, 32:565–606, 2008.

[26] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown. Satzilla2012: Improved algorithm

selection based on cost-sensitive classification models. Proceedings of SAT Challenge, pages
57–58, 2012.

7

A Frugal Algorithm Selection Mechanism

Algorithm 1 Voting Mechanism for Algorithm Selection

Require: Set of algorithm predictors {𝑃𝐴1,𝐴2
, 𝑃𝐴1,𝐴3

, . . . , 𝑃𝐴𝑁 −1,𝐴𝑁
}, set of timeout predictors

{𝑃𝐴1,𝐴1𝑇𝑂
, 𝑃𝐴2,𝐴2𝑇𝑂

, . . . , 𝑃𝐴𝑁 ,𝐴𝑁𝑇𝑂
}, validation set 𝑉

Ensure: Runtimes of the selected algorithms on selected set

1: Initialize a list to store runtimes: runtimes← []
2: for each instance 𝑥 in selected set 𝑆 do
3: Initialize a dictionary to count votes for each algorithm: vote_count← {}
4: Initialize a list to store selected algorithm predictors for voting: voting_predictors← []
5: if Timeout predictor is used then
6: for each pairwise predictor 𝑃𝐴𝑖 ,𝐴 𝑗

in algorithm predictors do
7: if 𝑃𝐴𝑖 ,𝐴𝑖𝑇𝑂 and 𝑃𝐴𝑗 ,𝐴𝑗𝑇𝑂 predict no timeout for instance 𝑥 then
8: Add 𝑃𝐴𝑖 ,𝐴 𝑗

to voting_predictors

9: end if
10: end for
11: else
12: voting_predictors← all algorithm predictors

13: end if
14: for each predictor 𝑃𝐴𝑖 ,𝐴 𝑗

in voting_predictors do
15: Predict the better algorithm 𝐴𝑖 𝑗 for instance 𝑥 using 𝑃𝐴𝑖 ,𝐴 𝑗

16: if 𝐴𝑖 𝑗 is not in vote_count then
17: Initialize vote_count[𝐴𝑖 𝑗] ← 0

18: end if
19: Increment vote_count[𝐴𝑖 𝑗] by 1

20: end for
21: Find the algorithm 𝑦 with the maximum votes in vote_count

22: Run the selected algorithm 𝑦 on instance 𝑥

23: Append runtime to runtimes

24: end for
25: return Sum of runtimes

8

Algorithm 2 Frugal Algorithm Selection

Require: Dynamic timeout flag, Timeout predictor flag, maximum timeout (3600 seconds), query

size (1%), initial dynamic timeout, timeout increase rate

Ensure: Trained algorithm and timeout predictors, runtimes on validation set

1: Initialize the unlabeled data pool

2: if Dynamic timeout is used then
3: Select N pairs of algorithm-instance combinations from the unlabeled set of instances

within initial dynamic timeout
4: else
5: Select N pairs of algorithm-instance combinations from the unlabeled set of instances

within maximum timeout
6: end if
7: Train algorithm predictors 𝑃𝐴1,𝐴2

, 𝑃𝐴1,𝐴3
, . . . , 𝑃𝐴𝑁 −1,𝐴𝑁

using labeled data

8: if Timeout predictor is used then
9: Train timeout predictors 𝑃𝐴1,𝐴1𝑇𝑂

, 𝑃𝐴2,𝐴2𝑇𝑂
, . . . , 𝑃𝐴𝑁 ,𝐴𝑁𝑇𝑂

using labeled data

10: end if
11: while There is data left for query do
12: Create a table of uncertainty information for algorithm-instance combinations

13: Sort the table by uncertainty in descending order

14: Select the top query size instances
15: if Timeout predictor is used then
16: Eliminate algorithm-instance combinations that are likely to timeout using timeout

predictors

17: end if
18: if Dynamic timeout is used then
19: Label algorithm-instance combinations within the initial dynamic timeout
20: else
21: Label algorithm-instance combinations within the maximum timeout
22: end if
23: Delete algorithm-instance combinations from the pool if they do not timeout

24: Train algorithm predictors 𝑃𝐴1,𝐴2
, 𝑃𝐴1,𝐴3

, . . . , 𝑃𝐴𝑁 −1,𝐴𝑁
using labeled data

25: if Timeout predictor is used then
26: Train timeout predictors 𝑃𝐴1,𝐴1𝑇𝑂

, 𝑃𝐴2,𝐴2𝑇𝑂
, . . . , 𝑃𝐴𝑁 ,𝐴𝑁𝑇𝑂

using labeled data

27: end if
28: if Timeout predictor is used then
29: validation runtime← Call Voting Mechanism with validation set 𝑉 , algorithm predic-

tors, and timeout predictors

30: test runtime ← Call Voting Mechanism with test set 𝑇 , algorithm predictors, and

timeout predictors

31: else
32: validation runtime ← Call Voting Mechanism with validation set 𝑉 and algorithm

predictors

33: test runtime← Call Voting Mechanism with test set 𝑇 and algorithm predictors

34: end if
35: if Dynamic timeout is used then
36: if validation runtime >= previous validation runtime then
37: dynamic timeout += timeout increase rate
38: end if
39: end if
40: end while

9

B Analysis of Uncertainty Measurement Behaviours in Active Learning for Binary Classi-
fication

There are three main approaches for uncertainty sampling in active learning. However, in a binary

classification setting (which is what we use) these approaches perform identically to each other. We

explain the different approaches here. Figure 3 shows the behaviour of these uncertainty sampling

methods graphically.

We implement ‘Least Confidence‘ in our code.

• Least Confidence: for a given input 𝑥 and an output label 𝑦, we can measure the posterior

probability 𝑃 (𝑦 |𝑥 ;𝜃) of observing 𝑦 given 𝑥 via the current model (parameterised by 𝜃). The

Least Confidence method selects data points 𝑥∗ with the smallest maximum posterior probability

across all labels:

𝑥∗ = argmin

𝑥

max

�̂�
𝑃 (𝑦 |𝑥 ;𝜃) (1)

• Margin-based: this approach takes the two highest posterior probability values for each input

data point 𝑥 and calculates their difference. The smaller the difference, the less certain the model

is about its prediction and vice versa. More formally, let 𝑦1 and 𝑦2 the output labels with the

highest and second-highest posterior probabilities for a given input 𝑥 , respectively, the queried

points 𝑥∗ are chosen as:

𝑥∗ = argmin

𝑥

𝑃 (𝑦1 |𝑥 ;𝜃) − 𝑃 (𝑦2 |𝑥 ;𝜃) (2)

• Entropy-based: this approach takes into account the posterior probability values across all output
classes. The idea is to select the data points 𝑥∗ where there is a high entropy among the predicted

output labels:

𝑥∗ = argmax

𝑥

−
∑︁
𝑖

𝑃 (𝑦 |𝑥 ;𝜃) log 𝑃 (𝑦 |𝑥 ;𝜃) (3)

10

0.5 0.6 0.7 0.8 0.9 1.0
Highest Class Probability x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Un
ce

rta
in

ty
 M

ea
su

re

Min Value -0.50

Min Value 0.00

Min Value -1.00

Uncertainty Measurements as a Function of Highest Class Probability
Least Confidence
Margin Sampling
Entropy-based Sampling

Figure 3: Uncertainty measurements as a function of the highest class probability. The red curve

represents the Least Confidence uncertainty (LC) calculated as 𝐿𝐶 = 𝑥 − 1, the green curve

denotes Margin Sampling (MS) using the formula 𝑀𝑆 = 𝑥 − (1 − 𝑥), and the blue curve

illustrates the Entropy-based method (𝐻 (𝑥) = −[𝑥 log
2
(𝑥) + (1 − 𝑥) log

2
(1 − 𝑥)]). Critical

minimum values for each method are marked with black circles and annotated to emphasise

the points where the uncertainty function is minimised.

C Performance of 8 Individual Configurations and Best Configuration

Figure 4 illustrates a side-by-side comparison of the following eight active learning strategies in

binary classification without aggregation across configurations:

• Uncertainty Sampling (Baseline)

• Uncertainty Sampling with Timeout Predictor (TO)

• Uncertainty Sampling with Dynamic Timeout (DT)

• Uncertainty Sampling with Timeout Predictor and Dynamic Timeout (TO+DT)

• Random Sampling (Baseline)

• Random Sampling with Timeout Predictor (TO)

• Random Sampling with Dynamic Timeout (DT)

• Random Sampling with Timeout Predictor and Dynamic Timeout (TO+DT)

Figure 5 shows the performance comparison of the best configuration in the experiment,

disaggregated by approach.

11

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

AS
P-

PO
TA

SS
CO

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

CP
M

P-
20

15

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

0.3

0.4

M
AX

SA
T1

9-
UC

M
S

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.2

0.4

0.6

QB
F-

20
11

 M

in
 In

st
an

ce
 C

os
t

Uncertainty (NO TO & NO DT)
Uncertainty (DT)
Uncertainty (TO)

Uncertainty (TO+DT)
Random (NO TO & NO DT)
Random (DT)

Random (TO)
Random (TO+DT)

Figure 4: Comparison of performance across eight configurations as described in the paper. Each

configuration was normalised according to the passive learning prediction performance ratio.

0.0 0.5 1.0
Runtime Ratio

0.000

0.025

0.050

0.075

0.100

AS
P-

PO
TA

SS
CO

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

CP
M

P-
20

15

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

0.15

CS
P-

20
10

 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

0.15

M
AX

SA
T1

2-
PM

S
 M

in
 In

st
an

ce
 C

os
t

0.0 0.5 1.0
Runtime Ratio

0.00

0.05

0.10

M
AX

SA
T1

9-
UC

M
S

 M
in

 In
st

an
ce

 C
os

t

0.0 0.5 1.0
Runtime Ratio

0.0

0.1

0.2

QB
F-

20
11

 M

in
 In

st
an

ce
 C

os
t

Uncertainty (TO+DT) Random (TO+DT)

Figure 5: Comparison of TO+DT options presented in Figure 2, disaggregated by instance selection

approach. No single option (uncertainty-based vs random instance selection) emerged as the

clear winner.

D Experimental Setup

This study used a Random Forest classifier configured with 100 estimators and the Gini impurity

measure to determine the best splits. Each tree is limited to using up to the square root of the

number of features, and the depth of the decision trees is practically unlimited (with a maximum

depth set to 2
31
). Nodes require at least two samples before splitting, and bootstrapping is enabled

12

for sampling data when building each decision tree. These settings were determined through

experimentation in the passive learning setup and were consistently used throughout the study.

We also addressed missing data by removing features where more than 20% of the instances

had missing values and applied a median imputer to fill the remaining gaps.

We employed a cross-validation approach with 10 splits to validate the robustness of our study.

To ensure reproducibility, we used 5 distinct seeds (7, 42, 99, 123, 12345) across our experiments,

ensuring consistent generalization across multiple runs.

To determine when to increase the timeout in configurations where dynamic timeout is used,

10% of the training set was allocated as the validation set. Throughout the experiments, timeout

values were scaled by a factor of 10, following the PAR10 measure.

The performance of all eight configurations of the frugal algorithm selection methods was

evaluated using six datasets from ASLib, selected for their diverse characteristics. These datasets

span various problem-solving domains, including one from Answer Set Programming (ASP), two

from Constraint Programming (CP), two from propositional satisfiability (SAT), and one from

Quantified Boolean Formula (QBF) solving. The datasets differ significantly in complexity and

size, featuring between 2 to 11 algorithm options, 22 to 138 features, and 527 to 2024 instances.

We chose these six specific datasets to evaluate different domains and problem characteristics

comprehensively.

Additional Parameters and Configurations:
Timeout Predictor Usage: This parameter determines whether the timeout predictor is used

on the system.

Timeout Limit: Sets the initial time for the dynamic timeout. We used an initial timeout of 100

seconds when employing dynamic timeout, and a fixed timeout of 3600 seconds when not using

dynamic timeout.

Timeout Increase Rate: Adjusts the dynamic timeout when there is no improvement in pre-

diction performance on the validation set. We set this rate to increase by 100 seconds when no

improvement was observed.

Initial Train Size: Determines the size of the initial training set for uncertainty selection. The

initial training set was created by randomly selecting 20 data points from the overall training set.

Query Size: Refers to the percentage of the dataset queried in each iteration. We set this to 1%,

meaning 1% of the total pool of candidates was queried in each iteration of our experiments.

For active learning, we utilized the modAL framework [6], which facilitated the implementation

of uncertainty sampling and other active learning strategies in our experiments.

This work used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)

funded by the University of Edinburgh and EPSRC (EP/P020267/1). The total CPU time for both the

training and evaluation of the passive learning, uncertainty selection model, and random selection,

was 1291.48 hours.

E Description Table of Selected Datasets

Table 1 shows key information about the datasets used in this study. It includes the time it took for

the algorithms to run, the Virtual Best Solver(VBS) representing the best algorithm for each problem,

and the Single Best Solver (SBS) as the best overall algorithm. While VBS is the hypothetical best,

SBS serves as a benchmark for comparison against other algorithms.

13

Dataset Instances Algorithms Features Total Time VBS SBS

ASP-POTASSCO 1294 11 138 2,085h 8h 112h

CPMP-2015 527 4 22 682h 33h 134h

CSP-2010 2024 2 86 435h 49h 82h

MAXSAT12-PMS 876 6 37 1,472h 8h 85h

MAXSAT19-UCMS 572 7 54 545h 20h 52h

QBF-2011 1368 5 46 352h 28h 300h

Table 1: Descriptive statistics of selected datasets. Times rounded to the nearest whole number.

F Timeout (TO) Configuration Impact on Passive Learning

Figure 6 illustrates that the TO configuration in passive learning does not lead to a substantial

improvement in performance on the test set. This observation was made in the context of selecting

a baseline for comparing the performance of random and uncertainty selection.

Given that the TO configuration does not significantly enhance performance, and considering

that it adds an extra layer of complexity to the model, the decision was made to use a simpler

configuration for the passive learning model. Therefore, the passive learning model without a

timeout predictor was chosen as the baseline for the comparisons.

ASP-P
OTA

SSCO

CPMP-20
15

CSP-20
10

MAXSAT12
-P

MS

MAXSAT19
-U

CMS

QBF-20
11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 R
un

tim
e

Passive Learning
Passive Learning (TO)

Figure 6: Comparison of Timeout (TO) Configuration Impact on Passive Learning: The graph illus-

trates that implementing the TO configuration in passive learning on the test set does not

significantly enhance performance, yet importantly, it does not compromise prediction accu-

racy either.

14

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our research

has no identified potential negative societal impacts.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] The paper conforms to the ethics

review guidelines

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] See Appendix D

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] See Appendix D

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] The variance across seeds and splits are presented in all plots. The exact

values can be extracted from the raw data available in the repository.

(e) Did you report the statistical significance of your results? [No]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] The time dimension in our experiment is the amount of labelling cost on

the training dataset. We showed how well each configuration perform when the labelling

cost is increased. The maximum duration is naturally defined as the labelling cost of the

full training dataset.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)?

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] In our study, we conducted ablation studies by exploring eight configurations, each

representing a unique combination of key components in our approach.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] We provided an anonymous GitHub link in

the paper containing all necessary code, data, and instructions to reproduce the main

experimental results, including requirements.txt with explicit versions, random seeds, and

an instructive README with installation and execution commands

15

https://2022.automl.cc/ethics-accessibility/

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [No] Since we are not utilizing synthetic datasets, we don’t have any small

subset or toy data available for replication.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] We ensured code quality by providing a detailed README

file that includes key parameters and an example script for running the code

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] We have included the raw experimental results in the repository along

with the code, data, and instructions

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The code, additional data, and

instructions required to generate the figures and tables in our paper based on the raw results

are available on GitHub.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] We cited the creators of the dataset (Aslib),

framework (modAL), and computing resource (Cirrus) used in our paper

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes] We followed AsLib’s rules for citing datasets,

making sure we gave credit to all the sources of data in our paper.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]The data we used does not include any personally

identifiable information or offensive content

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

Our project uses The 3-Clause BSD License. The full license details will be available in our

GitHub repository once it is made public.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] The new assets are included in the repository provided in

the paper. It can be accessible through the repository URL mentioned in the paper.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] Research does not involve any human or animal participants

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] Research does not involve any human or animal

participants

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] Research does not involve any human or animal

participants

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We don’t have any

theoretical results

16

(b) Did you include complete proofs of all theoretical results? [N/A] We don’t have any

theoretical results

17

	Introduction
	Frugal Algorithm Selection
	Instance Selection: Uncertainty-based vs Random
	Timeout Predictor
	Dynamic Timeout

	Experimental Results
	Related Work
	Broader Impact Statement
	Limitations
	Conclusion
	Frugal Algorithm Selection Mechanism
	Analysis of Uncertainty Measurement Behaviours in Active Learning for Binary Classification
	Performance of 8 Individual Configurations and Best Configuration
	Experimental Setup
	Description Table of Selected Datasets
	Timeout (TO) Configuration Impact on Passive Learning

