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Abstract
The task of translating between programming lan-
guages differs from the challenge of translating
natural languages in that programming languages
are designed with a far more rigid set of structural
and grammatical rules. Previous work has used
a tree-to-tree encoder/decoder model to take ad-
vantage of the inherent tree structure of programs
during translation. Neural decoders, however, by
default do not exploit known grammar rules of
the target language. In this paper, we describe a
tree decoder that leverages knowledge of a lan-
guage’s grammar rules to exclusively generate
syntactically correct programs. We find that this
grammar-based tree-to-tree model outperforms
the state of the art tree-to-tree model in translat-
ing between two programming languages on a
previously used synthetic task.

1. Introduction
Program translation is the process of converting code in one
programming language to code in another, ideally with min-
imal human effort. It has the possibility to significantly alter
the ways in which programs are developed. With a perfect
translator, a programmer could freely choose a program-
ming language to use without regard to whether the chosen
language is the most efficient for the task at hand. Effective
program translation would thus enable programmers to fo-
cus on the content and development of a specific program as
opposed to the details of a particular language. With such a
translation method, a developer could easily import code to
different platforms, streamlining the development process.

Programming languages are similar to natural languages
in many ways, and natural language translation has been
studied extensively. Sequence-to-sequence translation mod-
els, which map input sequences to output sequences, have
achieved great performance (Bahdanau et al., 2014; Cho
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et al., 2014; Eriguchi et al., 2016; Vaswani et al., 2017).
While similar to natural languages, programming languages
have a distinct structure which makes it harder to use the
same tools for translation. For instance, the RNN-based
sequence generator, which easily generates phrases in a nat-
ural language, finds it difficult to generate long syntactically
correct programs (Karpathy et al., 2015).

Techniques for program language translation are often vari-
ants of statistical machine translation (SMT) (Lopez, 2008),
which involves modeling the probability distribution of
phrases in the target language given phrases in the source
language. Nguyen found SMT methods from NLP applied
to programming language translation produced many syn-
tactically incorrect programs (Nguyen et al., 2013). They
later found that SMT methods could be improved by incor-
porating knowledge of program syntax (2016a). They also
saw success matching tokens in different languages through
similarities in their usage in context (Nguyen et al., 2016b).

Recently, there has been a rise in the use of neural networks
for programming language tasks. Neural networks have
been applied to code-generation tasks converting images to
code (Beltramelli, 2017) and converting text to code (Yin
& Neubig, 2017). They have also been applied to tasks
like program induction (Bunel et al., 2016) and program
classification (Peng et al., 2015).

Recent work applied tree-based neural networks to pro-
gramming language translation (Chen et al., 2018). Their
tree-to-tree encoder/decoder model performed better than
sequence-to-sequence models and improved on state-of the
art program translation approaches by margins of 20 points
for real-world translation projects.

However, this tree-to-tree program translation model faces
various issues, including the generation of syntactically in-
valid programs and inefficiencies stemming from the need to
generate end of tree tokens at each branch of the underlying
abstract syntax tree (AST). Our work makes this tree-to-tree
model more efficient by leveraging the grammar of the lan-
guage to generate only syntactically correct programs and
removing redundant notation such as end of tree node to
decrease the number of required operations in the model.

The remainder of this paper is organized as follows. Section
2 presents the tree-to-tree model and discusses prior work.
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Section 3 presents the framework for our work. Section 4
describes our experiments and presents our results. Lastly,
Section 5 concludes and mentions directions for future work.

2. Background
Our model is heavily inspired by the tree-to-tree en-
coder/decoder model introduced by Chen et al. Their model
employs a tree LSTM (Tai et al., 2015) to encode the source
tree. First, the input program tree is binarized using the
Left-Child Right-Sibling representation. The input tree is
then encoded by an LSTM beginning at the leaves of the
tree (Chen et al., 2018).

Each node N in the tree has a token ts and up to two chil-
dren; a left child NL and a right child NR. If the chil-
dren maintain LSTM states (hL, cL) and (hR, cR), then the
LSTM state (h, c) for N is computed as:

(h, c) = LSTM(([hL : hR], [cL, cR]), ts). (1)

The hidden state and cell state of any missing children are
represented as vectors of zeros.

The decoder then generates the target tree by inserting the
LSTM state of the root into a queue of nodes to be expanded.
While the queue contains elements, one is popped out and
an attention mechanism is applied to determine what nodes
in the input tree are most relevant (Chen et al., 2018). The
attention mechanism is based on computing a dot product
of a representation of the hidden state with all the encoded
representations from the input tree (Luong et al., 2015) and
produces a context vector es. From there, the hidden state
and the context vector are used to determine the probabilities
of the next token as shown in Equations (2) and (3).

et = tanh(W1[es;h]) (2)

tt = argmax softmax(Wet) (3)

W and W1 are trainable weigh matrices. If the generated
token tt is not <EOS>, the decoder will then generate two
children for the expanding node.

Chen et al. then generate the LSTM state for each
of the node’s children with another set of LSTMs
LSTM1 . . . LSTMm, where m is the maximum number
of children a node can have (in their case two, since output
trees were binarized as well). Hidden and cell states for the
ith child of N are generated from its hidden and cell states
(h, c) as follows:

(hi, ci) = LSTMi((h, c), [Btt; et]) (4)

where B is an embedding matrix. To help the LSTM incor-
porate information from a node’s attention when generating
its children, they use parent attention feeding — concatenat-
ing the embedding representation of the parent’s value with
its attention vector before feeding them into the LSTM. The
child nodes are then pushed into the queue of nodes to be
expanded. Tree generation stops when the queue is empty.

Recent work by Yin and Neubig (2017) developed a
grammar-based neural architecture. Their neural network
was able to generate complex Python programs from natu-
ral language descriptions by converting a natural language
statement into a syntactically correct AST for the target
language. This network, however, generates nodes as a se-
ries of sequential instructions to extend or terminate a tree
branch rather than directly utilizing the tree structure.

In this paper, we apply the concept of a grammar model
to the task of program language translation. We leverage
the target language’s grammar rules to enhance translation
accuracy. The benefits of using grammar rules are that
they generate only syntactically valid programs and they
eliminate the redundancy of the end of tree token, thus
increasing training speed.

3. Grammar-Based Tree-to-Tree model

Figure 1. This diagram, adapted from Chen et al., shows a target
tree being generated by a binarized input tree. When a node
is expanded (green block), it can only generate children from
grammatically correct choices (purple blocks) and add them to the
queue of unexpanded nodes (gray). Our attention mechanism lets
the decoder focus on relevant nodes in the input (yellow blocks).

We implement a tree-to-tree encoder/decoder model pat-
terned off (Chen et al., 2018). The tree encoder is almost
identical to the one described in the paper except that our
model does not use dropout (Srivastava et al., 2014) as we
did not find it improved training accuracy. However, we
modify their tree decoder to make use of the grammar of the
target language when generating nodes. Unlike in the paper
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by Chen et al., we do not binarize the output tree, because
the target language’s grammar rules cannot easily be applied
to trees in which a node’s siblings can appear as its children.

To generate a node’s children, we first call a function that
returns a list of the categories of tokens that can be gener-
ated by that node at each child index. A category is a unique
set of valid children. For instance, in the language FOR
(described further in the Experiments section), the node
<PLUS> can generate tokens in the Expression category:
(<PLUS>,<MINUS>,<VAR>, or<CONST>). Each cat-
egory k has an associated learnable weight matrix Wk.

To generate each child, we create a node embedding et
computed the same way as the tree decoder by (Chen et al.,
2018). We then generate the node’s token by finding the
most probable token out of the set of possibilities as follows:

tt = argmax softmax(Wket). (5)

Note that as the number of tokens in class k is substantially
fewer than the total number of tokens in the language, this is
an easier prediction problem than for the prior tree decoder.

After this, as in (Chen et al., 2018), we feed an embedded
representation of tt into an LSTM to compute the hidden
and cell state for each of its children. We always train using
teacher forcing (passing the true value of tt into the LSTM
rather than the generated value) because a single incorrect
token that generates different categories of children than the
correct token could make the probability of generating a
correct token for any of its children zero. This could zero
out most of our gradients, slowing down training.

The decoder iteratively creates nodes, starting at the root
and generating each child node from the hidden and cell
states generated for that child from its parent. Since the
program’s grammar does not allow tokens to be generated
from terminal tokens, branches of the tree end automatically
when a terminal is produced. This means our grammar
decoder does not have to learn to generate <EOS> tokens,
simplifying the translation task and decreasing the number
of operations the model needs to perform.

4. Experiments
We tested our grammar-based tree-to-tree model on a task
described by Chen et al. which examines the ability of a
model to translate between simple programming languages
of different paradigms. For the task, we randomly generated
a synthetic dataset of 100,000 training programs in FOR, a
simple imperative programming language created by (Chen
et al., 2018). We also generated test and validation sets
with 10,000 programs. The programs were generated by an
almost context-free probabilistic grammar. It is not fully
context-free since to avoid generating programs that used

Table 1. FOR/LAMBDA training dataset description.

METRIC FOR LAMBDA

TOTAL PROGRAM COUNT 100K 100K
AVERAGE PROGRAM LENGTH 22 56
MINIMUM PROGRAM LENGTH 5 13
MAXIMUM PROGRAM LENGTH 104 299
NUMBER OF TOKENS IN LANGUAGE 32 33

variables before they were defined, we kept track of previ-
ously defined variables and only used those in expressions.
These programs were then fed into a translator function
that converts them into a simple functional language called
LAMBDA also created by (Chen et al., 2018). More dataset
details are available in Table 1.

In Table 2, we compare our model’s performance to the base-
lines described by (Chen et al., 2018) and to our own reim-
plemented tree-to-tree and tree-to-sequence models with the
architecture and hyperparameters described by Chen et. al.
For the hyperparameters of the grammar model we simply
used the tree-to-tree model’s hyperparameters and did not
try to optimize them. Each model was trained 5 times over
half a million examples. We also ran one of each of our
three models to convergence (30 epochs). Program accuracy
was measured on the test set by counting the percentage of
perfectly correct translated programs.

Figure 2. Average validation accuracy for grammar, tree2tree, and
tree2seq model for 5 epoch runs.

Results are summarized in Figure 2 and Table 2. The
grammar-based model achieved an average 88.82% accu-
racy, outperforming our reimplementation of the tree-to-tree
model and tree-to-seq model. When run to convergence,
the difference in accuracy among the models decreased but
the grammar model remains more accurate. In addition,
the grammar model converges more stably than the other
models as the standard deviation of its accuracy is much
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Table 2. Program Accuracy on the FOR/LAMBDA translation task. Since our datasets are not identical, performance of the reimplemented
Tree2Tree and Tree2Seq models does not perfectly match the results reported by (Chen et al., 2018). The Chen et al. have some entries as
N/A as they don’t mention multiple runs. The last three rows display the results of running our models to complete convergence.

MODEL MEAN ACCURACY σ ACCURACY

GRAMMAR TREE2TREE 88.82% 0.64%
REIMPLEMENTED TREE2TREE 80.69% 7.02%
REIMPLEMENTED TREE2SEQ 83.59% 3.95%
CHEN ET AL. TREE2TREE (EASY) 99.76% N/A
CHEN ET AL. TREE2SEQ (EASY) 98.36% N/A
CHEN ET AL. TREE2TREE (HARD) 97.50% N/A
CHEN ET AL. TREE2SEQ (HARD) 87.84% N/A
(LONG) GRAMMAR TREE2TREE 93.70% N/A
(LONG) REIMPLEMENTED TREE2TREE 91.89% N/A
(LONG) REIMPLEMENTED TREE2SEQ 90.60% N/A

smaller (while the tree2tree model’s convergence depends a
lot more on random seed). The grammar model’s average
run beat the best run of both baselines.

The reimplemented tree-to-tree and tree-to-seq models
performed worse than the results reported by (Chen et al.,
2018). This discrepancy could be caused by differences
between the complexity of our datasets. Since their dataset
was unavailable, we implemented a dataset with similar
average program lengths. However, our dataset may have
used more variables or constants, and it had much greater
variation in program lengths. Our average program length
was about the length of the programs in the easy version
of their task, but our programs with longest length were
about twice as long as the programs in the hard version
of their task. It is also possible that despite our attempt to
faithfully re-implement (Chen et al., 2018) that there are
slight differences between the two tree-to-tree models as we
lacked their code. Any of those differences would be shared
with the grammar model as except for the code correspond-
ing to the decoder, they shared all of their code. To make
it easier for future research to evaluate on the same task,
we release our dataset and experiment code here, https:
//www.dropbox.com/sh/1q4aejr57jk40fs/
AADKTvgKqLHuIIzNdlANjGRea?dl=0.

5. Conclusion
This paper proposes a grammar-based program language
translation approach using a grammar decoder that outper-
forms the state of the art tree-to-tree models for program
language translation in both number of operations needed
and accuracy. Future work will explore ways to improve
convergence and broaden the practical applicability of our
approach to various real programming translation problems.

One limitation to this approach is the practical difficulty

of obtaining the training data needed to apply this model
to a new pair of languages. Training requires a parallel
corpus of programs in two languages. Previous researchers
such as (Chen et al., 2018) have obtained such datasets by
using languages with an explicit translator between them
(which largely obviates the need for a neural translation
program) or by finding real-world programs implemented
in both programs (which may be difficult to obtain).

Our model also requires a formal grammar for the target
language. In the absence of a grammar, we could approxi-
mate a grammar from the training set by recording all child
tokens of each unique token, but this could make our model
incapable of generating rare but valid syntactic patterns.

Finally, our model currently caps the number of variable
names and literals at a fixed number determined before
training. Future work could explore alternative ways to
generate arbitrarily many variables and literals by copying
them from the input program using a method similar to that
implemented by (Yin & Neubig, 2017).

In future work, we will integrate other ideas from natural
language translation to our tasks. One possibility includes
self-attention (Vaswani et al., 2017), a mechanism that pro-
vides the model at each time step with its state at previous
time steps and may help the model learn more complex
relationships among parts of the program. We could also
integrate a language model into our decoder to help with
translating unusual expressions not seen in the training data.

Our current approach makes parallelization of the training
process difficult. Since every tree has a different struc-
ture, we cannot batch training examples together for faster
processing on GPUs. Sequence-to-sequence models can
circumvent this by batching programs of the same size or
padding shorter sequences. We will need to explore methods
of batching tree generation and apply them to our model.

https://www.dropbox.com/sh/1q4aejr57jk40fs/AADKTvgKqLHuIIzNdlANjGRea?dl=0
https://www.dropbox.com/sh/1q4aejr57jk40fs/AADKTvgKqLHuIIzNdlANjGRea?dl=0
https://www.dropbox.com/sh/1q4aejr57jk40fs/AADKTvgKqLHuIIzNdlANjGRea?dl=0
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