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ABSTRACT

Recent work in network quantization has substantially reduced the time and space
complexity of neural network inference, enabling their deployment on embedded
and mobile devices with limited computational and memory resources. However,
existing quantization methods often represent all weights and activations with the
same precision (bit-width). In this paper, we explore a new dimension of the de-
sign space: quantizing different layers with different bit-widths. We formulate
this problem as a neural architecture search problem and propose a novel differ-
entiable neural architecture search (DNAS) framework to efficiently explore its
exponential search space with gradient-based optimization. Experiments show we
surpass the state-of-the-art compression of ResNet on CIFAR-10 and ImageNet.
Our quantized models with 21.1x smaller model size or 103.9x lower computa-
tional cost can still outperform baseline quantized or even full precision models.

1 INTRODUCTION

Recently, ConvNets have become the de-facto method in a wide range of computer vision tasks,
achieving state-of-the-art performance. However, due to high computation complexity, it is non-
trivial to deploy ConvNets to embedded and mobile devices with limited computational and storage
budgets. In recent years, research efforts in both software and hardware have focused on low-
precision inference of ConvNets. Most of the existing quantization methods use the same precision
for all (or most of) the layers of a ConvNet. However, such uniform bit-width assignment can be
suboptimal since quantizing different layers can have different impact on the accuracy and efficiency
of the overall network. Although mixed precision computation is widely supported in a wide range
of hardware platforms such as CPUs, FPGAs, and dedicated accelerators, prior efforts have not
thoroughly explored the mixed precision quantization of ConvNets.

For a ConvNet with N layers and M candidate precisions in each layer, we want to find an op-
timal assignment of precisions to minimize the cost in terms of model size, memory footprint or
computation, while keeping the accuracy. An exhaustive combinatorial search has exponential time
complexity (O(MN )). Therefore, we need a more efficient approach to explore the design space.

In this work, we propose a novel, effective, and efficient differentiable neural architecture search
(DNAS) framework to solve this problem. The idea is illustrated in Fig. 1. The problem of neural
architecture search (NAS) aims to find the optimal neural net architecture in a given search space.
In the DNAS framework, we represent the architecture search space with a stochastic super net
where nodes represent intermediate data tensors of the super net (e.g., feature maps of a ConvNet)
and edges represent operators (e.g., convolution layers in a ConvNet). Any candidate architecture
can be seen as a child network (sub-graph) of the super net. When executing the super net, edges
are executed stochastically and the probability of execution is parameterized by some architecture
parameters θ. Under this formulation, we can relax the NAS problem and focus on finding the
optimal θ that gives the optimal expected performance of the stochastic super net. The child network
can then be sampled from the optimal architecture distribution.

We solve for the optimal architecture parameter θ by training the stochastic super net with SGD
with respect to both the network’s weights and the architecture parameter θ. To compute the gra-
dient of θ, we need to back propagate gradients through discrete random variables that control the
stochastic edge execution. To address this, we use the Gumbel SoftMax function (Jang et al. (2016))
to “soft-control” the edges. This allows us to directly compute the gradient estimation of θ with
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a controllable trade-off between bias and variance. Using this technique, the stochastic super net
becomes fully differentiable and can be effectively and efficiently solved by SGD.
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Figure 1: Illustration of a stochastic super net. Nodes represent data tensors and edges represent op-
erators. Edges are executed stochastically following the distribution Pθ. θ denotes the architecture
parameter and w denotes network weights. The stochastic super net is fully differentiable.

We apply the DNAS framework to solve the mixed precision quantization problem, by constructing
a super net whose macro architecture (number of layers, filter size of each layer, etc.) is the same as
the target network. Each layer of the super net contains several parallel edges representing convolu-
tion operators with quantized weights and activations with different precisions. We show that using
DNAS to search for layer-wise precision assignments for ResNet models on CIFAR10 and Ima-
geNet, we surpass the state-of-the-art compression. Our quantized models with 21.1x smaller model
size or 103.9x smaller computational cost can still outperform baseline quantized or even full preci-
sion models. The DNAS pipeline is very fast, taking less than 5 hours on 8 V100 GPUs to complete
a search on ResNet18 for ImageNet, while previous NAS algorithms (such as Zoph & Le (2016))
typically take a few hundred GPUs for several days. Last, but not least, DNAS is a general archi-
tecture search framework that can be applied to other problems such as efficient ConvNet-structure
discovery. Due to the page limit, we will leave the discussion to future publications.

2 RELATED WORK

Network quantization received a lot of research attention in recent years. Early works such as
Han et al. (2015); Zhu et al. (2016); Leng et al. (2017) mainly focus on quantizing neural network
weights while still using 32-bit activations. Quantizing weights can reduce the model size of the
network and therefore reduce storage space and over-the-air communication cost. More recent works
such as Rastegari et al. (2016); Zhou et al. (2016); Choi et al. (2018); Jung et al. (2018); Zhuang
et al. (2018) quantize both weights and activations to reduce the computational cost on CPUs and
dedicated hardware accelerators. Most of the works use the same precision for all or most of the
layers of a network. The problem of mixed precision quantization is rarely explored.

Neural Architecture Search becomes an active research area in recent two years. Zoph & Le
(2016) first propose to use reinforcement learning to generate neural network architectures with
high accuracy and efficiency. However, the proposed method requires huge amounts of computing
resources. Pham et al. (2018) propose an efficient neural architecture search (ENAS) framework
that drastically reduces the computational cost. ENAS constructs a super network whose weights
are shared with its child networks. They use reinforcement learning to train an RNN controller to
sample better child networks from the super net. More recently, Liu et al. (2018) propose DARTS, a
differentiable architecture search framework. DARTS also constructs a super net whose edges (can-
didate operators) are parameterized with coefficients computed by a SoftMax function. The super
net is trained and edges with the highest coefficients are kept to form the child network. Our pro-
posed DNAS framework is different from DARTS since we use a stochastic super net – in DARTS,
the execution of edges are deterministic and the entire super net is trained together. In DNAS, when
training the super net, child networks are sampled, decoupled from the super net and trained inde-
pendently. The idea of super net and stochastic super net is also used in Saxena & Verbeek (2016);
Veniat & Denoyer (2017) to explore macro architectures of neural nets. Another related work is He
et al. (2018), which uses AutoML for model compression through network pruning. To the best of
our knowledge, we are the first to apply neural architecture search to model quantization.

3 MIXED PRECISION QUANTIZATION

Normally 32-bit (full-precision) floating point numbers are used to represent weights and activations
of neural nets. Quantization projects full-precision weights and activations to fixed-point numbers
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with lower bit-width, such as 8, 4, and 1 bit. We follow DoReFa-Net (Zhou et al. (2016)) to quantize
weights and PACT (Choi et al. (2018)) to quantize activations. See Appendix A for more details.

For mixed precision quantization, we assume that we have the flexibility to choose different preci-
sions for different layers of a network. Mixed precision computation is widely supported by hard-
ware platforms such as CPUs, FPGAs, and dedicated accelerators. Then the problem is how should
we decide the precision for each layer such that we can maintain the accuracy of the network while
minimizing the cost in terms of model size or computation. Previous methods use the same precision
for all or most of the layers. We expand the design space by choosing different precision assignment
from M candidate precisions at N different layers. While exhaustive search yields O(MN ) time
complexity, our automated approach is efficient in finding the optimal precision assignment.

4 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

4.1 NEURAL ARCHITECTURE SEARCH

Formally, the neural architecture search (NAS) problem can be formulated as

min
a∈A

min
wa

L(a,wa) (1)

Here, a denotes a neural architecture, A denotes the architecture space. wa denotes the weights of
architecture a. L(·, ·) represents the loss function on a target dataset given the architecture a and its
parameterwa. The loss function is differentiable with respect towa, but not to a. As a consequence,
the computational cost of solving the problem in (1) is very high. To solve the inner optimization
problem requires to train a neural network a to convergence, which can take days. The outer problem
has a discrete search space with exponential complexity. To solve the problem efficiently, we need
to avoid enumerating the search space and evaluating each candidate architecture one-by-one.

4.2 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

We discuss the idea of differentiable neural architecture search (DNAS). The idea is illustrated in
Fig. 1. We start by constructing a super net to represent the architecture space A. The super net
is essentially a computational DAG (directed acyclic graph) that is denoted as G = (V,E). Each
node vi ∈ V of the super net represents a data tensor. Between two nodes vi and vj , there can be
Kij edges connecting them, indexed as eijk . Each edge represents an operator parameterized by its
trainable weight wijk . The operator takes the data tensor at vi as its input and computes its output as
eijk (vi;w

ij
k ). To compute the data tensor at vj , we sum the output of all incoming edges as

vj =
∑
i,k

eijk (vi;w
ij
k ). (2)

With this representation, any neural net architecture a ∈ A can be represented by a subgraph
Ga(Va, Ea) with Va ⊆ V,Ea ⊆ E. For simplicity, in a candidate architecture, we keep all the
nodes of the graph, so Va = V . And for a pair of nodes vi, vj that are connected by Kij candidate
edges, we only select one edge. Formally, in a candidate architecture a, we re-write equation (2) as

vj =
∑
i,k

mij
k e

ij
k (vi;w

ij
k ), (3)

where mij
k ∈ {0, 1} is an “edge-mask” and

∑
km

ij
k = 1. Note that though the value of mij

k is
discrete, we can still compute the gradient to mij

k . Let m be a vector that consists of mij
k for all

eijk ∈ E. For any architecture a ∈ A, we can encode it using an “edge-mask” vector ma. So we
re-write the loss function in equation (1) to an equivalent form as L(ma,wa).

We next convert the super net to a stochastic super net whose edges are executed stochastically.
For each edge eijk , we let mij

k ∈ {0, 1} be a random variable and we execute edge eijk when mij
k is

sampled to be 1. We assign each edge a parameter θijk such that the probability of executing eijk is

Pθij (mij
k = 1) = softmax(θijk |θij) =

exp(θijk )∑Kij

k=1 exp(θijk )
. (4)
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The stochastic super net is now parameterized by θ, a vector whose elements are θijk for all eijk ∈ E.
From the distribution Pθ, we can sample a mask vector ma that corresponds to a candidate ar-
chitecture a ∈ A. We can further compute the expected loss of the stochastic super net as
Ea∼Pθ

[L(ma,wa)]. The expectation of the loss function is differentiable with respect to wa, but
not directly to θ, since we cannot directly back-propagate the gradient to θ through the discrete
random variable ma. To estimate the gradient, we can use Straight-Through estimation (Bengio
et al. (2013)) or REINFORCE (Williams (1992)). Our final choice is to use the Gumbel Softmax
technique (Jang et al. (2016)), which will be explained in the next section. Now that the expectation
of the loss function becomes fully differentiable, we re-write the problem in equation (1) as

min
θ

min
wa

Ea∼Pθ
[L(ma,wa)] (5)

The combinatorial optimization problem of solving for the optimal architecture a ∈ A is relaxed to
solving for the optimal architecture-distribution parameter θ that minimizes the expected loss. Once
we obtain the optimal θ, we acquire the optimal architecture by sampling from Pθ.

4.3 DNAS WITH GUMBEL SOFTMAX

We use stochastic gradient descent (SGD) to solve Equation (5). The optimization process is also
denoted as training the stochastic super net. We compute the Monte Carlo estimation of the gradient

∇θ,wa
Ea∼Pθ

[L(ma,wa)] ≈ 1

B

B∑
i=1

∇θ,wa
L(mai ,wai), (6)

where ai is an architecture sampled from distribution Pθ and B is the batch size. Equation (6)
provides an unbiased estimation of the gradient, but it has high variance, since the size of the archi-
tecture space is orders of magnitude larger than any feasible batch size B. Such high variance for
gradient estimation makes it difficult for SGD to converge.

To address this issue, we use Gumbel Softmax proposed by Jang et al. (2016); Maddison et al. (2016)
to control the edge selection. For a node pair (vi, vj), instead of applying a “hard” sampling and
execute only one edge, we use Gumbel Softmax to apply a “soft” sampling. We compute mij

k as

mij
k = GumbelSoftmax(θijk |θij) =

exp((θijk + gijk )/τ)∑
k exp((θijk + gijk )/τ)

, gijk ∼ Gumbel(0, 1). (7)

gijk is a random variable drawn from the Gumbel distribution. Note that now mij
k becomes a con-

tinuous random variable. It is directly differentiable with respect to θijk and we don’t need to pass
gradient through the random variable gijk . Therefore, the gradient of the loss function with respect
to θ can be computed as

∇θEa∼Pθ
[L(ma,wa)] = Eg∼Gumbel(0,1)

[
∂L(ma,wa)

∂ma
· ∂ma(θ,g)

∂θ

]
. (8)

A temperature coefficient τ is used to control the behavior of the Gumbel Softmax. As τ →∞,mij

become continuous random variable following a uniform distribution. Therefore, in equation (3),
all edges are executed and their outputs are averaged. The gradient estimation in equation (6) are
biased but the variance is low, which is favorable during the initial stage of the training. As τ → 0,
mij gradually becomes a discrete random variable following the categorical distribution of Pθij .
When computing equation (3), only one edge is sampled to be executed. The gradient estimation
then becomes unbiased but the variance is high. This is favorable towards the end of the training. In
our experiment, we use an exponential decaying schedule to anneal the temperature as

τ = T0 exp(−η × epoch), (9)

where T0 is the initial temperature when training begins. We decay the temperature exponentially
after every epoch. Using the Gumbel Softmax trick effectively stabilizes the super net training.

In some sense, our work is in the middle ground of two previous works: ENAS by Pham et al. (2018)
and DARTS by Liu et al. (2018). ENAS samples child networks from the super net to be trained
independently while DARTS trains the entire super net together without decoupling child networks
from the super net. By using Gumbel Softmax with an annealing temperature, our DNAS pipeline
behaves more like DARTS at the beginning of the search and behaves more like ENAS at the end.
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4.4 THE DNAS PIPELINE

Based on the analysis above, we propose a differentiable neural architecture search pipeline, sum-
marized in Algorithm 1. We first construct a stochastic super net G with architecture parameter θ
and weightw. We trainG with respect tow and θ separately and alternately. Training the weightw
optimizes all candidate edges (operators). However, different edges can have different impact on the
overall performance. Therefore, we train the architecture parameter θ, to increase the probability
to sample those edges with better performance, and to suppress those with worse performance. To
ensure generalization, we split the dataset for architecture search into Xw, which is used specifically
to train w, and Xθ, which is used to train θ. The idea is illustrated in Fig. 1.

In each epoch, we anneal the temperature τ for gumbel softmax with the schedule in equation (9).
To ensure w is sufficiently trained before updating θ, we postpone the training of θ for Nwarmup
epochs. Through the training, we draw samples a ∼ Pθ. These sampled architectures are then
trained on the training dataset Xtrain and evaluated on the test set Xtest.

Algorithm 1: The DNAS pipeline.
Input: Stochastic super net G = (V,E) with parameter θ and w, searching dataset Xw and Xθ,

training dataset Xtrain, test dataset Xtest;
1 QA ← ∅ ;
2 for epoch = 0, · · ·N do
3 τ ← T0 exp(−η × epoch);
4 Train G with respect to w for one epoch;
5 if epoch > Nwarmup then
6 Train G with respect to θ for one epoch;
7 Sample architectures a ∼ Pθ; Push a to QA;
8 end
9 end

10 for a ∈ QA do
11 Train a on Xtrain to convergence;
12 Test a on Xtest;
13 end

Output: Trained architectures QA.

5 DNAS FOR MIXED PRECISION QUANTIZATION

We use the DNAS framework to solve the mixed precision quantization problem – deciding the
optimal layer-wise precision assignment. For a ConvNet, we first construct a super net that has the
same “macro-structure” (number of layers, number of filters each layer, etc.) as the given network.
As shown in Fig. 2. Each node vi in the super net corresponds to the output tensor (feature map) of
layer-i. Each candidate edge ei,i+1

k represents a convolution operator whose weights or activation
are quantized to a lower precision.

…
Edge	Probability

……

Layer-(i) Layer-(i+1)

32-bit	conv

8-bit	conv

1-bit	conv

Figure 2: One layer of a super net for mixed precision quantization of a ConvNet. Nodes in the
super net represent feature maps, edges represent convolution operators with different bit-widths.
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In order to encourage using lower-precision weights and activations, we define the loss function as
L(a,wa) = CrossEntropy(a)× C(Cost(a)). (10)

Cost(a) denotes the cost of a candidate architecture and C(·) is a weighting function to balance the
cross entropy term and the cost term. To compress the model size, we define the cost as

Cost(a) =
∑
eijk ∈E

mij
k × #PARAM(eijk )× weight-bit(eijk ), (11)

where #PARAM(·) denotes the number of parameters of a convolution operator and weight-bit(·)
denotes the bit-width of the weight. mij

k is the edge selection mask described in equation (3).
Alternatively, to reduce the computational cost by jointly compressing both weights and activations,
we use the cost function

Cost(a) =
∑
eijk ∈E

mij
k × #FLOP(eijk )× weight-bit(eijk )× act-bit(eijk ), (12)

where #FLOP(·) denotes the number of floating point operations of the convolution operator,
weight-bit(·) denotes the bit-width of the weight and act-bit(·) denotes the bit-width of the acti-
vation. Note that in a candidate architecture, mij

k have binary values {0, 1}. In the super net, we
allow mij

k to be continuous so we can compute the expected cost of the super net..

To balance the cost term with the cross entropy term in equation (10), we define
C(Cost(a)) = β(log(Cost(a)))γ . (13)

where β is a coefficient to adjust the initial value of C(Cost(a)) to be around 1. γ is a coefficient
to adjust the relative importance of the cost term vs. the cross-entropy term. A larger γ leads to a
stronger cost term in the loss function, which favors efficiency over accuracy.

6 EXPERIMENTS

6.1 CIFAR10 EXPERIMENTS

In the first experiment, we focus on quantizing ResNet20, ResNet56, and ResNet110 (He et al.
(2016a)) on CIFAR10 (Krizhevsky & Hinton (2009)) dataset. We start by focusing on reducing
model size, since smaller models require less storage and communication cost, which is important
for mobile and embedded devices. We only perform quantization on weights and use full-precision
activations. We conduct mixed precision search at the block level – all layers in one block use
the same precision. Following the convention, we do not quantize the first and the last layer. We
construct a super net whose macro architecture is exactly the same as our target network. For each
block, we can choose a precision from {0, 1, 2, 3, 4, 8, 32}. If the precision is 0, we simply skip this
block so the input and output are identical. If the precision is 32, we use the full-precision floating
point weights. For all other precisions with k-bit, we quantize weights to k-bit fixed-point numbers.
See Appendix B for more experiment details.

Our experiment result is summarized in Table 1. For each quantized model, we report its accuracy
and model size compression rate compared with 32-bit full precision models. The model size is
computed by equation (11). Among all the models we searched, we report the one with the highest
test accuracy and the one with the highest compression rate. We compare our method with Zhu
et al. (2016), where they use 2-bit (ternary) weights for all the layers of the network, except the first
convolution and the last fully connect layer. From the table, we have the following observations:
1) All of our most accurate models out-perform their full-precision counterparts by up to 0.37%
while still achieves 11.6 - 12.5X model size reduction. 2) Our most efficient models can achieve
16.6 - 20.3X model size compression with accuracy drop less than 0.39%. 3) Compared with Zhu
et al. (2016), our model achieves up to 1.59% better accuracy. This is partially due to our improved
training recipe as our full-precision model’s accuracy is also higher. But it still demonstrates that
our models with searched mixed precision assignment can very well preserve the accuracy.

Table 2 compares the precision assignment for the most accurate and the most efficient models for
ResNet20. Note that for the most efficient model, it directly skips the 3rd block in group-1. In Fig.
3, we plot the accuracy vs. compression rate of searched architectures of ResNet110. We observe
that models with random precision assignment (from epoch 0) have significantly worse compression
while searched precision assignments generally have higher compression rate and accuracy.
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DNAS (ours) TTQ (Zhu et al. (2016))
Full Most Accurate Most Efficient Full 2bit

ResNet20 Acc 92.35 92.72 (+0.37) 92.00 (-0.35) 91.77 91.13 (-0.64)
Comp 1.0 11.6 16.6 1.0 16.0

ResNet56 Acc 94.42 94.57 (+0.15) 94.12 (-0.30) 93.20 93.56 (+0.36)
Comp 1.0 14.6 18.93 1.0 16.0

ResNet110 Acc 94.78 95.07 (+0.29) 94.39 (-0.39) - -
Comp 1.0 12.5 20.3 - -

Table 1: Mixed Precision Quantization for ResNet on CIFAR10 dataset. We report results on
ResNet{20, 56, 110}. In the table, we abbreviate accuracy as “Acc” and compression as “Comp”.

g1b1 g1b2 g1b3 g2b1 g2b2 g2b3 g3b1 g3b2 g3b3
Most Accurate 4 4 3 3 3 4 4 3 1
Most Efficient 2 3 0 2 4 2 3 2 1

Table 2: Layer-wise bit-widths for the most accurate vs. the most efficient architecture of ResNet20.

6.2 IMAGENET EXPERIMENTS

We quantize ResNet18 and ResNet34 on the ImageNet ILSVRC2012 (Deng et al. (2009)) dataset.
Different from the original ResNet (He et al. (2016a)), we use the “ReLU-only preactivation” ResNet
from He et al. (2016b). Similar to the CIFAR10 experiments, we conduct mixed precision search at
the block level. We do not quanitze the first and the last layer. See Appendix B for more details.

We conduct two sets of experiments. In the first set, we aim at compressing the model size, so we
only quantize weights and use the cost function from equation (11). Each block contains convolution
operators with weights quantized to {1, 2, 4, 8, 32}-bit. In the second set, we aim at compressing
computational cost. So we quantize both weights and activations and use the cost function from
equation (12). Each block in the super net contains convolution operators with weights and acti-
vations quantized to {(1, 4), (2, 4), (3, 3), (4, 4), (8, 8), (32, 32)}-bit. The first number in the tuple
denotes the weight precision and the second denotes the activation precision. The DNAS search is
very efficient, taking less than 5 hours on 8 V100 GPUs to finish the search on ResNet18.

Our model size compression experiment is reported in Table 3. We report two searched results for
each model. “MA” denotes the searched architecture with the highest accuracy, and “ME” denotes
the most efficient. We compare our results with TTQ (Zhu et al. (2016)) and ADMM (Leng et al.
(2017)). TTQ uses ternary weights (stored by 2 bits) to quantize a network. For ADMM, we cite
the result with {−4, 4} configuration where weights can have 7 values and are stored by 3 bits. We
report the accuracy and model size compression rate of each model. From Table 3, we have the
following observations: 1) All of our most accurate models out-perform full-precision models by
up to 0.5% while achieving 10.6-11.2X reduction of model size. 2) Our most efficient models can
achieve 19.0 to 21.1X reduction of model size, still preserving competitive accuracy. 3) Compared
with previous works, even our less accurate model has almost the same accuracy as the full-precision
model with 21.1X smaller model size. This is partially because we use label-refinery (Bagherinezhad
et al. (2018)) to effectively boost the accuracy of quantized models. But it still demonstrate that our
searched models can very well preserve the accuracy, despite its high compression rate.

DNAS (ours) TTQ ADMM
Full MA ME Full 2bit 3bit

ResNet18 Acc 71.03 71.21 (+0.18 ) 69.58 (-1.45) 69.6 66.6 (-3.0) 68.0 (-1.6)
Comp 1.0 11.2 21.1 1.0 16.0 10.7

ResNet34 Acc 74.12 74.61 (+0.49) 73.37 (-0.75) -Comp 1.0 10.6 19.0

Table 3: Mixed Precision Quantization for ResNet on ImageNet for model size compression. In
the table, we abbreviate accuracy as “Acc” and compression as “Comp”. “MA” denotes the most
accurate model from architecture search and “ME” denotes the most efficient model.
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Full	Precision
Accuracy:	94.78%

Accuracy	gain:	+0.29%
Compression:	12.5

Accuracy	gain:	-0.39%
Compression:	20.3

Figure 3: Visualization of all searched architectures for ResNet110 and CIFAR10 dataset. x-axis is
the compression rate of each model. y-axis is the accuracy.

DNAS (ours) PACT DoReFA QIP GroupNet
arch-1 arch-2 arch-3 W4A4 W4A4 W4A4 W1A2G5

ResNet18

Acc 71.01 70.64 68.65 69.2 68.1 69.3 67.6
Full Acc 71.03 71.03 71.03 70.2 70.2 69.2 69.7
Acc ∆ -0.02 -0.39 -2.38 -1.0 -2.1 +0.1 -2.1
Comp 33.2 62.9 103.5 64 64 64 102.4

ResNet34

Acc 74.21 73.98 73.23

-Full Acc 74.12 74.12 74.12
Acc ∆ +0.09 -0.14 -0.89
Comp 40.8 59.0 87.4

Table 4: Mixed Precision Quantization for ResNet on ImageNet for computational cost compression.
We abbreviate accuracy as “Acc” and compression rate as “Comp”. “arch-{1, 2, 3}” are three
searched architectures ranked by accuracy.

Our experiment on computational cost compression is reported in Table 4. We report three searched
architectures for each model. We report the accuracy and the compression rate of the computational
cost of each architecture. We compute the computational cost of each model using equation (12).
We compare our results with PACT (Choi et al. (2018)), DoReFA (Zhou et al. (2016)), QIP (Jung
et al. (2018)), and GroupNet (Zhuang et al. (2018)). The first three use 4-bit weights and activations.
We compute their compression rate as (32/4) × (32/4) = 64. GroupNet uses binary weights and
2-bit activations, but its blocks contain 5 parallel branches. We compute its compression rate as
(32/1) × (32/2)/5 ≈ 102.4 The DoReFA result is cited from Choi et al. (2018). From table 4,
we have the following observations: 1) Our most accurate architectures (arch-1) have almost the
same accuracy (-0.02% or +0.09%) as the full-precision models with compression rates of 33.2x
and 40.8X. 2) Comparing arch-2 with PACT, DoReFa, and QIP, we have a similar compression rate
(62.9 vs 64), but the accuracy is 0.71-1.91% higher. 3) Comparing arch-3 with GroupNet, we have
slightly higher compression rate (103.5 vs. 102.4), but 1.05% higher accuracy.

7 CONCLUSION

In this work we focus on the problem of mixed precision quantization of a ConvNet to determine its
layer-wise bit-widths. We formulate this problem as a neural architecture search (NAS) problem and
propose a novel, efficient, and effective differentiable neural architecture search (DNAS) framework
to solve it. Under the DNAS framework, we efficiently explore the exponential search space of the
NAS problem through gradient based optimization (SGD). We use DNAS to search for layer-wise
precision assignment for ResNet on CIFAR10 and ImageNet. Our quantized models with 21.1x
smaller model size or 103.9x smaller computational cost can still outperform baseline quantized or
even full precision models. DNAS is very efficient, taking less than 5 hours to finish a search on
ResNet18 for ImageNet. It is also a general architecture search framework that is not limited to the
mixed precision quantization problem. Its other applications will be discussed in future publications.
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APPENDIX A WEIGHT AND ACTIVATION QUANTIZATION

For readers’ convenience, we describe the functions we use to quantize weights and activations in
this section. We follow DoReFa-Net (Zhou et al. (2016)) to quantize weights as

wk = 2Qk(
tanh(w)

2max(| tanh(w)|) + 0.5). (14)

w denotes the latent full-precision weight of a network. Qk(·) denotes a k-bit quantization function
that quantizes a continuous value w ∈ [0, 1] to its nearest neighbor in { i

2k−1 |i = 0, · · · , 2k− 1}. To
quantize activations, we follow Choi et al. (2018) to use a bounded activation function followed by
a quantization function as

y = PACT (x) = 0.5(|x| − |x− α|+ α),

yk = Qk(y/α) · α. (15)

Here, x is the full precision activation, yk is the quantized activation. PACT (·) is a function that
bounds the output between [0, α]. α is a learnable upper bound of the activation function.

APPENDIX B EXPERIMENT DETAILS

We discuss the experiment details for the CIFAR10 experiments. CIFAR10 contains 50,000 training
images and 10,000 testing images to be classified into 10 categories. Image size is 32 × 32. We
report the accuracy on the test set. To train the super net, we randomly split 80% of the CIFAR10
training set to train the weights w, and 20% to train the architecture parameter θ. We train the
super net for 90 epochs with a batch size of 512. To train the model weights, we use SGD with
momentum with an initial learning rate of 0.2, momentum of 0.9 and weight decay of 5× 10−4. We
use the cosine decay schedule to reduce the learning rate. For architecture parameters, we use Adam
optimizer (Kingma & Ba (2014)) with a learning rate of 5 × 10−3 and weight decay of 10−3. We
use the cost function from equation (11). We set β from equation (13) to 0.1 and γ to 0.9. To control
Gumbel Softmax functions, we use an initial temperature of T0 = 5.0, and we set the decaying
factor η from equation (9) to be 0.025. After every 10 epochs of training of super net, we sample 5
architectures from the distribution Pθ. We train each sampled architecture for 160 epochs and use
cutout (DeVries & Taylor (2017)) in data augmentation. Other hyper parameters are the same as
training the super net.

We next discuss the experiment details for ImageNet experiments. ImageNet contains 1,000 classes,
with roughly 1.3M training images and 50K validation images. Images are scaled such that their
shorter side is 256 pixels and are cropped to 224 × 224 before feeding into the network. We report
the accuracy on the validation set. Training a super net on ImageNet can be very computationally
expensive. Instead, we randomly sample 40 categories from the ImageNet training set to train the
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super net. We use SGD with momentum to train the super net weights for 60 epochs with a batch
size of 256 for ResNet18 and 128 for ResNet34. We set the initial learning rate to be 0.1 and reduce
it with the cosine decay schedule. We set the momentum to 0.9. For architecture parameters, we use
Adam optimizer with the a learning rate of 10−3 and a weight decay of 5 × 10−4. We set the cost
coefficient β to 0.05, cost exponent γ to 1.2. We set T0 to be 5.0 and decay factor η to be 0.065. We
postpone the training of the architecture parameters by 10 epochs. We sample 2 architectures from
the architecture distribution Pθ every 10 epochs. The rest of the hyper parameters are the same as
the CIFAR10 experiments. We train sampled architectures for 120 epochs using SGD with an initial
learning rate of 0.1 and cosine decay schedule. We use label-refinery (Bagherinezhad et al. (2018))
in training and we use the same data augmentation as this Pytorch example1.

1https://github.com/pytorch/examples/tree/master/imagenet
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