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ABSTRACT

Natural language processing has made significant inroads into learning the seman-
tics of words through distributional approaches, however representations learnt
via these methods fail to capture certain kinds of information implicit in the real
world. In particular, spatial relations are encoded in a way that is inconsistent with
human spatial reasoning and lacking invariance to viewpoint changes. We present
a system capable of capturing the semantics of spatial relations such as behind,
left of, etc from natural language. Our key contributions are a novel multi-modal
objective based on generating images of scenes from their textual descriptions,
and a new dataset on which to train it. We demonstrate that internal representa-
tions are robust to meaning preserving transformations of descriptions (paraphrase
invariance), while viewpoint invariance is an emergent property of the system.

1 INTRODUCTION

Through natural language humans are able to evoke representations in each others’ minds. When
one person describes their view of a scene their interlocutors are able to form a mental model of
the situation and imagine how the objects described would look from different viewpoints. At the
simplest level, if someone in front of you describes an object as situated to their left, you understand
that it is to your right. Current models for embedding the meaning of natural language are not able to
achieve such viewpoint integration. In fact, as shown by Gershman & Tenenbaum (2015), distributed
representations of natural language extracted from monolingual corpora fail to understand semantic
equivalences such as that ‘A is in front of B’ describes the same situation as ‘B is behind A.’.

In this paper we seek to understand how to build representations that can capture these invariances,
an important first step toward a human-level ability to perform abstract spatial reasoning. We hy-
pothesize that to capture spatial invariance in language, representation learning must be grounded
in vision. To this end, we introduce a dataset and task designed for the specific purpose of learning
and evaluating representations of spatial language. We couple 3D scenes with language descrip-
tions of several different viewpoints of a scene, facilitating the learning of spatial relations, spatial
paraphrases and rotational equivalences.

Unlike visual question answering tasks such as CLEVR (Johnson et al., 2017), this task requires
systems to read descriptions of a scene, each paired with a camera position, and create an internal
model of the described world. They must then demonstrate the efficacy of their model by generating
visual representation of the world conditioned on a viewpoint. Training a multi-modal generative
model on this dataset, we can learn scene representations in an unsupervised manner. Our approach
is to train the model to translate (multiple) natural language descriptions into images, taking into
account the viewpoints both of the input (text) and the output (image). Solving this task requires
understanding the language of spatial relations.

Finding that the model performs well on the image generation task, we analyse the constituent parts
of the model, solve the challenge posed by Gershman & Tenenbaum (2015), and provide a roadmap
to incorporating spatial understanding in language models more generally.

The main contributions of this paper are:

• We introduce two new datasets which contain language descriptions (synthetic and natural)
and visual renderings of 3D scenes from multiple viewpoints.
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• We use those datasets to learn language representations of a scene grounded in the visual
domain. We show that the model is able to form a representation of the 3D scene from
language input.

• We analyse these representations and demonstrate that they encode spatial relations and
their corresponding invariances in a way consistent with human understanding, and that
these language-based invariances arise at the level of the language encoder, with additional
viewpoint-invariance as an emergent property of the overall system.

2 RELATED WORK

We consider two lines of related work: previous efforts towards understanding spatial relations
across NLP, Computer Vision and Robotics, and more broadly work in visual question answering
where explicit visual reasoning is required.

Spatial natural language is notoriously ambiguous and difficult to process computationally. Even
seemingly simple prepositions like behind are impossible to describe categorically and require a
graded treatment (e.g. how far may a person move from behind a tree before we no longer describe
them as such). Likewise, understanding the difference between allocentric and egocentric reference
frames can easily confound (Vogel & Jurafsky, 2010; Kranjec et al., 2014). The lexicalisation of
spatial concepts can vary widely across languages and cultures (Haun et al., 2011), with added com-
plexity in how humans represent geometric properties when describing spatial experiences (Landau
& Jackendoff, 1993) and in the layering of locatives (Kracht, 2002). While there has been consid-
erable research into the relationship between categorical spatial relation processing, perception and
language understanding in humans, there are few definite conclusions on how to encode this rela-
tionship computationally (Kosslyn, 1987; Johnson, 1990; Kosslyn et al., 1998; Haun et al., 2011).

In the field of Natural Language Processing, work on spatial relations has focused on the extraction
of spatial descriptions from text and their mapping into formal symbolic languages (Kordjamshidi
et al., 2012a;b), with numerous such annotation schemes and methods proposed (Shen et al., 2009;
Bateman et al., 2010; Rouhizadeh et al., 2011). In other related work, Vogel & Jurafsky (2010)
grounded spatial language in an environment through reinforcement learning. The action- and state-
spaces of the environment however were simplified to the extent that spatial relations were repre-
sented by tuples such as west-of(A,B), turning this again into a semantic parsing problem more
than anything else.

Meanwhile research on visualising spatial descriptions has predominantly employed heavily hand
engineered representations that do not offer the generic cross task advantages of distributed rep-
resentations (Chang et al., 2014; Hassani & Lee, 2016). In robotics, spatial relations feature in
research on human-robot interaction such as (Tellex et al., 2011). Here, similar to Vogel & Jurafsky
(2010), spatial description clauses are translated into grounding graphs, with objects represented by
bounding boxes and relations by binary, geometric features such as supports(x,y).

There have been a number of datasets that bear some similarity to the dataset produced as part of
this work. The SHAPES (Andreas et al., 2016) and CLEVR datasets (Johnson et al., 2017) contain
images and (synthetic) language questions that test visual reasoning. CLEVR in particular uses a
form of 3D rendering that produces images similar to the ones used here. While on the surface, these
tasks may look similar, it is important to note that this paper is not about visual question answering,
but rather about the understanding and modelling of spatial relations. This is achieved by making
available multiple viewpoints of the same scene and presenting scenes in viewpoint-specific formats.
The key results in this work concern the text representations learnt alongside the visual ones rather
than the mapping from one to the other.

3 DATASET OF VISUALLY GROUNDED SCENE DESCRIPTIONS

We construct virtual scenes with multiple views each presented in multiple modalities: image, and
synthetic or natural language descriptions (see Figure 1). Each scene consists of two or three objects
placed on a square walled room, and for each of the 10 camera viewpoints we render a 3D view of
the scene as seen from that viewpoint as well as a synthetically generated description of the scene.
For natural language we selected a random subset of these scenes and had humans describe a given
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Figure 1: Example descriptions with corresponding ground truth image. Shown are natural (NL) and synthetic
(SYN) language descriptions. Annotation linguistic errors have been preserved.

scene and viewpoint based on the rendered image. Details on data generation are found in Appendix
B. We targeted a fairly low visual complexity of the rendered scenes since this factor is orthogonal
to the spatial relationships we want to learn. The generated scenes still allow for large linguistic
variety (see Table 1). We publish the datasets described in this paper at https://anonymous.

Table 1: Dataset statistics.

Synthetic Natural

# Training Scenes 10M 5,604
# Validation Scenes 1M 432
# Test Scenes 1M 568
Vocabulary Size 42 1,023
Tokens per Description 60 90

Synthetic language data: We generated a
dataset of 10 million 3D scenes. Each scene
contains two or three coloured 3D objects and
light grey walls and floor. The language de-
scriptions are generated programmatically, tak-
ing into account the underlying scene graph and
camera coordinates so as to describe the spatial
arrangement of the objects as seen from each
viewpoint.

Natural language data: We generated further scenes and used Amazon Mechanical Turk to collect
natural language descriptions. We asked annotators to describe the room in an image as if they
were describing the image to a friend who needs to draw the image without seeing it. We asked for
a short or a few sentence description that describes object shapes, colours, relative positions, and
relative sizes. We provided the list of object names together with only two examples of descriptions,
to encourage diversity, while focusing the descriptions on the spatial relations of the objects. The
annotators annotated 6,604 scenes with 10 descriptions each, one for each view.

4 SCENE ENCODING TASK & MODEL

We use this dataset in a scene encoding experiment, where the task is to draw an image given a
number of written descriptions of a scene. Considering our overarching goal of learning to encode
spatial language from text, this task has multiple desirable properties. Having multiple descriptions
per scene encourages learning paraphrases, and particularly those of spatial language. By combin-
ing input descriptions with viewpoints and requiring the model to generate outputs from different
perspectives, this is reinforced, and in addition learning of viewpoint invariant representations is
encouraged. This is further encouraged by setting up the task in such a way that the encoder does
not have access to the output viewpoint, which puts pressure on the model to encode the descriptions
into a viewpoint invariant representation.

For the experiments presented in this paper, we adapted the model by Eslami et al. (2018), the main
difference to their model being the use of language encoders, rather than visual ones. While a num-
ber of models could plausibly be used for the work presented here, their setup particularly lent itself
to integrating information from multiple viewpoints. This is useful as we want to learn a viewpoint
invariant representation for a single scene. We provide full details of the model implementations in
Appendix A, and refer to the model as the Spatial Language Interpretation Model (SLIM), when in
need of an acronym. On a high level, the model consists of two parts. First an encoder combines
all input descriptions and their viewpoints to learn a single vector representation of a scene. Sec-
ond, this representation is fed into a conditional generative model (DRAW, Gregor et al. (2015)) to
produce an output image. See Figure 2 for a schematic description of the model.
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Figure 2: Diagram of model used for experiments. A representation network parses multiple descriptions of a
scene from different viewpoints by taking in camera coordinates and a textual caption. The representations for
each viewpoint are aggregated into a scene representation vector r which is then used by a generation network
to reconstruct an image of the scene as seen from a new camera coordinate.

Figure 3: Samples generated from the synthetic (top) and natural language (bottom) model. Corresponding
captions are: ”There is a pink cone to the left of a red torus. There is a pink cone close to a purple cone. The
cone is to the left of the cone. There is a red torus to the right of a purple cone.”; ”There are two objects in the
image. In the back left corner is a light green cone, about half the height of the wall. On the right side of the
image is a bright red capsule. It is about the same height as the cone, but it is more forward in the plane of the
image.”

4.1 A NOTE ON EVALUATION

While pixel loss compared with gold images is an obvious metric to optimise against when generat-
ing images, human judgements are more suitable for evaluating this task. More precisely, pixel loss
is too strict a metric for evaluating the generative model due to the differing degrees of specificity
between language and visual data points. Consider the images and descriptions in Figure 1. Adjec-
tives such as big or relative positions such as to the far right are sufficient to give us a high-level
idea of a scene, but lack the precision required to generate an exact copy of a given image. The same
description can be satisfied by an infinite number of visual renderings—implying that pixel loss with
a gold image is not a precise measure of whether a given image is semantically consistent with the
matching scene description. Human judgements on the other hand allow us to evaluate this task on
the desired property, preferring spatial consistency over pixel-accuracy in the generated images.

We showed annotators model samples with corresponding language descriptions, and asked them
to judge whether the descriptions matched, partially matched, or did not match the image. We
additionally asked for binary choices on whether (1) all object shapes and (2) all object colours
from the text are in the image; whether (3) all shape and colour combinations are correct; and
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Figure 4: On the left, ELBO numbers for the model variants under training for train/validation/test splits. On
the right, human ranking of consistency of visual scene samples with matching synthetic caption. For SLIM†

(NL+SYN) numbers shown were calculated only with natural language inputs.

whether (4) all objects are correctly positioned. Annotators saw randomly mixed samples from all
the models and benchmarks. For the UPPER BOUND evaluation we showed gold images and matching
descriptions.

Irrespective of the training setup below, we use synthetic descriptions of the output in the human
annotation, as these guarantee us a consistent degree of specificity versus natural language descrip-
tions that can widely vary in that respect. Note that this only concerns the description shown to the
human annotators. In the evaluation, we feed synthetic language into the model for the experiments
in Section 4.2, and natural language descriptions in the case of Section 4.3.

4.2 SYNTHETIC LANGUAGE EXPERIMENTS

We trained our model on the synthetic text to verify whether it can be trained to understand scenes
from descriptions. For each scene we randomly chose nine out of ten available views as inputs (text),
and the final viewpoint as the target (image). Training was done with a batch size of 32 examples,
using early stopping based on the validation data.

Figure 3 shows model samples and the underlying ground truth. We draw samples from the model
by sampling the latents from the prior and varying the camera position. Note that while the image
samples exhibit a lot of variability and can differ widely from the ground truth image, they are
consistent with the scene text description.

We report ELBO loss on training, validation and test data in the left part of Figure 4. As a baseline,
we train an unconditional DRAW generative model (i.e. no scene descriptions are provided) which
learns the unconditional output image distribution. The ELBO captures how well the model can
model the distribution of the images of the scene, and the results suggest that all setups under con-
sideration are capable of doing this. However the ELBO does not capture the conditional likelihood
given the representation and therefore does not show a significant difference between our conditional
setup and the unconditional model.

Figure 4 right shows the results of the human evaluation. Naturally, samples from the unconditional
baseline perform poorly as it does not condition on the descriptions used as basis for the human
judgements. However, these random samples still serve a purpose in informing us about the com-
plexity of the dataset as well providing a lower bound on the generosity of the human annotators, so
to speak.

The UPPER BOUND results are from annotators comparing ground truth images with their matching
synthetic description. Note here that with 66.39% perfect matches and 91.70% including partial
matches, these results are far from perfect. This indicates several issues: annotators may have
used a very strict definition of a perfect match, penalising the fact that the synthetic descriptions
are succinct and leaving out details such as the background colours for instance. Gold standard
synthetic captions can also be perceived as incorrect due to factors such as the description of relative
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locations1, occlusion, or colour names not matching an annotators understanding (see Appendix B.2
for examples). Our model, SLIM (SYN), matches the performance of the UPPER BOUND in the
human judgements, scoring 92.19% including partial matches, while underperforming slightly with
respect to perfect matches.

4.3 NATURAL LANGUAGE EXPERIMENTS

Following the synthetic language experiments, we investigate whether the model can cope with
natural language. Due to cost of annotation, the amount of natural language data is several orders of
magnitude smaller than the synthetic data used in the previous section (see Table 1). We consider
multiple training regimes that aim to mitigate the risk of over-fitting to this small amount of data.
The naı̈ve setup (SLIM (NL) in Figure 4) uses only the natural language training data. We also took
a frozen pre-trained generation network (trained on synthetic data) and trained the representation
network alone on the same dataset (SLIM† (NL)). Finally, SLIM† (NL+SYN) uses the same pre-
training and uses an augmented dataset with a 50/50 split between synthetic and natural language.
We evaluate all three models with natural language inputs only, independent of training protocol.

We follow the training regime described above for the synthetic data. In addition, we found that
adding 50% dropout together with early stopping on validation data provided the best performance.
The drastic increase in complexity compared with the synthetic task is evident in the lower scores.
However, and more importantly, the relative performance of the three natural language training
setups is consistent across all training runs, with the joint model (frozen decoder, encoder trained
jointly on synthetic and natural language) performing best and the model trained on natural language
only performing the worst (Figure 4). This is encouraging, both as the absolute numbers suggest
that the SLIM architecture is capable of encoding spatial relations from natural language, and as the
significant gains in the joint training regime over the naı̈ve approach highlight the potential of using
this type of data for further research into simulation to real world model adaptation.

5 REPRESENTATION ANALYSIS

Having established that we can successfully create a representation of the scene to reconstruct an
image view, we now turn our attention to how this representation is built up from language descrip-
tions of the scene. We show that our model does learn semantically consistent representations, unlike
the neural network models investigated in Gershman & Tenenbaum (2015). Secondly, we examine
representations at different stages of our model to establish at what point this semantic coherence
arises, and similarly, at what point viewpoint invariance (independence of input camera angles) is
achieved, allowing us to recreate scenes from new viewpoints. The following set of equivalences
exemplifies the difference between the two concepts:

Paraphrase invariance (A left of B) ≡ (B right of A)
Viewpoint invariance (A left of B, 0◦) ≡ (A right of B, 180◦)

5.1 SEMANTIC COHERENCE ANALYSIS

Gershman & Tenenbaum (2015) consider sentence transformations (Figure 5) and compare human
similarity judgements of these transformations, to the base sentence, with the distances of the out-
put of neural network models. That work showed that recurrent language encoding models fail to
coherently capture these semantic judgements in output representations.

Human annotators rank the transformations of the base sentence, B, in order of semantic similarity,
resulting in average rankings M > P > A > N, from most to least similar. In Gershman & Tenen-
baum (2015) a set of neural language encoders is then shown not to follow this human judgement.
In particular, the M transformation—semantically equivalent—is never the most similar to the base
sentence. We believe that the original experiment’s conclusions may have been too broad: first,
as the authors themselves state, the pre-trained language models considered were built on English

1Consider two objects behind each other with one shifted slightly to the left of the other. Their relationship
could be described as ”behind and left”, just ”behind” and under some circumstances also as just ”to the left
of”, with different annotators preferring different schemes and considering others invalid.
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Wikipedia and the Reuters RCV1 corpus (Collobert et al., 2011), neither of which exhibit significant
amounts of language in the style of the test data. Next, there was nothing in the objective functions
for these models that would encourage solving the task at hand. This is the key question: is the
deflationary criticism with respect to the model architectures valid, or is the failure to solve this task
a function of the training regime?

B Base sentence ”a young woman in front of an old man.”
N Noun change ”a young man in front of an old woman.”
A Adjective change ”an old woman in front of a young man.”
P Preposition change ”a young woman behind an old man.”
M Meaning preservation ”an old man behind a young woman.”

Figure 5: Top, transformations following Gershman &
Tenenbaum (2015). Bottom, averaged cosine similarity be-
tween the representation obtained by encoding a single cap-
tion with a fixed camera angle and the transformed represen-
tation. The meaning preserving representation is the most
similar; followed by noun, adjective and preposition changes.
Black bars represent 95% CI, average over 32 scenes.

We posit that a learning objective
grounded in another modality—such as
the visual domain—could learn spatial
semantic coherence by directly teaching
the model a complex function to reconcile
syntax (the words) and semantics (the
meaning, here captured by the scene
and its visual representation). We test
this hypothesis by re-implementing the
sentence transformation setup in our
multi-modal setup.

We have four scene templates with syn-
thetic descriptions transformed as in Ger-
shman & Tenenbaum (2015) (Table 1).
The meaning preserving transformation,
M, naturally results in the same scene as
the base scene; however the resultant de-
scriptions match the original transforma-
tion from B to M.

For this analysis we use a model trained
on synthetic data (see Section 4.2). We
separately encode the set of descriptions
for base scene (r) and transformations
(rn, ra, rp, rm) and compute their similar-
ity using the cosine distance between the representations.2 The results are depicted in Figure 5,
averaged over 3,200 scenes and their transformations. Unlike the results in Gershman & Tenen-
baum (2015), the SLIM architecture encodes B and M as the most similar, both when considering a
single sentence encoding and even when considering the full scene representations.

Of the semantically different descriptions, the noun transformations produce the least dissimilar
representations. We believe this is due to the fact that the reconstruction loss is based on a pixel
measure, where a colour change (adjective change) leads to a larger loss in terms of the overall num-
ber of pixels changed in the visual representation than the noun change which only alters the shape
of the objects, causing a smaller number of pixels to change in the overall visual representation.

This reinforces our earlier point that in order to properly encode the kind of syntactic/semantic
divergence tested for by this analysis, we need models that train not only on syntax but also on
semantics. While the visual domain serves as a useful proxy for semantics in our setup, the pixel
loss analysis highlights that it is only a proxy with its own shortcomings and biases.

5.2 ENCODER HIERARCHY REPRESENTATION ANALYSIS

Here we show that while individual encodings are strongly view-dependent, the aggregation step and
decoder integrate these representations into a viewpoint invariant end-to-end model. We investigate
how representations for the same scene differ at a number of stages: after encoding the language and
camera angle, after the aggregation step, and finally after decoding.

Figure 7a is a t-SNE plot of the intermediate representations for a number of scenes. Each point in
that plot corresponds to a single language and coordinate embedding, with embeddings for all 10
views in 32 scenes shown. The embeddings cluster by camera angle even though they are sampled
from different scenes. This shows how on a superficial level the camera coordinates dominate the
single input representations. Figure 7b reinforces this analysis: If a camera independent representa-

2Euclidean distance and Pearson’s r result in the same ordering of similarities.
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Figure 6: Left, samples from the model when fed input contexts transformed according to Gershman & Tenen-
baum (2015) transformations. Right, average cosine distance between base representation and aggregated
representation induced by applying one of the four transformations to each of the context inputs. Black bars
represent 95% CI, average over 32 scenes.

Figure 7: a) t-SNE of single description encodings, coloured by camera angle. b) Distance between single
description representations of the same scene as a function of the angle between their viewpoints. c) Distance
between aggregated representations drawn from opposing arcs as a function of the size of those arcs. Blue
compares same scene representations, red different scene representations. d) Output samples for a constant
scene and coordinate under varying input conditions. Top: a single description (from black arrow), bottom:
aggregated descriptions from an increasingly sized arc.

tion were built at the language encoder level, we would expect each intermediate representations to
be similar, with the aggregation process only reducing noise. The quickly diverging cosine distances
as a function of the angle between two camera coordinates shows that this is not the case, and it is
clear that the representations do not have the desired property at this stage in the model.

Next we investigate the effect of the aggregation function. Consider a circle around a scene, with
arcs originating at 0◦ and 180◦, respectively. We clockwise increase the central angle θ of both
arcs simultaneously and calculate aggregated representations of nine language descriptions from
within each arc.3 Figure 7c (blue) shows how the cosine distance between these representations
decreases as the size of the two arcs increases. While θ ≤ π the two representations are non-
overlapping, demonstrating how even the simple additive aggregation function is able to cancel out
multiple viewpoints while integrating their information for added robustness. If the representations
corresponding to each arc are sampled from two different scenes (red), the representations no longer
converge as more data is integrated. Together these analyses suggest that the aggregation step is

3Sampled with replacement.

8



Under review as a conference paper at ICLR 2019

doing something beyond cancelling out noise such as cancelling out the non-invariant parts of the
encoding.

Figure 7d shows that the model achieves viewpoint invariance. We sample images from the model
keeping the output coordinates and scene constant, but varying the information we input. Regardless
of the number of input descriptions or their location, we receive images that are broadly consistent
with the semantics of the gold scene. As the input view approaches the target or as the number of
points sampled increases, the samples become semantically more consistent with the ground truth.

6 CONCLUSION

We have presented a novel architecture that allows us to represent scenes from language descrip-
tions. Our model captures both paraphrase and viewpoint invariance, as shown through a number
of experiments and manual analyses. Moreover, we demonstrated that the model can integrate these
language representations of scenes to reconstruct a reasonable image of the scene, as judged by
human annotators. Lastly, we demonstrated how to effectively use synthetic data to improve the per-
formance of our model on natural language descriptions using a domain adaptation training regime.

This paper serves to highlight one key point, namely the importance of aligning training paradigms
with the information one wishes to encode. We demonstrated how such information can be provided
by merging multiple modalities. More broadly, this also demonstrates that the criticism in Gershman
& Tenenbaum (2015) is not an in-principle problem of the model, but rather a matter of setting up
your training objectives to match your desired outcomes.
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A MODEL DETAILS

The generative model used for the experiments, depicted in Figure 2, consists of two parts: a repre-
sentation network that produces an aggregated representation from textual descriptions of the scene
from a number of viewpoints, and a generation network conditioned on the scene representation that
renders the scene as an image from a new viewpoint. We describe both networks below.

This model follows the framework introduced by Generative Query Networks (Eslami et al., 2018),
which has introduced the idea of querying the model to reconstruct a view of the scene from a novel
angle to force viewpoint invariance in the representation. This can be used to generate new views of
the same environment.

A.1 REPRESENTATION NETWORK

The representation network is composed of an encoder and an aggregation step. The encoder trans-
forms each text observation di and corresponding camera angle θi into a viewpoint embedding hi,
(i = 1 . . . n); and the aggregation combines those embeddings into a single representation vector.

The input to the representation network is a sequence of pairs (di, θi). The encoder network con-
sists of a convolutional language encoder over the sequence of embedded words (embedding dimen-
sion 64) d̂i = CNN(embed(di)). In particular, we use a variant of ByteNet (Kalchbrenner et al.,
2016) with three 1D convolutional layers, dilation factor of 2 and layer normalisation followed by
average aggregation over the sequence dimension. The camera is represented by the embedding
ĉi = MLP([cos(θi), sin(θi)]) (dimension 32). Next, these two representations are merged via a
three-layer residual MLP to generate an embedding vector hi = MLP(d̂i‖ĉi) with dimensionality
256.

The aggregation step consists of computing the scene representation r = 1
n

∑n
i hi, independent of

the number of inputs. For training n = 9. Clearly, more complex functions could be used as the
aggregator, but for the purposes of the investigation presented here this relatively simple aggregation
is sufficient.

A.2 GENERATION NETWORK

The generation network is a conditional generative model that learns the distribution of likely images
given a representation.

To train the generative model, we sample a target pair (dt, θt) that was not provided to the repre-
sentation network. This pair is used to train a conditional autoencoder (Sohn et al., 2015) where the
conditioning variable is the concatenation of r and θt.

We use the DRAW (Gregor et al., 2015) network to implement the generation network. DRAW is
a recurrent variational autoencoder which has been used successfully to render images of complex
scenes such as the 3D images in the dataset. We use a DRAW model with 12 iterations and with a
convolutional LSTM core with dimensionality 128. The conditioning variable is concatenated with
the sampled latent z at each iteration. The output distribution is a Bernoulli on each subpixel. We
train the model by minimizing the ELBO (Kingma & Welling, 2013), which is made up of the total
likelihood of the target image under this distribution plus the KL for the DRAW prior:

L = − logD(x|r) +
K∑

k=1

KL (Q(zk|henck )||P (zk))

where x is the image to be reconstructed and r is the representation created by the encoders. The
KL is the sum of terms from each of the K iterations in draw with zk denoting each latent for an
iteration and henck representing the encoded latent.

The reason for using the autoencoding component of the model is to guide the training, while simul-
taneously constraining it through the KL-term on an uninformative prior (in our case a zero mean
unit variance gaussian). While the autoencoder can help kick-start training, the model is strongly
encouraged to decrease its reliance on z and instead to extract all necessary information from r.
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A.3 TRAINING DETAILS

We train our model using the ADAM optimizer with a learning rate annealing schedule starting at
5e − 4 and decaying linearly to 5e − 5 over one million steps. Training is stopped at the minimum
validation loss calculated every 500 steps for 3200 samples (100 minibatches). For the synthetic
dataset we use dropout of 0% while for natural language we use 50% dropout.

B DATASET GENERATION DETAILS

To generate the synthetic scenes we employed the MuJoCo engine4 to create a generic 3D square
room where multiple simple geometric objects are placed at random. The room is represented as
a square with coordinates x, y ∈ [−1, 1], with object coordinates sampled uniformly. Each scene
contains two or three objects the identities of which are determined by a set of three latent variables:
8 shapes5; a HSV color sampled uniformly in the intervals H ∈ [0, 1]; S ∈ [0.5, 1]; V ∈ [0.8, 1];
and object size 6. Lastly, we randomly sample camera positions from a circle centred at the middle
of the room, with a radius approximately equal to the distance from the walls to the center.

To create a data batch we sample 10 camera positions and for each we render a view of the scene
from that angle and associate with it a textual description. The generated images are 128×128 RGB
images which are downsampled to 32 × 32 and rescaled to floating point values in the range [0, 1]
before being fed to the model.

The first part of our dataset contains synthetic language descriptions where the descriptions are
generated by a script with access to the scene geometry. We iterate over object pairs, and for each
object determine its shape name (matching the shapes described above, a color name (found by
looking up the nearest HSV neighbor in a look-up table with 22 named colours) and a size name
(large, small or no size). A description is then sampled by generating a caption relating those two
objects with a spatial relation (in front of, behind, left of, right of, close, far). The order of objects
in the description is randomly sampled. The final caption is composed of enough such descriptions
so as to cover every pairwise relation for all objects in the scene exactly once.

To generate the natural language dataset we subsampled scenes from the synthetic dataset and asked
humans to write a description of the rendered image of the scene from a certain camera position.

We have created validation and test sets based on held out combinations of colour and object type
for each of the synthetic and natural language labeled scenes, with different combinations held out
in the validation and the test data, and a guarantee that each validation/test scene contains at least
one object unobserved during training.

The training set does not contain objects from the set {‘yellow sphere’, ‘aqua icosahedron’, ‘mint
torus’, ‘green box’, ‘pink cylinder’, ‘blue capsule’, ‘peach cone’}. The validation set scenes contain
at least one of the first three elements of the held out combinations set and none of the remaining
four elements. The test set scenes can contain any combination of shapes or colours, making sure
they contain at least one of the last four combinations in the held out set.

4http://www.mujoco.org/
5cube, box, cone, triangle, cylinder, capsule, icosahedron, sphere
6a scaling factor for the object mesh chosen uniformly from an interval sensible for the MuJoCo renderer
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B.1 DATASET EXAMPLES

B.1.1 SYNTHETIC LANGUAGE, TWO OBJECTS

There is a green capsule behind a purple cone. The capsule is to the left of the
cone.

There is a purple cone to the left of a green capsule. The cone is in front of the
capsule.

There is a green capsule in front of a purple cone. The capsule is to the left of
the cone.

There is a green capsule to the right of a purple cone. The capsule is in front
of the cone.

There is a purple cone in front of a green capsule. The cone is to the left of the
capsule.

There is a green capsule to the right of a purple cone. The capsule is in front
of the cone.

There is a green capsule in front of a purple cone. The capsule is to the left of
the cone.

There is a green capsule in front of a purple cone. The capsule is to the right
of the cone.

There is a green capsule to the left of a purple cone. The capsule is behind the
cone.

There is a green capsule behind a purple cone. The capsule is behind the cone.
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B.1.2 SYNTHETIC LANGUAGE, THREE OBJECTS

There is a large magenta sphere behind a aqua cone. The sphere is behind the
cone. There is a aqua cone to the right of a blue box. There is a blue box in
front of a large magenta sphere.

There is a aqua cone in front of a large magenta sphere. There is a aqua cone
to the right of a blue box. There is a large magenta sphere to the right of a blue
box.

There is a large magenta sphere behind a aqua cone. The sphere is behind the
cone. There is a aqua cone to the right of a blue box. There is a large magenta
sphere behind a blue box. The sphere is behind the box.

There is a aqua cone behind a large magenta sphere. The cone is behind the
sphere. There is a aqua cone to the left of a blue box. There is a blue box to
the right of a large magenta sphere.

There is a large magenta sphere in front of a aqua cone. There is a aqua cone
to the left of a blue box. There is a large magenta sphere to the left of a blue
box.

There is a aqua cone in front of a large magenta sphere. There is a aqua cone
to the right of a blue box. There is a large magenta sphere behind a blue box.
The sphere is behind the box.

There is a aqua cone to the left of a large magenta sphere. There is a blue box
to the right of a aqua cone. There is a blue box behind a large magenta sphere.
The box is behind the sphere.

There is a aqua cone to the right of a large magenta sphere. There is a blue box
in front of a aqua cone. There is a large magenta sphere to the left of a blue
box.

There is a aqua cone to the left of a large magenta sphere. There is a aqua cone
to the left of a blue box. There is a blue box behind a large magenta sphere.
The box is behind the sphere.

There is a aqua cone behind a large magenta sphere. The cone is behind the
sphere. There is a blue box to the right of a aqua cone. There is a large magenta
sphere to the left of a blue box.
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B.1.3 NATURAL LANGUAGE, TWO OBJECTS

a room has two grey walls and a light blue ceiling. a large yellow cylinder is
on the left next to a pink tube in the center.

Corner of a room with a blue ceiling grey brick walls and grey tile floor. There
are two objects in the room and the are on the left side of the room furthest
from the corner. Object one is a medium size purple dome and it is in front of
the larger medium sized gold double pointed round cylinder. The room is three
dimensional as well as the objects.

in grey room, under a blue sky a tan ball sits next to a purple rounded cylinder
against a grey brick wall.

a room has two grey walls and a light blue ceiling. a yellow ball is in the center.

In this image a gold dodecagon is in the right corner.

On the very right side of the room, in the center, is a tan prism shape with the
bottom resembling a sphere, only the left half is visible. It is roughly half the
size of the wall behind it. Behind that shape is a purple rod shape that is shorter.
The right side is partially obscured by the shape in front of it.

A purple shape that is like the end of a hotdog. Shape with 3 triangles on top
and bottom to form points and 8 triangles that round out the middle

To the far left is a small purple bullet with a tan 10 sided shape to the left
border.

A yellow decagon sits in front of a purple cylinder which ends with a dome.
Walls of grey brick converge behind them. Floor is grey octagons.

Corner of a room, blue ceiling with grey brick walls and a grey tiled floor,
There are two objects in the room and towards the back corner. Object one is a
purple slender dome and behind it slightly to the right is a gold hexagon. Both
objects are 3 dimensional.
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B.1.4 NATURAL LANGUAGE, THREE OBJECTS

There is a huge lavender triangle on the left side of the room and a purple cube
behind it on the left side and a light brown ball on the right side of it.

In the middle of the left side of the frame is a purple cylinder shape. Close up
on the right side of the screen is a pink rounded cone almost sphere like at the
top. It about an inch taller than the cylinder. Behind the pink shape is a minor
protrusion of an orange sphere it comes out about halfway down the pink shape
and barely pokes out (.25 in)

There is a yellow sphere in the middle of the image. Behind the sphere to the
left, is a purple cube the majority of which is covered by sphere. There is a hot
pink three dimensional triangle made of three dimensional cylinders, with an
open center. Half of this triangle is covered by the left.

The ceiling is sky blue. The floor has cream-colored, six-sided tiles throughout.
There are two side-half walls the same color as the floor. There is a neon-purple
colored wide cylinder shape in the center of the floor, behind that and slightly
to the right is a yellow shaped semicircle shape, and to the right of that is a
neon pink shape of part of a triangle slightly showing.

a light grey room has a light blue ceiling. a large pink triangle is in front left
and yellow ball is in the center.

There is a pink triangle to the left of a yellow ball. behind them is a pink
cylinder.

an oranger sphere sits in grey room next to a pink triangle and pink cylinder.

It’s a grey brick room and floor with three geometric shapes in the center. There
is a purple cylinder, pink triangle behind that, and a yellow ball in the rear.

pink rounded at the top cylinder object in front of it is a orange ball to the right
is a purple big round cylinder slightly taller then the ball. baby blue wall on top
grey boarder horizontal then light grey under boarder. the floor is grey pattern
octagon shaped.

In the left front center of the screen is a tan ball with a flat dome shape peeking
from behind and a giant hollow purple triangle half visible on the left of the
screen.
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B.2 EXAMPLES OF SYNTHETIC CAPTION NOT MATCHING THE IMAGE

Examples where human annotators judge the synthetic caption to not match, or only partially match,
the gold image. This shows imperfections of generated synthetic language.

Majority
Human
Label

Synthetic Description

No

There is a yellow torus behind a large yellow box. The torus is
behind the box. (The torus would be described to the right, in a
more natural way. Also, the torus is on the border between yellow
and green, and would more likely be described as green to contrast
the other object.)

No
There is a yellow torus to the left of a purple ico. There is a large
lime capsule to the right of a yellow torus. There is a large lime
capsule in front of a purple ico. (The ico is occluded.)

No There is a peach torus in front of a large purple capsule. The torus
is to the right of the capsule. (The object at the back is occluded.)

No There is a purple cone far away. (The cone is occluded by an object
that is mostly out of the view.)

Partial There is a yellow cone far away. (Object that is mostly out of the
view is not mentioned.)

Partial There is a aqua torus to the right of a mint ico. (The shape of the
aqua object is ambiguous given its rotation.)
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