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Abstract

Semi-supervised learning has proven to be a powerful paradigm for leveraging
unlabeled data to mitigate the reliance on large labeled datasets. In this work, we
unify the current dominant approaches for semi-supervised learning to produce a
new algorithm, MixMatch, that guesses low-entropy labels for data-augmented un-
labeled examples and mixes labeled and unlabeled data using MixUp. MixMatch
obtains state-of-the-art results by a large margin across many datasets and labeled
data amounts. For example, on CIFAR-10 with 250 labels, we reduce error rate by a
factor of 4 (from 38% to 11%) and by a factor of 2 on STL-10. We also demonstrate
how MixMatch can help achieve a dramatically better accuracy-privacy trade-off
for differential privacy. Finally, we perform an ablation study to tease apart which
components of MixMatch are most important for its success. We release all code
used in our experiments.1

1 Introduction

Much of the recent success in training large, deep neural networks is thanks in part to the existence
of large labeled datasets. Yet, collecting labeled data is expensive for many learning tasks because
it necessarily involves expert knowledge. This is perhaps best illustrated by medical tasks where
measurements call for expensive machinery and labels are the fruit of a time-consuming analysis that
draws from multiple human experts. Furthermore, data labels may contain private information. In
comparison, in many tasks it is much easier or cheaper to obtain unlabeled data.

Semi-supervised learning [6] (SSL) seeks to largely alleviate the need for labeled data by allowing
a model to leverage unlabeled data. Many recent approaches for semi-supervised learning add a
loss term which is computed on unlabeled data and encourages the model to generalize better to
unseen data. In much recent work, this loss term falls into one of three classes (discussed further
in Section 2): entropy minimization [18, 28]—which encourages the model to output confident
predictions on unlabeled data; consistency regularization—which encourages the model to produce
the same output distribution when its inputs are perturbed; and generic regularization—which
encourages the model to generalize well and avoid overfitting the training data.

In this paper, we introduce MixMatch, an SSL algorithm which introduces a single loss that gracefully
unifies these dominant approaches to semi-supervised learning. Unlike previous methods, MixMatch
targets all the properties at once which we find leads to the following benefits:

1https://github.com/google-research/mixmatch
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Figure 1: Diagram of the label guessing process used in MixMatch. Stochastic data augmentation
is applied to an unlabeled image K times, and each augmented image is fed through the classifier.
Then, the average of these K predictions is “sharpened” by adjusting the distribution’s temperature.
See algorithm 1 for a full description.

• Experimentally, we show that MixMatch obtains state-of-the-art results on all standard
image benchmarks (section 4.2), and reducing the error rate on CIFAR-10 by a factor of 4;

• We further show in an ablation study that MixMatch is greater than the sum of its parts;
• We demonstrate in section 4.3 that MixMatch is useful for differentially private learning,

enabling students in the PATE framework [36] to obtain new state-of-the-art results that
simultaneously strengthen both privacy guarantees and accuracy.

In short, MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy
while maintaining consistency and remaining compatible with traditional regularization techniques.

2 Related Work

To set the stage for MixMatch, we first introduce existing methods for SSL. We focus mainly on
those which are currently state-of-the-art and that MixMatch builds on; there is a wide literature on
SSL techniques that we do not discuss here (e.g., “transductive” models [14, 22, 21], graph-based
methods [49, 4, 29], generative modeling [3, 27, 41, 9, 17, 23, 38, 34, 42], etc.). More comprehensive
overviews are provided in [49, 6]. In the following, we will refer to a generic model pmodel(y | x; θ)
which produces a distribution over class labels y for an input x with parameters θ.

2.1 Consistency Regularization

A common regularization technique in supervised learning is data augmentation, which applies input
transformations assumed to leave class semantics unaffected. For example, in image classification,
it is common to elastically deform or add noise to an input image, which can dramatically change
the pixel content of an image without altering its label [7, 43, 10]. Roughly speaking, this can
artificially expand the size of a training set by generating a near-infinite stream of new, modified data.
Consistency regularization applies data augmentation to semi-supervised learning by leveraging the
idea that a classifier should output the same class distribution for an unlabeled example even after it
has been augmented. More formally, consistency regularization enforces that an unlabeled example x
should be classified the same as Augment(x), an augmentation of itself.

In the simplest case, for unlabeled points x, prior work [25, 40] adds the loss term

‖pmodel(y | Augment(x); θ)− pmodel(y | Augment(x); θ)‖22. (1)

Note that Augment(x) is a stochastic transformation, so the two terms in eq. (1) are not identical.
“Mean Teacher” [44] replaces one of the terms in eq. (1) with the output of the model using an
exponential moving average of model parameter values. This provides a more stable target and was
found empirically to significantly improve results. A drawback to these approaches is that they use
domain-specific data augmentation strategies. “Virtual Adversarial Training” [31] (VAT) addresses
this by instead computing an additive perturbation to apply to the input which maximally changes the
output class distribution. MixMatch utilizes a form of consistency regularization through the use of
standard data augmentation for images (random horizontal flips and crops).

2.2 Entropy Minimization

A common underlying assumption in many semi-supervised learning methods is that the classifier’s
decision boundary should not pass through high-density regions of the marginal data distribution.
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One way to enforce this is to require that the classifier output low-entropy predictions on unlabeled
data. This is done explicitly in [18] with a loss term which minimizes the entropy of pmodel(y | x; θ)
for unlabeled data x. This form of entropy minimization was combined with VAT in [31] to obtain
stronger results. “Pseudo-Label” [28] does entropy minimization implicitly by constructing hard
(1-hot) labels from high-confidence predictions on unlabeled data and using these as training targets
in a standard cross-entropy loss. MixMatch also implicitly achieves entropy minimization through the
use of a “sharpening” function on the target distribution for unlabeled data, described in section 3.2.

2.3 Traditional Regularization

Regularization refers to the general approach of imposing a constraint on a model to make it harder to
memorize the training data and therefore hopefully make it generalize better to unseen data [19]. We
use weight decay which penalizes the L2 norm of the model parameters [30, 46]. We also use MixUp
[47] in MixMatch to encourage convex behavior “between” examples. We utilize MixUp as both
as a regularizer (applied to labeled datapoints) and a semi-supervised learning method (applied to
unlabeled datapoints). MixUp has been previously applied to semi-supervised learning; in particular,
the concurrent work of [45] uses a subset of the methodology used in MixMatch. We clarify the
differences in our ablation study (section 4.2.3).

3 MixMatch

In this section, we introduce MixMatch, our proposed semi-supervised learning method. MixMatch
is a “holistic” approach which incorporates ideas and components from the dominant paradigms for
SSL discussed in section 2. Given a batch X of labeled examples with one-hot targets (representing
one of L possible labels) and an equally-sized batch U of unlabeled examples, MixMatch produces
a processed batch of augmented labeled examples X ′ and a batch of augmented unlabeled examples
with “guessed” labels U ′. U ′ and X ′ are then used in computing separate labeled and unlabeled loss
terms. More formally, the combined loss L for semi-supervised learning is defined as

X ′,U ′ = MixMatch(X ,U , T,K, α) (2)

LX =
1

|X ′|
∑

x,p∈X ′

H(p,pmodel(y | x; θ)) (3)

LU =
1

L|U ′|
∑

u,q∈U ′

‖q − pmodel(y | u; θ)‖22 (4)

L = LX + λULU (5)
where H(p, q) is the cross-entropy between distributions p and q, and T , K, α, and λU are hyperpa-
rameters described below. The full MixMatch algorithm is provided in algorithm 1, and a diagram
of the label guessing process is shown in fig. 1. Next, we describe each part of MixMatch.

3.1 Data Augmentation

As is typical in many SSL methods, we use data augmentation both on labeled and unlabeled data.
For each xb in the batch of labeled data X , we generate a transformed version x̂b = Augment(xb)
(algorithm 1, line 3). For each ub in the batch of unlabeled data U , we generate K augmentations
ûb,k = Augment(ub), k ∈ (1, . . . ,K) (algorithm 1, line 5). We use these individual augmentations
to generate a “guessed label” qb for each ub, through a process we describe in the following subsection.

3.2 Label Guessing

For each unlabeled example in U , MixMatch produces a “guess” for the example’s label using the
model’s predictions. This guess is later used in the unsupervised loss term. To do so, we compute the
average of the model’s predicted class distributions across all the K augmentations of ub by

q̄b =
1

K

K∑
k=1

pmodel(y | ûb,k; θ) (6)

in algorithm 1, line 7. Using data augmentation to obtain an artificial target for an unlabeled example
is common in consistency regularization methods [25, 40, 44].
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Algorithm 1 MixMatch takes a batch of labeled dataX and a batch of unlabeled data U and produces
a collection X ′ (resp. U ′) of processed labeled examples (resp. unlabeled with guessed labels).

1: Input: Batch of labeled examples and their one-hot labels X =
(
(xb, pb); b ∈ (1, . . . , B)

)
, batch of

unlabeled examples U =
(
ub; b ∈ (1, . . . , B)

)
, sharpening temperature T , number of augmentations K,

Beta distribution parameter α for MixUp.
2: for b = 1 to B do
3: x̂b = Augment(xb) // Apply data augmentation to xb
4: for k = 1 to K do
5: ûb,k = Augment(ub) // Apply kth round of data augmentation to ub

6: end for
7: q̄b = 1

K

∑
k pmodel(y | ûb,k; θ) // Compute average predictions across all augmentations of ub

8: qb = Sharpen(q̄b, T ) // Apply temperature sharpening to the average prediction (see eq. (7))
9: end for

10: X̂ =
(
(x̂b, pb); b ∈ (1, . . . , B)

)
// Augmented labeled examples and their labels

11: Û =
(
(ûb,k, qb); b ∈ (1, . . . , B), k ∈ (1, . . . ,K)

)
// Augmented unlabeled examples, guessed labels

12: W = Shuffle
(
Concat(X̂ , Û)

)
// Combine and shuffle labeled and unlabeled data

13: X ′ =
(
MixUp(X̂i,Wi); i ∈ (1, . . . , |X̂ |)

)
// Apply MixUp to labeled data and entries fromW

14: U ′ =
(
MixUp(Ûi,Wi+|X̂ |); i ∈ (1, . . . , |Û |)

)
// Apply MixUp to unlabeled data and the rest ofW

15: return X ′,U ′

Sharpening. In generating a label guess, we perform one additional step inspired by the success
of entropy minimization in semi-supervised learning (discussed in section 2.2). Given the average
prediction over augmentations q̄b, we apply a sharpening function to reduce the entropy of the label
distribution. In practice, for the sharpening function, we use the common approach of adjusting the
“temperature” of this categorical distribution [16], which is defined as the operation

Sharpen(p, T )i := p
1
T
i

/ L∑
j=1

p
1
T
j (7)

where p is some input categorical distribution (specifically in MixMatch, p is the average class
prediction over augmentations q̄b, as shown in algorithm 1, line 8) and T is a hyperparameter. As
T → 0, the output of Sharpen(p, T ) will approach a Dirac (“one-hot”) distribution. Since we will
later use qb = Sharpen(q̄b, T ) as a target for the model’s prediction for an augmentation of ub,
lowering the temperature encourages the model to produce lower-entropy predictions.

3.3 MixUp

We use MixUp for semi-supervised learning, and unlike past work for SSL we mix both labeled
examples and unlabeled examples with label guesses (generated as described in section 3.2). To be
compatible with our separate loss terms, we define a slightly modified version of MixUp. For a pair
of two examples with their corresponding labels probabilities (x1, p1), (x2, p2) we compute (x′, p′)
by

λ ∼ Beta(α, α) (8)

λ′ = max(λ, 1− λ) (9)

x′ = λ′x1 + (1− λ′)x2 (10)

p′ = λ′p1 + (1− λ′)p2 (11)

where α is a hyperparameter. Vanilla MixUp omits eq. (9) (i.e. it sets λ′ = λ). Given that labeled
and unlabeled examples are concatenated in the same batch, we need to preserve the order of the
batch to compute individual loss components appropriately. This is achieved by eq. (9) which ensures
that x′ is closer to x1 than to x2. To apply MixUp, we first collect all augmented labeled examples
with their labels and all unlabeled examples with their guessed labels into

X̂ =
(
(x̂b, pb); b ∈ (1, . . . , B)

)
(12)

Û =
(
(ûb,k, qb); b ∈ (1, . . . , B), k ∈ (1, . . . ,K)

)
(13)

4



(algorithm 1, lines 10–11). Then, we combine these collections and shuffle the result to formW
which will serve as a data source for MixUp (algorithm 1, line 12). For each the ith example-label
pair in X̂ , we compute MixUp(X̂i,Wi) and add the result to the collection X ′ (algorithm 1, line
13). We compute U ′

i = MixUp(Ûi,Wi+|X̂ |) for i ∈ (1, . . . , |Û |), intentionally using the remainder
ofW that was not used in the construction of X ′ (algorithm 1, line 14). To summarize, MixMatch
transforms X into X ′, a collection of labeled examples which have had data augmentation and
MixUp (potentially mixed with an unlabeled example) applied. Similarly, U is transformed into U ′,
a collection of multiple augmentations of each unlabeled example with corresponding label guesses.

3.4 Loss Function

Given our processed batches X ′ and U ′, we use the standard semi-supervised loss shown in eqs. (3)
to (5). Equation (5) combines the typical cross-entropy loss between labels and model predictions
from X ′ with the squared L2 loss on predictions and guessed labels from U ′. We use this L2 loss
in eq. (4) (the multiclass Brier score [5]) because, unlike the cross-entropy, it is bounded and less
sensitive to incorrect predictions. For this reason, it is often used as the unlabeled data loss in SSL
[25, 44] as well as a measure of predictive uncertainty [26]. We do not propagate gradients through
computing the guessed labels, as is standard [25, 44, 31, 35]

3.5 Hyperparameters

Since MixMatch combines multiple mechanisms for leveraging unlabeled data, it introduces various
hyperparameters – specifically, the sharpening temperature T , number of unlabeled augmentations K,
α parameter for Beta in MixUp, and the unsupervised loss weight λU . In practice, semi-supervised
learning methods with many hyperparameters can be problematic because cross-validation is difficult
with small validation sets [35, 39, 35]. However, we find in practice that most of MixMatch’s
hyperparameters can be fixed and do not need to be tuned on a per-experiment or per-dataset basis.
Specifically, for all experiments we set T = 0.5 and K = 2. Further, we only change α and λU on a
per-dataset basis; we found that α = 0.75 and λU = 100 are good starting points for tuning. In all
experiments, we linearly ramp up λU to its maximum value over the first 16,000 steps of training as
is common practice [44].

4 Experiments

We test the effectiveness of MixMatch on standard SSL benchmarks (section 4.2). Our ablation study
teases apart the contribution of each of MixMatch’s components (section 4.2.3). As an additional
application, we consider privacy-preserving learning in section 4.3.

4.1 Implementation details

Unless otherwise noted, in all experiments we use the “Wide ResNet-28” model from [35]. Our
implementation of the model and training procedure closely matches that of [35] (including using
5000 examples to select the hyperparameters), except for the following differences: First, instead
of decaying the learning rate, we evaluate models using an exponential moving average of their
parameters with a decay rate of 0.999. Second, we apply a weight decay of 0.0004 at each update for
the Wide ResNet-28 model. Finally, we checkpoint every 216 training samples and report the median
error rate of the last 20 checkpoints. This simplifies the analysis at a potential cost to accuracy by, for
example, averaging checkpoints [2] or choosing the checkpoint with the lowest validation error.

4.2 Semi-Supervised Learning

First, we evaluate the effectiveness of MixMatch on four standard benchmark datasets: CIFAR-10
and CIFAR-100 [24], SVHN [32], and STL-10 [8]. Standard practice for evaluating semi-supervised
learning on the first three datasets is to treat most of the dataset as unlabeled and use a small portion
as labeled data. STL-10 is a dataset specifically designed for SSL, with 5,000 labeled images and
100,000 unlabeled images which are drawn from a slightly different distribution than the labeled data.
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Figure 2: Error rate comparison of MixMatch
to baseline methods on CIFAR-10 for a varying
number of labels. Exact numbers are provided
in table 5 (appendix). “Supervised” refers to
training with all 50000 training examples and
no unlabeled data. With 250 labels MixMatch
reaches an error rate comparable to next-best
method’s performance with 4000 labels.
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Figure 3: Error rate comparison of MixMatch to
baseline methods on SVHN for a varying num-
ber of labels. Exact numbers are provided in
table 6 (appendix). “Supervised” refers to train-
ing with all 73257 training examples and no un-
labeled data. With 250 examples MixMatch
nearly reaches the accuracy of supervised train-
ing for this model.

4.2.1 Baseline Methods

As baselines, we consider the four methods considered in [35] (Π-Model [25, 40], Mean Teacher
[44], Virtual Adversarial Training [31], and Pseudo-Label [28]) which are described in section 2. We
also use MixUp [47] on its own as a baseline. MixUp is designed as a regularizer for supervised
learning, so we modify it for SSL by applying it both to augmented labeled examples and augmented
unlabeled examples with their corresponding predictions. In accordance with standard usage of
MixUp, we use a cross-entropy loss between the MixUp-generated guess label and the model’s
prediction. As advocated by [35], we reimplemented each of these methods in the same codebase and
applied them to the same model (described in section 4.1) to ensure a fair comparison. We re-tuned
the hyperparameters for each baseline method, which generally resulted in a marginal accuracy
improvement compared to those in [35], thereby providing a more competitive experimental setting
for testing out MixMatch.

4.2.2 Results

CIFAR-10 For CIFAR-10, we evaluate the accuracy of each method with a varying number of
labeled examples from 250 to 4000 (as is standard practice). The results can be seen in fig. 2. We
used λU = 75 for CIFAR-10. We created 5 splits for each number of labeled points, each with a
different random seed. Each model was trained on each split and the error rates were reported by
the mean and variance across splits. We find that MixMatch outperforms all other methods by a
significant margin, for example reaching an error rate of 6.24% with 4000 labels. For reference,
on the same model, fully supervised training on all 50000 samples achieves an error rate of 4.17%.
Furthermore, MixMatch obtains an error rate of 11.08% with only 250 labels. For comparison, at
250 labels the next-best-performing method (VAT [31]) achieves an error rate of 36.03, over 4.5×
higher than MixMatch considering that 4.17% is the error limit obtained on our model with fully
supervised learning. In addition, at 4000 labels the next-best-performing method (Mean Teacher [44])
obtains an error rate of 10.36%, which suggests that MixMatch can achieve similar performance
with only 1/16 as many labels. We believe that the most interesting comparisons are with very few
labeled data points since it reveals the method’s sample efficiency which is central to SSL.

CIFAR-10 and CIFAR-100 with a larger model Some prior work [44, 2] has also considered the
use of a larger, 26 million-parameter model. Our base model, as used in [35], has only 1.5 million
parameters which confounds comparison with these results. For a more reasonable comparison to
these results, we measure the effect of increasing the width of our base ResNet model and evaluate
MixMatch’s performance on a 28-layer Wide Resnet model which has 135 filters per layer, resulting
in 26 million parameters. We also evaluate MixMatch on this larger model on CIFAR-100 with
10000 labels, to compare to the corresponding result from [2]. The results are shown in table 1.
In general, MixMatch matches or outperforms the best results from [2], though we note that the
comparison still remains problematic due to the fact that the model from [44, 2] also uses more
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Method CIFAR-10 CIFAR-100

Mean Teacher [44] 6.28 -
SWA [2] 5.00 28.80

MixMatch 4.95± 0.08 25.88± 0.30

Table 1: CIFAR-10 and CIFAR-100 error rate
(with 4,000 and 10,000 labels respectively) with
larger models (26 million parameters).

Method 1000 labels 5000 labels

CutOut [12] - 12.74
IIC [20] - 11.20
SWWAE [48] 25.70 -
CC-GAN2 [11] 22.20 -

MixMatch 10.18± 1.46 5.59

Table 2: STL-10 error rate using 1000-label
splits or the entire 5000-label training set.

Labels 250 500 1000 2000 4000 All

SVHN 3.78± 0.26 3.64± 0.46 3.27± 0.31 3.04± 0.13 2.89± 0.06 2.59
SVHN+Extra 2.22± 0.08 2.17± 0.07 2.18± 0.06 2.12± 0.03 2.07± 0.05 1.71

Table 3: Comparison of error rates for SVHN and SVHN+Extra for MixMatch. The last column
(“All”) contains the fully-supervised performance with all labels in the corresponding training set.

sophisticated “shake-shake” regularization [15]. For this model, we used a weight decay of 0.0008.
We used λU = 75 for CIFAR-10 and λU = 150 for CIFAR-100.

SVHN and SVHN+Extra As with CIFAR-10, we evaluate the performance of each SSL method
on SVHN with a varying number of labels from 250 to 4000. As is standard practice, we first
consider the setting where the 73257-example training set is split into labeled and unlabeled data.
The results are shown in fig. 3. We used λU = 250. Here again the models were evaluated on 5
splits for each number of labeled points, each with a different random seed. We found MixMatch’s
performance to be relatively constant (and better than all other methods) across all amounts of labeled
data. Surprisingly, after additional tuning we were able to obtain extremely good performance from
Mean Teacher [44], though its error rate was consistently slightly higher than MixMatch’s.

Note that SVHN has two training sets: train and extra. In fully-supervised learning, both sets are
concatenated to form the full training set (604388 samples). In SSL, for historical reasons the extra set
was left aside and only train was used (73257 samples). We argue that leveraging both train and extra
for the unlabeled data is more interesting since it exhibits a higher ratio of unlabeled samples over
labeled ones. We report error rates for both SVHN and SVHN+Extra in table 3. For SVHN+Extra
we used α = 0.25, λU = 250 and a lower weight decay of 0.000002 due to the larger amount of
available data. We found that on both training sets, MixMatch nearly matches the fully-supervised
performance on the same training set almost immediately – for example, MixMatch achieves an error
rate of 2.22% with only 250 labels on SVHN+Extra compared to the fully-supervised performance of
1.71%. Interestingly, on SVHN+Extra MixMatch outperformed fully supervised training on SVHN
without extra (2.59% error) for every labeled data amount considered. To emphasize the importance
of this, consider the following scenario: You have 73257 examples from SVHN with 250 examples
labeled and are given a choice: You can either obtain 8× more unlabeled data and use MixMatch or
obtain 293× more labeled data and use fully-supervised learning. Our results suggest that obtaining
additional unlabeled data and using MixMatch is more effective, which conveniently is likely much
cheaper than obtaining 293× more labels.

STL-10 STL-10 contains 5000 training examples aimed at being used with 10 predefined folds (we
use the first 5 only) with 1000 examples each. However, some prior work trains on all 5000 examples.
We thus compare in both experimental settings. With 1000 examples MixMatch surpasses both the
state-of-the-art for 1000 examples as well as the state-of-the-art using all 5000 labeled examples.
Note that none of the baselines in table 2 use the same experimental setup (i.e. model), so it is difficult
to directly compare the results; however, because MixMatch obtains the lowest error by a factor of
two, we take this to be a vote in confidence of our method. We used λU = 50.

4.2.3 Ablation Study

Since MixMatch combines various semi-supervised learning mechanisms, it has a good deal in
common with existing methods in the literature. As a result, we study the effect of removing or
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Ablation 250 labels 4000 labels

MixMatch 11.80 6.00
MixMatch without distribution averaging (K = 1) 17.09 8.06
MixMatch with K = 3 11.55 6.23
MixMatch with K = 4 12.45 5.88
MixMatch without temperature sharpening (T = 1) 27.83 10.59
MixMatch with parameter EMA 11.86 6.47
MixMatch without MixUp 39.11 10.97
MixMatch with MixUp on labeled only 32.16 9.22
MixMatch with MixUp on unlabeled only 12.35 6.83
MixMatch with MixUp on separate labeled and unlabeled 12.26 6.50
Interpolation Consistency Training [45] 38.60 6.81

Table 4: Ablation study results. All values are error rates on CIFAR-10 with 250 or 4000 labels.

adding components in order to provide additional insight into what makes MixMatch performant.
Specifically, we measure the effect of

• using the mean class distribution over K augmentations or using the class distribution for a
single augmentation (i.e. setting K = 1)

• removing temperature sharpening (i.e. setting T = 1)

• using an exponential moving average (EMA) of model parameters when producing guessed
labels, as is done by Mean Teacher [44]

• performing MixUp between labeled examples only, unlabeled examples only, and without
mixing across labeled and unlabeled examples

• using Interpolation Consistency Training [45], which can be seen as a special case of this
ablation study where only unlabeled mixup is used, no sharpening is applied and EMA
parameters are used for label guessing.

We carried out the ablation on CIFAR-10 with 250 and 4000 labels; the results are shown in table 4.
We find that each component contributes to MixMatch’s performance, with the most dramatic
differences in the 250-label setting. Despite Mean Teacher’s effectiveness on SVHN (fig. 3), we
found that using a similar EMA of parameter values hurt MixMatch’s performance slightly.

4.3 Privacy-Preserving Learning and Generalization

Learning with privacy allows us to measure our approach’s ability to generalize. Indeed, protecting
the privacy of training data amounts to proving that the model does not overfit: a learning algorithm
is said to be differentially private (the most widely accepted technical definition of privacy) if adding,
modifying, or removing any of its training samples is guaranteed not to result in a statistically
significant difference in the model parameters learned [13]. For this reason, learning with differential
privacy is, in practice, a form of regularization [33]. Each training data access constitutes a potential
privacy leakage, encoded as the pair of the input and its label. Hence, approaches for deep learning
from private training data, such as DP-SGD [1] and PATE [36], benefit from accessing as few labeled
private training points as possible when computing updates to the model parameters. Semi-supervised
learning is a natural fit for this setting.

We use the PATE framework for learning with privacy. A student is trained in a semi-supervised way
from public unlabeled data, part of which is labeled by an ensemble of teachers with access to private
labeled training data. The fewer labels a student requires to reach a fixed accuracy, the stronger is the
privacy guarantee it provides. Teachers use a noisy voting mechanism to respond to label queries
from the student, and they may choose not to provide a label when they cannot reach a sufficiently
strong consensus. For this reason, if MixMatch improves the performance of PATE, it would also
illustrate MixMatch’s improved generalization from few canonical exemplars of each class.

We compare the accuracy-privacy trade-off achieved by MixMatch to a VAT [31] baseline on SVHN.
VAT achieved the previous state-of-the-art of 91.6% test accuracy for a privacy loss of ε = 4.96 [37].
Because MixMatch performs well with few labeled points, it is able to achieve 95.21± 0.17% test
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accuracy for a much smaller privacy loss of ε = 0.97. Because eε is used to measure the degree of
privacy, the improvement is approximately e4 ≈ 55×, a significant improvement. A privacy loss ε
below 1 corresponds to a much stronger privacy guarantee. Note that in the private training setting
the student model only uses 10,000 total examples.

5 Conclusion

We introduced MixMatch, a semi-supervised learning method which combines ideas and components
from the current dominant paradigms for SSL. Through extensive experiments on semi-supervised and
privacy-preserving learning, we found that MixMatch exhibited significantly improved performance
compared to other methods in all settings we studied, often by a factor of two or more reduction in
error rate. In future work, we are interested in incorporating additional ideas from the semi-supervised
learning literature into hybrid methods and continuing to explore which components result in effective
algorithms. Separately, most modern work on semi-supervised learning algorithms is evaluated on
image benchmarks; we are interested in exploring the effectiveness of MixMatch in other domains.
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A Notation and definitions

Notation Definition

H(p, q) Cross-entropy between “target” distribution p and “predicted” distribution q

x A labeled example, used as input to a model

p A (one-hot) label

L The number of possible label classes (the dimensionality of p)

X A batch of labeled examples and their labels

X ′ A batch of processed labeled examples produced by MixMatch

u An unlabeled example, used as input to a model

q A guessed label distribution for an unlabeled example

U A batch of unlabeled examples

U ′ A batch of processed unlabeled examples with their label guesses produced by
MixMatch

θ The model’s parameters

pmodel(y | x; θ) The model’s predicted distribution over classes

Augment(x) A stochastic data augmentation function that returns a modified version of x. For
example, Augment(·) could implement randomly shifting an input image, or
implement adding a perturbation sampled from a Gaussian distribution to x.

λU A hyper-parameter weighting the contribution of the unlabeled examples to the
training loss

α Hyperparameter for the Beta distribution used in MixUp

T Temperature parameter for sharpening used in MixMatch

K Number of augmentations used when guessing labels in MixMatch

12



B Tabular results

B.1 CIFAR-10

Training the same model with supervised learning on the entire 50000-example training set achieved
an error rate of 4.13%.

Methods/Labels 250 500 1000 2000 4000

PiModel 53.02± 2.05 41.82± 1.52 31.53± 0.98 23.07± 0.66 17.41± 0.37
PseudoLabel 49.98± 1.17 40.55± 1.70 30.91± 1.73 21.96± 0.42 16.21± 0.11
Mixup 47.43± 0.92 36.17± 1.36 25.72± 0.66 18.14± 1.06 13.15± 0.20
VAT 36.03± 2.82 26.11± 1.52 18.68± 0.40 14.40± 0.15 11.05± 0.31
MeanTeacher 47.32± 4.71 42.01± 5.86 17.32± 4.00 12.17± 0.22 10.36± 0.25
MixMatch 11.08± 0.87 9.65± 0.94 7.75± 0.32 7.03± 0.15 6.24± 0.06

Table 5: Error rate (%) for CIFAR10.

B.2 SVHN

Training the same model with supervised learning on the entire 73257-example training set achieved
an error rate of 2.59%.

Methods/Labels 250 500 1000 2000 4000

PiModel 17.65± 0.27 11.44± 0.39 8.60± 0.18 6.94± 0.27 5.57± 0.14
PseudoLabel 21.16± 0.88 14.35± 0.37 10.19± 0.41 7.54± 0.27 5.71± 0.07
Mixup 39.97± 1.89 29.62± 1.54 16.79± 0.63 10.47± 0.48 7.96± 0.14
VAT 8.41± 1.01 7.44± 0.79 5.98± 0.21 4.85± 0.23 4.20± 0.15
MeanTeacher 6.45± 2.43 3.82± 0.17 3.75± 0.10 3.51± 0.09 3.39± 0.11
MixMatch 3.78± 0.26 3.64± 0.46 3.27± 0.31 3.04± 0.13 2.89± 0.06

Table 6: Error rate (%) for SVHN.
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B.3 SVHN+Extra

Training the same model with supervised learning on the entire 604388-example training set achieved
an error rate of 1.71%.

Methods/Labels 250 500 1000 2000 4000

PiModel 13.71± 0.32 10.78± 0.59 8.81± 0.33 7.07± 0.19 5.70± 0.13
PseudoLabel 17.71± 0.78 12.58± 0.59 9.28± 0.38 7.20± 0.18 5.56± 0.27
Mixup 33.03± 1.29 24.52± 0.59 14.05± 0.79 9.06± 0.55 7.27± 0.12
VAT 7.44± 1.38 7.37± 0.82 6.15± 0.53 4.99± 0.30 4.27± 0.30
MeanTeacher 2.77± 0.10 2.75± 0.07 2.69± 0.08 2.60± 0.04 2.54± 0.03
MixMatch 2.22± 0.08 2.17± 0.07 2.18± 0.06 2.12± 0.03 2.07± 0.05

Table 7: Error rate (%) for SVHN+Extra.
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Figure 4: Error rate comparison of MixMatch to baseline methods on SVHN+Extra for a varying
number of labels. With 250 examples we reach nearly the state of the art compared to supervised
training for this model.

C 13-layer ConvNet results

Early work on semi-supervised learning used a 13-layer convolutional network architecture [31, 44,
25]. In table 8 we present results on a similar architecture. We caution against comparing these
numbers directly to previous work as we use a different implementation and training process [35].

Method CIFAR-10 SVHN
250 4000 250 1000

Mean Teacher 46.34 88.57 94.00 96.00
MixMatch 85.69 93.16 96.41 96.61

Table 8: Results on a 13-layer convolutional network architecture.
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