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ABSTRACT

We propose a novel autoencoding model called Pairwise Augmented GANs. We
train a generator and an encoder jointly and in an adversarial manner. The generator
network learns to sample realistic objects. In turn, the encoder network at the same
time is trained to map the true data distribution to the prior in latent space. To
ensure good reconstructions, we introduce an augmented adversarial reconstruction
loss. Here we train a discriminator to distinguish two types of pairs: an object with
its augmentation and the one with its reconstruction. We show that such adversarial
loss compares objects based on the content rather than on the exact match. We
experimentally demonstrate that our model generates samples and reconstructions
of quality competitive with state-of-the-art on datasets MNIST, CIFAR10, CelebA
and achieves good quantitative results on CIFAR10.

1 INTRODUCTION

Deep generative models are a powerful tool to sample complex high dimensional objects from a low
dimensional manifold. The dominant approaches for learning such generative models are variational
autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) and generative adversarial
networks (GANs) (Goodfellow et al., 2014). VAEs allow not only to generate samples from the
data distribution, but also to encode the objects into the latent space. However, VAE-like models
require a careful likelihood choice. Misspecifying one may lead to undesirable effects in samples and
reconstructions (e.g., blurry images). On the contrary, GANs do not rely on an explicit likelihood
and utilize more complex loss function provided by a discriminator. As a result, they produce higher
quality images. However, the original formulation of GANs (Goodfellow et al., 2014) lacks an
important encoding property that allows many practical applications. For example, it is used in
semi-supervised learning (Kingma et al., 2014), in a manipulation of object properties using low
dimensional manifold (Creswell et al., 2017) and in an optimization utilizing the known structure of
embeddings (Gómez-Bombarelli et al., 2018).

VAE-GAN hybrids are of great interest due to their potential ability to learn latent representations
like VAEs, while generating high-quality objects like GANs. In such generative models with a
bidirectional mapping between the data space and the latent space one of the desired properties is to
have good reconstructions (x ≈ G(E(x))). In many hybrid approaches (Rosca et al., 2017; Ulyanov
et al., 2018; Zhu et al., 2017; Brock et al., 2017; Tolstikhin et al., 2017) as well as in VAE-like
methods it is achieved by minimizing L1 or L2 pixel-wise norm between x and G(E(x)). However,
the main drawback of using these standard reconstruction losses is that they enforce the generative
model to recover too many unnecessary details of the source object x. For example, to reconstruct a
bird picture we do not need an exact position of the bird on an image, but the pixel-wise loss penalizes
a lot for shifted reconstructions. Recently, Li et al. (2017) improved ALI model (Dumoulin et al.,
2017; Donahue et al., 2017) by introducing a reconstruction loss in the form of a discriminator which
classifies pairs (x, x) and (x,G(E(x))). However, in such approach, the discriminator tends to detect
the fake pair (x,G(E(x))) just by checking the identity of x and G(E(x)) which leads to vanishing
gradients.

In this paper, we propose a novel autoencoding model which matches the distributions in the data
space and in the latent space independently as in Zhu et al. (2017). To ensure good reconstructions,
we introduce an augmented adversarial reconstruction loss as a discriminator which classifies pairs
(x, a(x)) and (x,G(E(x))) where a(·) is a stochastic augmentation function. This enforces the
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ẑ z

D(x)x ∼ p∗(x)
x̂ ∼ pθ(x | z)

z ∼ p(z)
G(z)

x x̂

Figure 1: The PAGAN model.

discriminator to take into account content invariant to the augmentation, thus making training more
robust. We call this approach Pairwise Augmented Generative Adversarial Networks (PAGANs).
Measuring a reconstruction quality of autoencoding models is challenging. A standard reconstruction
metric RMSE does not perform the content-based comparison. To deal with this problem we propose
a novel metric Reconstruction Inception Dissimilarity (RID) which is robust to content-preserving
transformations (e.g., small shifts of an image). We show qualitative results on common datasets
such as MNIST (LeCun & Cortes, 2010), CIFAR10 (Krizhevsky et al., 2009) and CelebA (Liu
et al., 2015). PAGANs outperform existing VAE-GAN hybrids in Inception Score (Salimans et al.,
2016) and Fréchet Inception Distance (Heusel et al., 2017) except for the recently announced method
PD-WGAN (Gemici et al., 2018) on CIFAR10 dataset.

2 PRELIMINARIES

Let us consider an adversarial learning framework where our goal is to match the true distribution
p∗(x) to the model distribution pθ(x). As it was proposed in the original paper Goodfellow et al.
(2014), the model distribution pθ(x) is induced by the generator Gθ : z −→ x where z is sampled
from a prior p(z). To match the distributions p∗(x) and pθ(x) in an adversarial manner, we introduce
a discriminator Dψ : x −→ [0, 1]. It takes an object x and predicts the probability that this object is
sampled from the true distribution p∗(x). The training procedure of GANs (Goodfellow et al., 2014)
is based on the minimax game of two players: the generator Gθ and the discriminator Dψ . This game
is defined as follows

min
θ

max
ψ

V (θ, ψ) = Ep∗(x) logDψ(x) + Epz(z) log(1−Dψ(Gθ(z))) (1)

where V (θ, ψ) is a value function for this game.

The optimal discriminator Dψ∗ given fixed generator Gθ is

Dψ∗(x) =
p∗(x)

p∗(x) + pθ(x)
(2)

and then the value function for the generator V (θ, ψ∗) given the optimal discriminator Dψ∗ is
equivalent to the Jensen-Shanon divergence between the model distribution pθ(x) and the true
distribution p∗(x), i.e.

θ∗ = argmin
θ
V (θ, ψ∗) = argmin

θ
JSD(p∗(x)‖pθ(x)). (3)
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However, in practice, the gradient of the value function V (θ, ψ) with respect to the generator’s
parameters θ vanishes to zero. Therefore, Goodfellow et al. (2014) proposed to train the generator
Gθ by minimizing − logDψ(Gθ(z)) instead of log(1 − Dψ(Gθ(z))). This loss for the generator
provides much more stable gradients and has the same fixed point as the minimax game of Dψ and
Gθ.

3 PAIRWISE AUGMENTED GENERATIVE ADVERSARIAL NETWORKS

In PAGANs model our aim is not only to learn how to generate real objects with the generator
Gθ(z) where z is sampled from prior p(z) but at the same time learn an inverse mapping (encoder)
Eϕ : x −→ z. Additionally, we use the third stochastic transformation a : x −→ y without parameters
which is called augmenter. It produces the augmentation y of the source object x.

Let us consider the distributions which are induced by these three mappings

• pθ(x|z) - the conditional distribution of outputs of the generator Gθ(z) given z;
• qϕ(z|x) - the conditional distribution of outputs of the encoder Eϕ(x) given x;
• r(y|x) - the conditional distribution over the augmentations a(x) given a source object x.

Within the PAGANs model our goal is to find such optimal parameters θ∗ and ϕ∗ that ensure

1. generator matching: pθ∗(x) = p∗(x) where pθ∗(x) =
∫
pθ∗(x|z)p(z)dz, i.e. the generator

Gθ∗ samples objects from the true distribution p∗(x);
2. encoder matching: qϕ∗(z) = p(z) where qϕ∗(z) =

∫
qϕ∗(z|x)p∗(x)dx, i.e. the encoder

Eϕ generates embeddings z as the prior p(z);
3. reconstruction matching: pθ∗,ϕ∗(y|x) = r(y|x) where

pθ∗,ϕ∗(y|x) =
∫
pθ∗(y|z)qϕ∗(z|x)dz, (4)

i.e. reconstructions Gθ∗(Eϕ∗(x)) are distributed as augmentations r(y|x) of the source
object x.

3.1 GENERATOR & ENCODER MATCHING

In order to deal with generator and encoder matching problems we can use the framework of the
vanilla GANs (Goodfellow et al., 2014). We introduce two discriminators Dψx and Dψz for two
minimax games:

• generator matching:
min
θ

max
ψx

Vx(θ, ψx) = Ep∗(x) logDψx(x) + Epθ(x) log(1−Dψx(x)) (5)

• encoder matching:
min
ϕ

max
ψz

Vz(ϕ,ψz) = Ep(z) logDψz (z) + Eqϕ(z) log(1−Dψz (z)) (6)

Then the value functions Vx and Vz given the optimal discriminators Dψ∗
x

and Dψ∗
z

are equivalent to
Jensen-Shanon divergence:

θ∗ = argmin
θ
Vx(θ, ψ

∗
x) = argmin

θ
JSD(p∗(x)‖pθ(x)) (7)

ϕ∗ = argmin
ϕ
Vz(ϕ,ψ

∗
z) = argmin

ϕ
JSD(p(z)‖qϕ(z)) (8)

3.2 RECONSTRUCTION MATCHING: AUGMENTED ADVERSARIAL RECONSTRUCTION LOSS

The solution of the reconstruction matching problem ensures that reconstructions Gθ(Eϕ(x)) cor-
respond to the source object x up to defined random augmentations a(x). In PAGANs model we
introduce the minimax game for training the adversarial distance between the reconstructions and
augmentations of the source object x. We consider the discriminator Dψ which takes a pair (x, y)
and classifies it into one of the following classes:
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• the real class: pairs (x, y) from the distribution p∗(x)r(y|x), i.e. the object x is taken
from the true distribution p∗(x) and the second y is obtained from the x by the random
augmentation a(x);
• the fake class: pairs (x, y) from the distribution

p∗(x)pθ,ϕ(y|x) = p∗(x)

∫
pθ(y|z)qϕ(z|x)dz, (9)

i.e. x is sampled from p∗(x) then z is generated from the conditional distribution qϕ(z|x)
by the encoder Eϕ(x) and y is produced by the generator Gϕ(z) from the conditional model
distribution pθ(y|z).

Then the minimax problem is

min
θ,ϕ

max
ψ

V (θ, ϕ, ψ) (10)

where

V (θ, ϕ, ψ) = Ep∗(x)r(y|x) logDψ(x, y) + Ep∗(x)pθ,ϕ(y|x) log(1−Dψ(x, y)) (11)

Let us prove that such minimax game will match the distributions r(y|x) and pθ,ϕ(y|x). At first, we
find the optimal discriminator:
Proposition 1. Given a fixed generator Gθ and a fixed encoder Eϕ, the optimal discriminator Dψ∗

is

Dψ∗(x, y) =
r(y|x)

r(y|x) + pθ,ϕ(y|x)
(12)

Proof. Given in Appendix A.1.

Then we can prove that given an optimal discriminator the value function V (θ, ϕ, ψ) is equivalent to
the expected Jensen-Shanon divergence between the distributions r(y|x) and pθ,ϕ(y|x).
Proposition 2. The minimization of the value function V under an optimal discriminator Dψ∗

is equivalent to the minimization of the expected Jensen-Shanon divergence between r(y|x) and
pθ,ϕ(y|x), i.e.

θ∗, ϕ∗ = argmin
θ,ϕ

V (θ, ϕ, ψ∗) = argmin
θ,ϕ

Ep∗(x)JSD(r(y|x)‖pθ,ϕ(y|x)) (13)

Proof. Given in Appendix A.2.

If r(y|x) = δx(y) then the optimal discriminator Dψ∗(x, y) will learn an indicator I{x = y} as was
proved in Li et al. (2017). As a consequence, the objectives of the generator and the encoder are
very unstable and have vanishing gradients in practice. On the contrary, if the distribution r(y|x) is
non-degenerate as in our model then the value function V (θ, ϕ, ψ) will be well-behaved and much
more stable which we observed in practice.

3.3 TRAINING OBJECTIVES

We obtain that for the generator and the encoder we should optimize the sum of two value functions:

• the generator’s objective:

argmin
θ

[Vx(θ, ψx) + V (θ, ϕ, ψ)] = (14)

= argmin
θ

[
Epθ(x) log(1−Dψx(x)) + Ep∗(x)pθ,ϕ(y|x) log(1−Dψ(x, y))

]
(15)

• the encoder’s objective:

argmin
ϕ

[Vz(ϕ,ψz) + V (θ, ϕ, ψ)] = (16)

= argmin
ϕ

[
Eqϕ(z) log(1−Dψz (z)) + Ep∗(x)pθ,ϕ(y|x) log(1−Dψ(x, y))

]
(17)
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Algorithm 1 The PAGAN training algorithm.
θ, ϕ, ψx, ψz, ψxx ← initialize network parameters
repeat

x(1), . . . ,x(N) ∼ p∗(x) . Draw N samples from the dataset and the prior
z(1), . . . ,z(N) ∼ p(z)
ẑ(i) ∼ qϕ(z | x = x(i)), i = 1, . . . , N . Sample from the conditionals
x

(j)
pr ∼ pθ(x | z = z(j)), j = 1, . . . , N

x
(i)
rec ∼ pθ(x | z = ẑ(i)), j = 1, . . . , N

x
(i)
aug ∼ r(y | x = x(i)), j = 1, . . . , N

Lxd ← − 1
N

∑N
i=1 logD(x(i))− 1

N

∑N
j=1 log

(
1−D(x

(j)
pr )
)
. Compute discriminator loss

Lzd ← − 1
N

∑N
i=1 logD(z(i))− 1

N

∑N
j=1 log

(
1−D(ẑ(j))

)
Lxxd ← − 1

N

∑N
i=1 logD(x(i),x

(i)
aug)− 1

N

∑N
j=1 log

(
1−D(x(j),x

(j)
rec)
)

Lg ← − 1
N

∑N
i=1 logD(x

(i)
pr )− 1

N

∑N
j=1 logD(x(j),x

(j)
rec) . Compute generator loss

Le ← − 1
N

∑N
i=1 logD(ẑ(i))− 1

N

∑N
j=1 logD(x(j),x

(j)
rec) . Compute encoder loss

ψx ← ψx −∇ψxLxd , ψz ← ψz −∇ψzLzd . Gradient update on discriminator networks
ψxx ← ψxx −∇ψxxLxxd
θ ← θ −∇θLg, ϕ← ϕ−∇ϕLe . Gradient update on generator-encoder networks

until convergence

In practice in order to speed up the training we follow Goodfellow et al. (2014) and use more stable
objectives replacing log(1−D(·)) with − log(D(·)). See Figure 1 for the description of our model
and Algorithm 1 for an algorithmic illustration of the training procedure.

We can straightforwardly extend the definition of PAGANs model to f -PAGANs which minimize the
f -divergence and to WPAGANs which optimize the Wasserstein-1 distance. More detailed analysis
of these models is placed in Appendix C.

4 RELATED WORK

Recent papers on VAE-GAN hybrids explore different ways to build a generative model with an
encoder part. One direction is to apply adversarial training in the VAE framework to match the
variational posterior distribution q(z|x) and the prior distribution p(z) (Mescheder et al., 2017) or
to match the marginal q(z) and p(z) (Makhzani et al., 2016; Tolstikhin et al., 2017). Another way
within the VAE model is to introduce the discriminator as a part of a data likelihood (Larsen et al.,
2015; Brock et al., 2017). Within the GANs framework, a common technique is to regularize the
model with the reconstruction loss term (Che et al., 2017; Rosca et al., 2017; Ulyanov et al., 2018).

Another principal approach is to train the generator and the encoder (Donahue et al., 2017; Dumoulin
et al., 2017; Li et al., 2017) simultaneously in a fully adversarial way. These methods match the
joint distributions p∗(x)q(z|x) and pθ(x|z)p(z) by training the discriminator which classifies the
pairs (x, z). ALICE model (Li et al., 2017) introduces an additional entropy loss for dealing with
the non-identifiability issues in ALI model. Li et al. (2017) approximated the entropy loss with
the cycle-consistency term which is equivalent to the adversarial reconstruction loss. The model of
Pu et al. (2017a) puts ALI to the VAE framework where the same joint distributions are matched
in an adversarial manner. As an alternative, Ulyanov et al. (2018) train generator and encoder by
optimizing the minimax game without the discriminator. Optimal transport approach is also explored,
Gemici et al. (2018) introduce an algorithm based on primal and dual formulations of an optimal
transport problem.

In PAGANs model the marginal distributions in the data space p∗(x) and pθ(x) and in the latent
space p(z) and q(z) are matched independently as in Zhu et al. (2017). Additionally, the augmented
adversarial reconstruction loss is minimized by fooling the discriminator which classifies the pairs
(x, a(x)) and (x,G(E(x))).

5



Under review as a conference paper at ICLR 2019

5 EXPERIMENTS

In this section, we validate our model experimentally. At first, we compare PAGAN with other similar
methods that allow performing both inference and generation using Inception Score and Fréchet
Inception Distance. Secondly, to measure reconstruction quality, we introduce Reconstruction
Inception Dissimilarity (RID) and prove its usability. In the last two experiments we show the
importance of the adversarial loss and augmentations.

For the architecture choice we used deterministic DCGAN1 generator and discriminator networks
provided by pfnet-research2, the encoder network has the same architecture as the discriminator
except for the output dimension. The encoder’s output is a factorized normal distribution. Thus
pθ(x|z) = δGθ(z)(x), qϕ(z|x) = N (µϕ(x), σ

2
ϕ(x)I) where µϕ, σϕ are outputs of the encoder

network. The discriminator D(z) architecture is chosen to be a 2 layer MLP with 512, 256 hidden
units. We also used the same default hyperparameters as provided in the repository and applied a
spectral normalization following Miyato et al. (2018). For the augmentation a(x) defined in Section 3
we used a combination of reflecting 10% pad and the random crop to the same image size. The prior
distribution p(z) is chosen to be a standard distribution N (0, I). To evaluate Inception Score and
Fréchet Inception Distance we used the official implementation provided in tensorflow 1.10.1
(Abadi et al., 2015).

To optimize objectives (16), (14), we need to have a discriminator working on pairs (x, y). This
can be done using special network architectures like siam networks (Bromley et al., 1993) or via an
image concatenation. The latter approach can be implemented in two concurrent ways: concatenating
channel or widthwise. Empirically we found that the siam architecture does not lead to significant
improvement and concatenating width wise to be the most stable. We use this configuration in all the
experiments.

Sampling Quality
To see whether our method provides good quality samples from the prior, we compared our model
to related works that allow an inverse mapping. We performed our evaluations on CIFAR10 dataset
since quantitative metrics are available there. Considering Fréchet Inception Distance (FID), our
model outperforms all other methods. Inception Score shows that PAGANs significantly better than
others except for recently announced PD-WGAN. Quantitative results are given in Table 1. For
S-VAE we report IS that is reproduced using officially provided code and hyperparameters3. Plots
with samples and reconstructions for CIFAR10 dataset are provided in Figure 2. Additional visual
results for more datasets can be found in Appendix E.3.

Table 1: Inception Score and Fréchet Inception Distance for different methods. IS and FID for other
methods were taken from literature (if possible). For AGE we got FID using a pretrained model.

Model FID Inception Score
WAE-GAN (Tolstikhin et al., 2017) 87.7 4.18 ± 0.04
ALI (Dumoulin et al., 2017) 5.34 ± 0.04
AGE (Ulyanov et al., 2018) 39.51 5.9 ± 0.04
ALICE (Li et al., 2017) 6.02 ± 0.03
S-VAE (Chen et al., 2018) 6.055
α-GANs (Rosca et al., 2017) 6.2
AS-VAE (Pu et al., 2017b) 6.3
PD-WGAN, λmix = 0 (Gemici et al., 2018) 33.0 6.70 ± 0.09
PAGAN (ours) 32.84 6.56 ± 0.06

Reconstruction Inception Dissimilarity
The traditional approach to estimate the reconstruction quality is to compute RMSE distance from
source images to reconstructed ones. However, this metric suffers from focusing on exact recon-
struction and is not content aware. RMSE penalizes content-preserving transformations while allows

1DCGAN architecture is a common choice for GANs, other works use similar architecture
2https://github.com/pfnet-research/chainer-gan-lib
3https://github.com/LiqunChen0606/Symmetric-VAE
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(a) PAGAN samples (b) AGE samples (c) PAGAN reconstructions (d) AGE reconstructions

Figure 2: Evaluation of Generator and Encoder on CIFAR10 dataset, on plots (c), (d) odd columns
denote original images, even stand for corresponding reconstructions on test partition.
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Figure 3: Reconstruction Inception Dissimilarity compared to RMSE. Unlike RMSE, RID captures
distortions in image content much more better. Having same RMSE, augmentation has much more
lower RID compared to a set of other methods.
∗ Evaluation for SVAE is based on officially provided code and hyperparameters.

such undesirable effect as blurriness which degrades visual quality significantly. We propose a novel
metric Reconstruction Inception Dissimilarity (RID) which is based on a pre-trained classification
network and is defined as follows:

RID = exp {Ex∼DDKL(p(y|x)‖p(y|G(E(x))))} , (18)

where p(y|x) is a pre-trained classifier that estimates the label distribution given an image. Similar to
Salimans et al. (2016) we use a pre-trained Inception Network (Szegedy et al., 2016) to calculate
softmax outputs.

Table 2: Evaluation of RMSE an RID
metrics on CIFAR10 dataset.

Model RMSE RID
AUG 8.89 1.57 ± 0.02
VAE 5.85 44.33 ± 2.27
SVAE 8.59 38.13 ± 1.92
AGE 6.675 19.02 ± 0.84
PAGANs 8.12 13.01 ± 0.82

Low RID indicates that the content did not change after
reconstruction. To calculate standard deviations, we use
the same approach as for IS and split test set on 10 equal
parts4. Moreover RID is robust to augmentations that do
not change the visual content and in this sense is much
better than RMSE. To compare new metric with RMSE,
we train a vanilla VAE with resnet-like architecture on CI-
FAR10. We compute RID for its reconstructions and real
images with the augmentation (mirror 10% pad + random
crop). In Table 2 we show that RMSE for VAE is better
in comparison to augmented images (AUG), but we are
not satisfied with its reconstructions (see Figure 12 in Ap-
pendix E.4), Figure 3 provides even more convincing results. RID allows a fair comparison, for VAE
it is dramatically higher (44.33) than for AUG (1.57). Value 1.57 for AUG says that KL divergence
is close to zero and thus content is almost not changed. We also provide estimated RID and RMSE
for AGE that was publicly available5. From Table 2 we see that PAGANs outperform AGE which
reflects that our model has better reconstruction quality.

Importance of adversarial loss
To prove the importance of an adversarial loss, we experiment replacing adversarial loss with the

4Split is done sequentially without shuffling
5Pretrained AGE: https://github.com/DmitryUlyanov/AGE
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Table 3: Reconstruction Inception Dissimilarity, Inception Score and Fréchet Inception Distance
calculated for three setups: 1) the proposed model, PAGAN; 2) PAGAN with L1 for reconstruction
loss; 3) PAGAN with augmentation removed. Model without adversarial loss or without augmentation
performed worse in both generation and reconstruction tasks.

Model FID IS RID
PAGAN 32.84 6.56 ± 0.06 13.01 ± 0.82
PAGAN-L1 76.73 4.46 ± 0.03 30.94 ± 1.58
PAGAN-NOAUG 111.151 4.23 ± 0.06 50.15 ± 2.71

standard L1 pixel-wise distance between source images and corresponding reconstructions and
compared FID, IS and RID metrics. Using an augmentation in this setting is ambiguous. Thus we did
not use any augmentation in training of the changed model. Quantitative results for the experiment
are provided in Table 3. IS and FID results suggest that our model without adversarial loss performed
worse in generation. Reconstruction quality significantly dropped considering RID. Visual results in
Appendix E.1 confirm our quantitative findings.

Importance of augmentation
In ALICE model (Li et al., 2017) an adversarial reconstruction loss was implemented without an
augmentation. As we discussed in Section 1 its absence leads to undesirable effects. Here we run
an experiment to show that our model without augmentation performs worse. Quantitative results
provided in Table 3 illustrate that our model without an augmentation fails to recover both good
reconstruction and generation properties. Visual comparisons can be found in Appendix E.2. Using
the results obtained from the last two experiments we conclude that adversarial reconstruction loss
works significantly better with augmentation.

Choice of Augmentation
Experiments checking augmentation effects (see Appendix B for details) conclude the following. A
good augmentation: 1) is required to be non-deterministic, 2) should preserve the content of source
image, 3) should be hard to use pixel-wise comparison for discriminator.

6 CONCLUSIONS

In this paper, we proposed a novel framework with an augmented adversarial reconstruction loss. We
introduced RID to estimate reconstructions quality for images. It was empirically shown that this
metric could perform content-based comparison of reconstructed images. Using RID, we proved the
value of augmentation in our experiments. We showed that the augmented adversarial loss in this
framework plays a key role in getting not only good reconstructions but good generated images.

Some open questions are still left for future work. More complex architectures may be used to achieve
better IS and RID. The random shift augmentation may not the only possible choice, and other smart
choices are also possible.
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APPENDIX A PROOFS

A.1 PROOF OF PROPOSITION 1 (OPTIMAL DISCRIMINATOR)

Proposition 1. Given a fixed generator Gθ and a fixed encoder Eϕ, the optimal discriminator Dψ∗

is

Dψ∗(x, y) =
r(y|x)

r(y|x) + pθ,ϕ(y|x)
(12)

Proof. For fixed generator and encoder, the value function V (ψ) with respect to the discriminator is

V (ψ) = Ep∗(x)r(y|x) logDψ(x, y) + Ep∗(x)pθ,ϕ(y|x) log(1−Dψ(x, y)) (19)

Let us introduce new variables and notations

t = (x, y), p1(t) = p∗(x)r(y|x), p2(t) = p∗(x)pθ,ϕ(y|x) (20)

Then

V (ψ) = Ep1(t) logDψ(t) + Ep2(t) log(1−Dψ(t)) (21)

Using the results of the paper Goodfellow et al. (2014) we obtain

Dψ∗(t) =
p1(t)

p1(t) + p2(t)
=

p∗(x)r(y|x)
p∗(x)r(y|x) + p∗(x)pθ,ϕ(y|x)

=
r(y|x)

r(y|x) + pθ,ϕ(y|x)
(22)

A.2 PROOF OF PROPOSITION 2

Proposition 2. The minimization of the value function V under an optimal discriminator Dψ∗

is equivalent to the minimization of the expected Jensen-Shanon divergence between r(y|x) and
pθ,ϕ(y|x), i.e.

θ∗, ϕ∗ = argmin
θ,ϕ

V (θ, ϕ, ψ∗) = argmin
θ,ϕ

Ep∗(x)JSD(r(y|x)‖pθ,ϕ(y|x)) (13)

Proof. As in the paper Goodfellow et al. (2014) we rewrite the value function V (θ, ϕ) for the optimal
discriminator Dψ∗ as follows

V (θ, ϕ) = Ep∗(x)r(y|x) logDψ∗(x, y) + Ep∗(x)pθ,ϕ(y|x) log(1−Dψ∗(x, y)) = (23)

= Ep∗(x)r(y|x) log
r(y|x)

r(y|x) + pθ,ϕ(y|x)
+ Ep∗(x)pθ,ϕ(y|x) log

pθ,ϕ(y|x)
r(y|x) + pθ,ϕ(y|x)

= (24)

= Ep∗(x)

[
Er(y|x) log

r(y|x)
r(y|x) + pθ,ϕ(y|x)

+ Epθ,ϕ(y|x) log
pθ,ϕ(y|x)

r(y|x) + pθ,ϕ(y|x)

]
= (25)

= Ep∗(x) [− log(4) + 2 · JSD (r(y|x) ‖pθ,ϕ(y|x)) ] (26)

APPENDIX B CHOICE OF AUGMENTATION

Augmentation choice might be problem specific. Thereby we additionally study different augmenta-
tions and provide an intuition how to choose the right transformation. Theory suggests to pick up
a stochastic augmentation. The practical choice should take into account the desired properties of
reconstructions. A random shift of an image by a small margin is sufficient to create good quality
reconstructions. However, this shift should not be large because it may inherit augmentation artifacts.
This can be spotted beforehand just looking at pairs (x, a(x)). Once these pairs are not satisfactory,
model reconstructions would be bad as well.
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Figure 4: RID, FID, IS dependence on padding choice. Inception score suggests 0.1 padding being
most robust and yielding good samples as well as reconstuctions. RID, FID grow as padding increases
indicating slightly worse performance.

(a) Reconstructions (b) Samples

Figure 5: Negative effects that are caused by too aggressive augmentation (0.2) are seen in recon-
structions but not in samples

B.1 PADDING SIZE

In this experiment, we investigate the effects caused by the padding and random crop augmentation.
We choose different padding size (comparatively to the original image size) and plot FID, RID
and IS metrics. The results provide the intuition to choose padding size (see Figure 4). Padding
should be chosen to maintain visual content while making impossible to compare augmented and
original images by nearly element-wise comparison. Larger padding cause undesirable effects in
reconstructions that are captured by RID (see Figure 5). Visual quality of samples, on the other hand
is slightly better with more aggressive augmentation considering FID metric, what is explained by
more robust training due to less mode collapse problem.

B.2 OTHER AUGMENTATIONS

We also checked two different augmentation types: Gaussian blur and random contrast (see Fig-
ures 6,7). Both augmentations led to highly unstable training and did not yield satisfactory results (IS
was 2.15 and 4.18 respectively). Therefore we conclude that a good augmentation is better to change
spatial image structure preserving content (as padding does) what will force the discriminator to take
content into account.

Augmentation IS FID RID
crop+padding 0 3.35±0.03 108.81

0.05 5.62±0.01 45.60 14.70±1.08
0.1 6.43±0.03∗ (6.56±0.09) 37.20 12.75±0.75

0.15 6.16±0.03 39.38 12.25±0.71
0.2 6.16±0.19 39.18 13.86±0.72

Blur 2.15±0.01 200.66 32.92±1.46
Contrast 4.18±0.01 101.27 50.02±2.10

Table 4: Evaluation for different types of augmentations.
∗The number is taken not from the last epoch to save computational resources and compare results
after the same number of epochs.

A good augmentation:
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(a) orig (b) contrast (c) blur (d) pad(0.2)+crop

Figure 6: Examples of augmentation

(a) reconstructions: blur aug (b) reconstructions: contrast aug

(c) samples: blur aug (d) samples: contrast aug

Figure 7: Instability effects that are caused by Gaussian blur and random contrast augmentations for
reconstructions and samples

• is required to be non-deterministic
• should preserve the content of source image
• should be hard to use pixel-wise comparison for discriminator

APPENDIX C EXTENDING PAGANS

C.1 f -DIVERGENCE PAGANS

f -GANs (Nowozin et al., 2016) are the generalization of GAN approach. Nowozin et al. (2016)
introduces the model which minimizes the f -divergence Df (Ali & Silvey, 1966) between the true
distribution p∗(x) and the model distibution pθ(x), i.e. it solves the optimization problem

min
θ
Df (p

∗(x)‖pθ(x)) =
∫
pθ(x)f

(
p∗(x)

pθ(x)

)
dx (27)

where f : R+ −→ R is a convex, lower-semicontinuous function satisfying f(1) = 0.

The minimax game for f -GANs is defined as

min
θ

max
ψ

V (θ, ψ) = Ep∗(x)Tψ(x)− Epθ(x)f
∗(Tψ(x)) (28)

where V (θ, ψ) is a value function and f∗ is a Fenchel conjugate of f (Nguyen et al., 2008). For

fixed parameters θ, the optimal Tψ∗(x) is f ′
(
p∗(x)

pθ(x)

)
. Then the value function V (θ, ψ∗) for optimal

parameters ψ∗ equals to f -divergence between the distributions p∗ and pθ (Nguyen et al., 2008), i.e.

V (θ, ψ∗) = Df (p
∗(x)‖pθ(x)) (29)
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We can straightforwardly extend the definition of PAGANs model to f -PAGANs. We just introduce
for each matching problem the f -GAN value function, i.e.

• generator matching:

min
θ

max
ψ(1)

V
(1)
f (θ, ψ(1)) = Ep∗(x)Tψ(1)(x)− Epθ(x)f

∗(Tψ(1)(x)) (30)

θ∗ = argmin
θ
V

(1)
f (θ, ψ

(1)
∗ ) = argmin

θ
Df (p

∗(x)‖pθ(x)) (31)

• encoder matching:

min
ϕ

max
ψ(2)

V
(2)
f (ϕ,ψ(2)) = Epz(z)Tψ(2)(z)− Eqϕ(z)f

∗(Tψ(2)(z)) (32)

ϕ∗ = argmin
ϕ
V

(2)
f (ϕ,ψ

(2)
∗ ) = argmin

ϕ
Df (pz(z)‖qϕ(z)) (33)

• reconstruction matching:
min
θ,ϕ

max
ψ

Vf (θ, ϕ, ψ) = Ep∗(x)r(y|x)Tψ(x, y)− Ep∗(x)pθ,ϕ(y|x)f
∗(Tψ(x, y)) (34)

θ∗, ϕ∗ = argmin
θ,ϕ

V (θ, ϕ, ψ∗) = argmin
θ,ϕ

Df (r(y|x)‖pθ,ϕ(y|x)) (35)

C.2 WASSERSTEIN PAGANS

Arjovsky et al. (2017) proposed WGANs model for minimizing the Wasserstein-1 distance between
the distributions p∗(x) and pθ, i.e.

min
θ
W (p∗(x), pθ(x)) = inf

γ∈Π(p∗,pθ)
E(x,y)∼γ‖x− y‖ (36)

Because the distance W (p∗(x), pθ(x)) is intractable they consider solving the Kantorovich-
Rubinstein dual problem (Villani, 2008)

min
θ
W (p∗(x), pθ(x)) = min

θ
max
‖f‖L61

[
Ep∗(x)f(x)− Epθf(x)

]
(37)

As in Section C.1 we can easily extend the PAGANs model to WPAGANs. In each matching problem
the corresponding distance between distributions will be Wasserstein-1 distance.

APPENDIX D OTHER MODELS AND EXPERIMENT DETAILS

D.1 TRAINING WASSERSTEIN PAGAN

As another concurrent approach to match implicit distributions we can use Wasserstein distance.
Recent empirical works showed promising results (Gulrajani et al., 2017; Gemici et al., 2018) and
thus they are interesting to compare with. As mentioned above we still need a critic to work on
pairs of images. Unlike GAN frameworks it is desirable to have a strong critic. A channel wise
concatenation for pairs (x, y) worked the best in sense of visual quality and training stability. As a
default choice to improve Wasserstein distance optimization we applied the gradient penalty proposed
in Gulrajani et al. (2017). To apply the gradient penalty for a critic on pairs we have to interpolate
between pairs (x, y) and (x′, y′). There are still two choices:

• shared alpha
(x̃, ỹ) = (αx+ (1− α)x′, αy + (1− α)y′), α ∼ U [0, 1] (38)

• independent alpha for each part
(x̃, ỹ) = (α1x+ (1− α1)x

′, α2y + (1− α2)y
′), α1, α2 ∼ U [0, 1] (39)

Empirically we found no differences in results and in further experiments used shared alpha as a
default choice. The gradient penalty strength parameter λ was set to 10 as recommended by Gulrajani
et al. (2017). We used 10 discriminator steps per 1 generator/encoder step for WPAGAN to slightly
improve quality in this setting, other parameters were unchanged. In Table 5 we present results for
Wasserstein loss used instead of standard GAN objective in PAGAN model. While having good
reconstructions this type of loss failed to achieve good generation results.
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Table 5: Inception Score and Fréchet Inception Distance for Wasserstein PAGAN.

Model FID IS RIS
WPAGAN 52.29 5.62 ± 0.09 13.44 ± 0.44

APPENDIX E IMAGES

E.1 PAGAN-L1 VISUAL RESULTS

(a) CIFAR10 samples from PAGAN-L1 (b) CIFAR10 reconstructions from PAGAN-L1

Figure 8: Evaluation of Generator and Encoder trained on CIFAR10 dataset with adversarial loss
replaced with L1 loss. On plot (b) odd columns denote original images, even stand for corresponding
reconstructions on test partition

E.2 PAGAN-NOAUG VISUAL RESULTS
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(a) CIFAR10 samples from PAGAN-NOAUG (b) CIFAR10 reconstructions from PAGAN-NOAUG

Figure 9: Evaluation of Generator and Encoder trained on CIFAR10 dataset with removed augmenta-
tion. On plot (b) odd columns denote original images, even stand for corresponding reconstructions
on test partition

E.3 PAGAN VISUAL RESULTS

(a) MNIST samples from PAGAN (b) MNIST reconstructions from PAGAN

Figure 10: Evaluation of Generator and Encoder trained on MNIST dataset. On plot (b) odd columns
denote original images, even stand for corresponding reconstructions on test partition
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(a) celebA samples from PAGAN (b) celebA reconstructions from PAGAN

Figure 11: Evaluation of Generator and Encoder trained on celebA dataset. On plot (b) odd columns
denote original images, even stand for corresponding reconstructions on test partition

E.4 VAE FOR RECONSTRUCTION INCEPTION SCORE

Figure 12: Reconstructions from VAE used to compute RIS
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