
Workshop track - ICLR 2018

FAST WEIGHT LONG SHORT-TERM MEMORY

T. Anderson Keller, Sharath Nittur Sridhar, Xin Wang
Intel AI Lab, Artificial Intelligence Products Group, Intel Corporation
{andy.a.keller, sharath.nittur.sridhar, xin3.wang}@intel.com

ABSTRACT

Associative memory using fast weights is a short-term memory mechanism that
substantially improves the memory capacity and time scale of recurrent neural
networks (RNNs). As recent studies introduced fast weights only to regular RNNs,
it is unknown whether fast weight memory is beneficial to gated RNNs. In this
work, we report a significant synergy between long short-term memory (LSTM)
networks and fast weight associative memories. We show that this combination,
in learning associative retrieval tasks, results in much faster training and lower test
error, a performance boost most prominent at high memory task difficulties.

1 INTRODUCTION

RNNs are highly effective in learning sequential data. Simple RNNs maintain memory through
hidden states that evolve over time. Keeping memory in this simple, transient manner has, among
others, two shortcomings. First, memory capacity scales linearly with the dimensionality of recur-
rent representations, limited for complex tasks. Second, it is difficult to support memory at diverse
time scales, particularly challenging for tasks that requires information from variably distant past.

Numerous differentiable memory mechanisms have been proposed to overcome the limitations of
deep RNNs. Some of these mechanisms, e.g. attention, have become a universal practice in real-
world applications such as machine translation (Bahdanau et al., 2014; Daniluk et al., 2017; Vaswani
et al., 2017). One type of memory augmentation of RNNs includes mechanisms that employ long-
term, generic key-value storages (Graves et al., 2014; Weston et al., 2015; Kaiser et al., 2017).
Another kind of memory mechanisms, inspired by early work on fast weights (Hinton & Plaut,
1987; Schmidhuber, 1992), uses auto-associative, recurrently adaptive weights for short-term mem-
ory storage (Ba et al., 2016a; Zhang & Zhou, 2017; Schlag & Schmidhuber, 2017). Associative
memory considerably ameliorates limitations of RNNs. First, it liberates memory capacity from the
linear scaling with respect to hidden state dimensions; in the case of auto-associative memory like
fast weights, the scaling is quadratic (Ba et al., 2016a). Neural Turing Machine (NTM)-style generic
storage can support memory access at arbitrary temporal displacements, whereas fast weight-style
memory has its own recurrent dynamics, potentially learnable as well (Zhang & Zhou, 2017). Fi-
nally, if architected and parameterized carefully, some associative memory dynamics can also alle-
viate the vanishing/exploding gradient problem (Dangovski et al., 2017).

Besides memory augmentation, another entirely distinct approach to overcoming regular RNNs’
drawbacks is by clever design of recurrent network architecture. The earliest but most effective and
widely adopted one is gated RNN cells such as long short-term memory (LSTM) (Hochreiter &
Schmidhuber, 1997). Recent work has proposed ever more complex topologies involving hierarchy
and nesting, e.g. Chung et al. (2016); Zilly et al. (2016); Ruben et al. (2017).

How do gated RNNs such as LSTM interact with associative memory mechanisms like fast weights?
Are they redundant, synergistic, or rather competitive to each other? This remains an open question
since all fast weight networks reported so far are based on regular, instead of gated, RNNs. Here we
answer this question by revealing a strong synergy between fast weight and LSTM.

2 RELATED WORK

Our present work builds upon results reported by Ba et al. (2016a), using the same fast weight mech-
anism. A number of studies subsequent to Ba et al. (2016a), though not applied to gated RNNs, pro-

1



Workshop track - ICLR 2018

posed interesting mechanisms directly extending or closely related to fast weights. WeiNet (Zhang
& Zhou, 2017) parameterized the fast weight update rule and learned it jointly with the network.
Gated fast weights (Schlag & Schmidhuber, 2017) used a separate network to produce fast weights
for the main RNN and the entire network was trained end-to-end. Rotational unit of memory (Dan-
govski et al., 2017) is an associative memory mechanism related to yet distinct from fast weights.
Its memory matrix is updated with a norm-preserving operation between the input and a target.

Danihelka et al. (2016) proposed an LSTM network augmented by an associative memory that lever-
ages hyperdimensional vector arithmetic for key-value storage and retrieval. This is an NTM-style,
non-recurrent memory mechanism and hence different from the fast weight short-term memory.

3 FAST WEIGHT LSTM

Our FW-LSTM is defined by the following update equations for the cell states, hidden state, and fast
weight matrix (Figure 1).1

LSTM

FW

Figure 1: FW-LSTM diagram


ît
f̂t
ôt

ĝt

 = LN


Wi Ui

Wf Uf

Wo Uo

Wg Ug

(ht−1
xt

)
+

bi

bf

bo

bg


 (1)

(it, ft,ot,gt) =
(
σ(̂it), σ(f̂t), σ(ôt),ReLU(ĝt)

)
(2)

At = λAt−1 + η gtg
>
t (3)

ct = LN [ft � ct−1 + it � ReLU (ĝt +Atgt)] (4)
ht = ot � ReLU (ct) (5)

Here xt ∈ Rd, ht,vt, v̂t,bv ∈ Rh, Wv,At ∈ Rh×h and Uv ∈ Rh×d, where v ∈ {i, f ,o,g},
and t indexes time steps. � denotes Hadamard (element-wise) product, LN [·] layer normalization,
and σ(·), ReLU(·) are the sigmoind and rectified linear function applied element-wise. We used
ReLU(·) in places of tanh(·) for efficiency, as it did not make a significant difference in practice.
Our construction is identical to the standard LSTM cell except for a fast weight memory At queried
by the input activation gt. Since gt is a function of both the network output ht−1 and the new input
xt, this gives the network control over what to associate with each new input.

4 EXPERIMENTS

To study the performance of FW-LSTM in comparison with FW-RNN and LSTM with layer nor-
malization (LN-LSTM), we experimented with the associative retrieval task (ART) described in Ba
et al. (2016a). Input sequences are composed of K

2 key-value pairs followed by a separator ??, and
then a query key, e.g. for K = 8, an example sequence is a1b2c3d4??b whose target answer is
2. We experimented with sequence lengths much greater than the original K = 8, up to K = 30
similar to Zhang & Zhou (2017) and Dangovski et al. (2017).

We further devised a modified ART (mART) that is a re-arrangement of input sequences in the
original ART. In mART, all keys are presented first, then followed by all values in the corresponding
order, e.g. the mART equivalent of the above training example is abcd1234??bwith target answer
of again 2. In contrast to ART, where the temporal distance is constantly 1 between associated pairs
and only average retrieval distance grows with K, in mART temporal distances of both association
and retrieval scales linearly with K. This renders the task more difficult to learn than the original
ART, and K can be used to control the difficulty of memory associations.

In all experiments, we augmented the FW-LSTM cell with a learned 100-dimensional embedding
for the input xt. Additionally, network output at the end of the sequence was processed by another

1 Note that the placement of layer normalizations is slightly different from the method described in the
original paper (Ba et al., 2016b) We find applying layer normalization to the hidden state and input activations
simultaneously (rather than separately as in the original model) worked better for this fast weight architecture.

2



Workshop track - ICLR 2018

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

V
al
id
at
io
n
A
cc
u
ra
cy

%

FW-LSTM d=20

FW-LSTM d=50

FW-RNN d=20

FW-RNN d=50

Figure 2: Validation accuracy during the course of training of mART for FW-LSTMs and FW-RNNs
of 20 and 50 hidden units.

hidden layer with 100 ReLU units before the final softmax, identical to Ba et al. (2016a). All
models were tuned as described in Appendix and run for a minimum of 300 epochs. 2

The left half of Table 1 shows performances of LN-LSTM, FW-RNN3, and our FW-LSTM trained on
ART with different sequence lengths and numbers of hidden units. FW-LSTM has a slight advantage
when the number of hidden units is low, but otherwise both the FW-RNN and FW-LSTM solve the
task perfectly.

The right half of Table 1 shows performances of the same models trained on the mART. Due to
significantly increased difficulty of the task, we instead show results for sequence lengthsK = 8, 16.
In learning mART, FW-LSTM outperformed FW-RNN and LN-LSTM by a much greater margin
especially at high memory difficulty, K = 16, and also converged much faster (Figure 2).

Table 1: Test accuracy (%) of associative retrieval (ART) and modified associative retrieval (mART)
for different sized models and sequence lengths K.

Task ART mART
# Hidden Model K = 8 K = 30 K = 8 K = 16 # Parameters

20
LN-LSTM 37.8 22.7 38.2 29.5 19k
FW-RNN 98.7 95.7 55.5 30.3 12k

FW-LSTM 99.6 97.5 96.3 38.9 19k

50
LN-LSTM 95.4 21.0 34.8 25.7 43k
FW-RNN 100.0 100.0 90.9 29.0 20k

FW-LSTM 100.0 100.0 99.4 93.3 43k

100
LN-LSTM 97.6 18.4 33.4 22.5 100k
FW-RNN 100.0 100.0 91.9 30.5 38k

FW-LSTM 100.0 100.0 99.9 92.6 100k

5 CONCLUSIONS

We observed that FW-LSTM trained significantly faster and achieved lower test error in perform-
ing the original ART. Further, in learning the harder mART, when input sequences are longer, we
found that FW-LSTM could still perform the task highly accurately, while both FW-RNN and LN-
LSTM utterly failed. This was true even when FW-LSTM had fewer trainable parameters. These
results suggest that gated RNNs equipped with fast weight memory is a promising combination for
associative learning of sequences.

2All code to reproduce the experimental results is available at [github link available after
acceptance].

3 The parameters η and λ used for FW-RNN here are different than those in Zhang & Zhou (2017), resulting
in an improved performance. The values used are listed in Appendix.

3



Workshop track - ICLR 2018

REFERENCES

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using Fast
Weights to Attend to the Recent Past. 2016a. ISSN 10495258. URL http://arxiv.org/
abs/1610.06258.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016b.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. sep 2014. ISSN 0147-006X. doi: 10.1146/annurev.neuro.26.
041002.131047. URL http://arxiv.org/abs/1409.0473.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical Multiscale Recurrent Neural
Networks. sep 2016. URL http://arxiv.org/abs/1609.01704.

Rumen Dangovski, Li Jing, and Marin Soljacic. Rotational Unit of Memory. oct 2017. URL
http://arxiv.org/abs/1710.09537.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative Long
Short-Term Memory. feb 2016. URL http://arxiv.org/abs/1602.03032.

Michał Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel. Frustratingly Short At-
tention Spans in Neural Language Modeling. feb 2017. URL http://arxiv.org/abs/
1702.04521.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. Arxiv, pp. 1–26, 2014.
ISSN 2041-1723. doi: 10.3389/neuro.12.006.2007. URL http://arxiv.org/abs/1410.
5401.

Geoffrey E. Hinton and David C. Plaut. Using Fast Weights to Deblur Old Memories. Proceedings
of the 9th Annual Conference of the Cognitive Science Society, pp. 177–186, 1987. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.1011.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1–32, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to Remember Rare Events.
mar 2017. URL http://arxiv.org/abs/1703.03129.

Joel Ruben, Antony Moniz, David Krueger, and David Krueger@umontreal Ca. Nested LSTMs.
80:1–15, jan 2017. URL http://arxiv.org/abs/1801.10308.

Imanol Schlag and Jürgen Schmidhuber. Gated Fast Weights for On-The-Fly Neural Program Gen-
eration. NIPS Metalearning Workshop, 2017. URL http://metalearning.ml/papers/
metalearn17{_}schlag.pdf.

Jürgen Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic Re-
current Networks. Neural Computation, 4(1):131–139, jan 1992. ISSN 0899-7667. doi: 10.
1162/neco.1992.4.1.131. URL http://www.mitpressjournals.org/doi/10.1162/
neco.1992.4.1.131.

Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. (Nips), 2017.
URL http://arxiv.org/abs/1706.03762.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. Iclr, pp. 1–15, 2015. ISSN
1098-7576. doi: v0. URL http://arxiv.org/abs/1410.3916.

Wei Zhang and Bowen Zhou. Learning to update Auto-associative Memory in Recurrent Neural
Networks for Improving Sequence Memorization. sep 2017. URL http://arxiv.org/
abs/1709.06493.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
Highway Networks. jul 2016. ISSN 1938-7228. URL http://arxiv.org/abs/1607.
03474.

4

http://arxiv.org/abs/1610.06258
http://arxiv.org/abs/1610.06258
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1609.01704
http://arxiv.org/abs/1710.09537
http://arxiv.org/abs/1602.03032
http://arxiv.org/abs/1702.04521
http://arxiv.org/abs/1702.04521
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.1011
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.1011
http://arxiv.org/abs/1703.03129
http://arxiv.org/abs/1801.10308
http://metalearning.ml/papers/metalearn17{_}schlag.pdf
http://metalearning.ml/papers/metalearn17{_}schlag.pdf
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.1.131
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.1.131
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1709.06493
http://arxiv.org/abs/1709.06493
http://arxiv.org/abs/1607.03474
http://arxiv.org/abs/1607.03474


Workshop track - ICLR 2018

6 ACKNOWLEDGMENTS

We thank Drs. Tristan J. Webb, Marcel Nassar and Amir Khosrowshahi for insightful discussions.
We also thank Dr. Jason Knight for his assistance setting up Kubernetes cluster used for training
and tuning.

7 APPENDIX

7.1 ASSOCIATIVE RETRIEVAL HYPERPARAMETERS

All models in the Associative retrieval section were tuned over the following hyperparameter ranges
using standard grid search. The final models were selected based on the highest validation set
accuracy from the following set:

η ∈ {1.0, 0.75, 0.5, 0.25, 0.1} (6)
λ ∈ {0.99, 0.9} (7)

grad clip ∈ {1.0, 5.0} (8)

learning rate ∈ {10−4, 10−5} (9)
anneal rate ∈ {100, 10} (10)

(11)

where anneal rate is the number of epochs between which the learning rate is halved, and
grad clip is the maximum L2 norm clipping value for the gradient.

The optimal hyperparameters were found to match for both the FW-RNN and FW-LSTM for the
simple associative retrieval tasks. They are as follows:

η = 1.0 (12)
λ = 0.99 (13)

grad clip = 5.0 (14)

learning rate = 10−4 (15)
anneal rate = 100 (16)

(17)

5


	Introduction
	Related Work
	Fast Weight LSTM
	Experiments
	Conclusions
	Acknowledgments
	Appendix
	Associative retrieval Hyperparameters


