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ABSTRACT

Robust real-world learning should benefit from both demonstrations and inter-
action with the environment. Current approaches to learning from demonstra-
tion and reward perform supervised learning on expert demonstration data and
use reinforcement learning to further improve performance based on reward from
the environment. These tasks have divergent losses which are difficult to jointly
optimize; further, such methods can be very sensitive to noisy demonstrations.
We propose a unified reinforcement learning algorithm, Normalized Actor-Critic
(NAC), that effectively normalizes the Q-function, reducing the Q-values of ac-
tions unseen in the demonstration data. NAC learns an initial policy network from
demonstration and refines the policy in a real environment. Crucially, both learn-
ing from demonstration and interactive refinement use exactly the same objective,
unlike prior approaches that combine distinct supervised and reinforcement losses.
This makes NAC robust to suboptimal demonstration data, since the method is not
forced to mimic all of the examples in the dataset. We show that our unified rein-
forcement learning algorithm can learn robustly and outperform existing baselines
when evaluated on several realistic driving games.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved significant success on many complex sequential
decision-making problems. However, RL algorithms usually require a large amount of interaction
with an environment to reach good performance (Kakade et al., 2003); initial performance may
be nearly random, clearly suboptimal, and often rather dangerous in real-world settings such as
autonomous driving. Learning from demonstration is a well-known alternative, but typically does
not leverage reward, and presumes relatively small-scale noise-free demonstrations. We develop a
new robust algorithm for Reinforcement-Learning-from-Demonstrations (RLfD) that can learn value
and policy functions from imperfect demonstration data as well as environmental reward signals.

Recent efforts toward policy learning which does not suffer from a suboptimal initial performance
generally perform RLfD by leveraging an initial phase of supervised learning and/or auxiliary task
learning. Several authors have shown that demonstrations can speed RL by mimicking expert
data with a temporal difference regularizer (Hester et al., 2017) or via gradient-free optimization
(Ebrahimi et al., 2017), yet these methods presume near-optimal demonstrations. Shelhamer et al.
(2016) and Jaderberg et al. (2016) obtained better initialization via auxiliary task losses (e.g., pre-
dicting environment dynamics) in a self-supervised manner; performance is still initially random
with these approaches.

Our approach, Normalized Actor-Critic (NAC), is based on the maximum entropy reinforcement
learning framework (Toussaint, 2009; Haarnoja et al., 2017b; Schulman et al., 2017). Our method
performs RLfD using exactly the same algorithm to process both offline demonstration data and
online experience, without any additional supervised loss function. This enables robust learning
even from very corrupted (or even partially adversarial) demonstrations that contains (s, a, r, s′),
since no assumption on the optimality of the data is required. This is enabled by a normalized
formulation of the soft Q-learning gradient, which can also be regarded as a variant of the policy
gradient.

We evaluate our result in realistic 3D simulated environments, Torcs and Grand Theft Auto V (GTA
V), using access only to raw image inputs and game-generated rewards. Experimental results con-
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firm that our approach outperforms previous approaches on driving tasks with only a modest amount
of demonstration and that significant noise in the demonstrations are well-tolerated, as our method
utilizes rewards rather than simply imitating demonstrated behaviors.

2 PRELIMINARIES

In this section, we will briefly review the reinforcement learning techniques that our method builds
on, including maximum entropy reinforcement learning and the soft Q-learning.

2.1 MAXIMUM ENTROPY REINFORCEMENT LEARNING

The reinforcement learning problem we consider is defined by a Markov decision process(MDP)
(Thie, 1983). Specifically, the MDP is characterized by a tuple < S,A,R,T,γ >, where S is the
set of states, A is the set of actions, R(s, a) is the reward function, T (s, a, s′) = P (s′|s, a) is the
transition function and γ is the reward discount factor. The agent interacts with the environment by
taking action at some state, receiving the reward, and transiting to the next state.

In the conventional reinforcement learning setting (Sutton & Barto, 1998), the goal of an agent is to
learn a policy πstd, such that it maximizes the future discounted reward:

πstd = argmaxπ
∑
t

γtEst,at∼π(s,a)[R(st, at)] (1)

Maximum entropy policy learning (Ziebart, 2010; Haarnoja et al., 2017b) uses an entropy augmented
reward, so that the optimal policy will not only optimize for discounted future rewards, but also
maximize the discounted future entropy of the action distribution:

πmax−ent = argmaxπ
∑
t

γtEst,at∼π(s,a)[R(st, at) + αH(π(·|st))] (2)

where α is a weighting term to balance the importance of the entropy. Unlike previous attempts of
only adding the entropy term at a single time step, maximum entropy policy learning maximizes
the discounted future entropy over the whole trajectory. Maximum entropy reinforcement learning
has many benefits, such as better exploration in multi-modal problems, and establishing connections
between Q learning and the actor-critic method (Haarnoja et al., 2017b; Schulman et al., 2017).

2.2 SOFT VALUE FUNCTIONS

Since the maximum entropy RL paradigm augments the reward with an entropy term, the definition
of the value functions naturally changes to

Qπ(s, a) = r(s0, a0) + E(s1,a1,... )∼π(s)

∞∑
t=1

γt(R(st, at) + αH(π(·|st))) (3)

Vπ(s) = E(s1,a1,... )∼π(s)

∞∑
t=0

γt(R(st, at) + αH(π(·|st))) (4)

where π is some policy that value functions evaluate on. Given the state-action value function
Q∗(s, a) of the optimal policy, Ziebart (2010) show that the optimal state value function and the
optimal policy could be expressed as:

V ∗(s) = α log
∑
a

exp(Q∗(s, a)/α) (5)

π∗(a|s) = exp((Q∗(s, a)− V ∗(s))/α) (6)

2.3 SOFT Q-LEARNING AND POLICY GRADIENT

With the entropy augmented reward, one can derive the soft versions of Q learning and policy gra-
dient (Haarnoja et al., 2017a). The soft Q learning gradient is given by

∇θQθ(s, a)(Qθ(s, a)− Q̂(s, a)) (7)
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where Q̂(s, a) is a bootstrapped Q-value estimate obtained by R(s, a) + γVQ(s
′). Here, R(s, a)

is the reward received from the environment, VQ is computed from Qθ(s, a) with Equation (5).
We can also derive a policy gradient variant of this method, by parameterizing as the policy as
log πθ(a|s) = Qθ(s, a)− Vθ(s), which induces a policy gradient of the form

E

[ ∞∑
t=0

∇θ log πθ(at|st)(Q̂π(st, at)− b(st)) + α∇θH(πθ(·|st))

]
(8)

where b(st) is some arbitrary baseline (Schulman et al., 2017).

3 ROBUST LEARNING FROM DEMONSTRATION AND REWARD

Given a set of demonstrations that contains (s, a, r, s′) and the corresponding environment, an agent
should perform appropriate actions when it starts the interaction, and continue to improve. Although
a number of off-policy RL algorithms could in principle be used to learn directly from off-policy
demonstration data, standard methods such as Q-learning can suffer from extremely poor perfor-
mance when trained entirely on demonstration data, as shown in our experiments. The intuition
behind this problem is that, if the Q-function is trained only on good data, it has no way to under-
stand why the action in the data is good: it will assign it a high Q-value, but will not necessarily
assign a low Q-value to other alternative actions. The framework of soft optimality provides us with
a very natural mechanism to mitigate this problem by normalizing the Q-function over the actions.

Our approach, Normalized Actor-Critic (NAC), combines the soft Q-learning and soft policy gra-
dient formulations described in the previous section to obtain a Q-function gradient that naturally
reduces the Q-values of actions that were not observed along the demonstration. Put another way,
without data to indicate otherwise, NAC will opt to follow the demonstration. This method is de-
rived from the policy gradient in Equation (8), which introduces a normalization term ∇θV (s) that
reduces the value of unobserved actions. Since this method is still a well-defined RL algorithm
without any auxiliary supervised loss, it is able to learn without bias in the face of low-quality
demonstration data. We will first describe our algorithm, and then further discuss why it performs
well when trained on off-policy demonstration data.

3.1 NORMALIZED ACTOR-CRITIC

We propose a unified learning from demonstration approach, which applies the normalized actor-
critic updates to both off policy demonstrations and in-environment transitions. To better facilitate
the comparison with the Q learning method, we re-parametrize the normalized actor-critic with Q
function. As shown in the appendix A.1, we have the updates for the actor and the critic being:

∇θJPG =Es,a∼πQ

[
(∇θQ(s, a)−∇θVQ(s))(Q(s, a)− Q̂(s, a))

]
(9)

∇θJV =Es
[
∇θ

1

2
(VQ(s)− V̂ (s))2

]
(10)

where VQ and πQ are deterministic functions of Q: VQ(s) = α log
∑
a exp(Q(s, a)/α);

πQ(a|s) = exp((Q(s, a)− VQ(s))/α). Q̂(s, a), V̂ (s) are obtained by:

Q̂(s, a) = R(s, a) + γVQ(s
′) (11)

V̂ (s) = Ea∼πQ
[R(s, a) + γVQ(s

′)] + αH(πQ(·|s)) (12)

As discussed by Schulman et al. (2017); Haarnoja et al. (2017b), the method can be interpreted as
either a Q-learning algorithm or a policy gradient method. The two interpretations lead to slightly
different variants of the update equations. The soft Q-learning variant omits the ∇θV (s) in Equa-
tion ((9)). In our normalized actor critic method, we emphasize the normalization effect from the
∇θV (s) term; this term enables our method to learn from off-policy data. Our method also requires
importance sampling to use off-policy data. As discussed in Section 3.2, our method critically relies
on the ∇θV (s) term to attain good performance on demonstration data, which means that, in order
to formalize it as a policy gradient method, we should include importance weights. To be specific,
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when estimating E(s,a)∼πQ
[f(s, a)], we estimate E(s,a)∼µ [f(s, a)β] , where β = min

{
πQ(a|s)
µ(a|s) , c

}
and c is some constant that prevents the importance ratio from being too large.

Although the importance weights are needed to formalize our method as a proper policy gradient al-
gorithm, we find in our empirical evaluation that the inclusion of these weights consistently reduces
the performance of our method even on demonstrations. For this reason, our final algorithm does
not use importance sampling.

We summarize the proposed method in Algorithm 1. Our method uses samples from the demon-
strations and the replay buffer, rather than restricting the samples to be on policy as in standard
actor-critic methods. Similar to DQN, we utilize a target network to compute Q̂(s, a) and V̂ (s),
which stabilizes the training process.

Algorithm 1 The Normalized Actor-Critic Algorithm

θ: parameters for the rapid Q network, θ′: parameters for the target Q network,D: demon-
strations collected by human or a trained policy network, T : target network update fre-
quency,M: replay buffer, k: number of steps to train on the demonstrations
for step t ∈ {1, 2, ...} do

if t ≤ k then
Sample a mini-batch of transitions from D

else
Start from s, sample a from π, execute a, observe (s′,r) and store (s, a, r, s′) inM
Sample a mini-batch of transitions fromM

end if
Update θ with gradient: ∇θJPG +∇θJV
if t mod T = 0 then

θ′ ← θ
end if

end for

3.2 ANALYSIS OF THE METHOD

We provide an intuitive analysis in this section to reason why our method can learn from demon-
strations while other reinforcement learning methods, such as Q-learning, can not. The states and
actions in the demonstrations generally have higher Q-values than other states. Q-learning will
therefore push up Q(s, a) values in a sampled state s. However, if the values for the bad actions
are not observed, then the Q-function has no way of knowing whether the action itself is good, or
whether all actions in that state are good, so the demonstration action will not necessarily have a
higher Q-value than other actions in the demonstration state. Comparing the actor update (Eq. (9))
of our method with the soft Q-learning (Eq. 7) update, our method includes an extra term in the
gradient: −∇θVQ(s). This term falls out naturally when we consider the method as a policy gra-
dient algorithm, rather than a Q-learning algorithm (Haarnoja et al., 2017b). Intuitively, this term
will decrease VQ(s) when increasing Q(s, a) and vice versa, since ∇θQ(s, a) and −∇θVQ(s) have
different signs. Since VQ(s) = α log

∑
a exp(Q(s, a)/α), decreasing VQ(s) will prevent Q(s, a)

from increasing for the actions that are not in the demonstrations.

4 RELATED WORK

Recently, deep reinforcement learning has achieved great success on many tasks. Notable exam-
ples include deep Q-learning (Mnih et al., 2015), deep visuomotor policy learning (Levine et al.,
2016) and trust region policy optimization (Schulman et al., 2015). Other recent successes include
expert action prediction in Go (Silver et al., 2016) and intelligent agents in Starcraft II and vizDoom
(Vinyals et al., 2017; Kempka et al., 2016). In this section, we review the related work in deep RL
as well as imitation learning.
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4.1 LEARNING FROM DEMONSTRATION

Imitation learning can learn meaningful behaviors from expert demonstrations. For example, Xu
et al. (2016); Bojarski et al. (2016) learn driving policies from human demonstrations. One popular
paradigm of imitation learning is DAGGER (Ross et al., 2011), which improves an agent’s perfor-
mance with the expert’s feedback in the loop. Recently, Ho & Ermon (2016); Wang et al. (2017);
Ziebart et al. (2008) utilize an adversarial paradigm to further boost the performance of the behavior
cloning method. Another popular paradigm is Inverse Reinforcement Learning (IRL) (Ng et al.,
2000; Abbeel & Ng, 2004; Ziebart et al., 2008). IRL learns a reward model which explains the
demonstrations as optimal behaviors. The reward function can be represented as the distance to a
demonstrated trajectory, as a weighted combination of features.

Recently, Subramanian et al. (2016) showed the exploration strategy in an environment can be
guided by human demonstrations. Taylor et al. (2011) directly transfer knowledge from expert
demonstrations to the learning agent. Guided policy search can be seen as a form of imitation learn-
ing, where the expert is the optimal control policy (Levine & Koltun, 2013). To have a smoother
transition from imitation learning to reinforcement learning, Hester et al. (2017) propose to use an
objective that combines a supervised loss and a temporal difference loss. Both Hester et al. (2017)
and our algorithm follow the Reinforcement Learning with Expert Demonstrations (RLED) frame-
work (Chemali & Lazaric, 2015; Kim et al., 2013; Piot et al., 2014), where both rewards and actions
are available in the demonstration. We follow the terminology from Hester et al. (2017) and use
Learning from Demonstration to describe our task but rewards are available from the demonstrations
in our setting. Different from previous works, our method does not require an explicit mechanism
to determine expert data because it learns to maximize the reward using arbitrary data.

4.2 OFF-POLICY LEARNING

Reinforcement learning methods learn a policy while interacting with the environment. Some meth-
ods require the data being used to update the current policy πt to be roll-outs of πt in the envi-
ronment, while other methods allow the updates to be computed from data generated by arbitrary
policy. Those methods are classified as on-policy methods and off-policy methods respectively. The
most well known off-policy method is Q-learning (Watkins & Dayan, 1992). Policy gradient (Sut-
ton et al., 2000) methods require on-policy data, but recently some works have proposed variants of
policy gradient that can learn from off-policy data (Gu et al., 2017; 2016). Off-PAC (Degris et al.,
2012) is the first off-policy actor-critic method. Munos et al. (2016) proposed Retrace(λ), a method
that allows multiple step return to being used with off-policy updates. ACER (Wang et al., 2016)
combines the advances of Off-PAC, Retrace(λ), trust region update and leads to a stable and sample
efficient actor-critic method. However, some methods, such as Retrace, require the off-policy data
to be close to the current policy. The other category of off-policy methods consists of Q-learning
methods, which we care to in our evaluation and find that they generally do not perform well on
purely off-policy data.

4.3 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Maximum entropy reinforcement learning has been explored in a number of prior works Todorov
(2008); Toussaint (2009); Ziebart et al. (2008), including several recent works that extend it into
a deep reinforcement learning setting Nachum et al. (2017); Haarnoja et al. (2017b). Our work
builds on the connection between policy gradient and soft Q-learning discussed by Haarnoja et
al. (Haarnoja et al., 2017b) and Schulman et al. (Schulman et al., 2017). However, unlike these
prior works, we are specifically concerned with learning from demonstrations, and we show how a
novel algorithm that combines elements of policy gradient and Q-learning is especially well suited
for learning from demonstrations, while still optimizing the entropy-augmented maximum reward
objective, without any explicit imitation loss.

5 RESULTS

We address several questions with our experiments: (1) Can NAC benefit from both demonstra-
tions and rewards? (2) Is NAC robust to ill-behaved demonstrations? (3) Can NAC learn mean-
ingful behaviors with a limited amount of demonstration? We compare our algorithm with DQfD
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Figure 1: Sample frames from Torcs (left) and GTA (right).

(Hester et al., 2017), which has been shown to learn efficiently from demonstrations and to pre-
serve performance while acting in an environment. Other baselines include supervised behavioral
cloning method, Q-learning, soft Q-learning, and the version of our method with importance sam-
pling weighting.

5.1 ENVIRONMENTS

We evaluate our algorithm on Torcs and Grand Theft Auto V (GTA) shown in Fig 1.

Torcs: Torcs is an open-source racing game that has been used widely as an experimental environ-
ment for driving. The goal of the agent is to drive as fast as possible on the track, while avoiding
crashes. We use an oval two-lane racing venue in our experiments. The input to the agent is an
84×84 gray scale image. The agent controls the vehicle at 5Hz, and at each step, it chooses from
a set of 9 actions which is a Cartesian product between {left, no-op, right} and {up, no-op, down}.
We design a dense driving reward function that encourages the car to follow the lane and to avoid
collision with obstacles. 1

GTA: Grand Theft Auto is an action-adventure video game with goals similar in part to the Torcs
game, but with a more diverse and realistic surrounding environment, including other vehicles, build-
ings, and bridges. The agent observes 84×84 RGB images from the environment. It chooses from
7 possible actions from {left-up, up, right-up, left, no-op, right, down} at 6Hz. We use the same
reward function as in Torcs.

5.2 BASELINES

We compare our approach with the following baselines:

• DQfD: the method proposed by Hester et al. (2017). For the learning-from-demonstration
phase, DQfD combines a hinge loss with a temporal difference (TD) loss. For the finetuning-
in-environment phase, DQfD combines a hinge loss on demonstration and a TD loss on both the
demonstration and the policy-generated data.

• Q learning: the classic DQN method (Mnih et al., 2015). We first train DQN with the demon-
strations in a replay buffer and then finetune in the environment with regular Q learning. Similar
to DQfD, we use a constant exploration ratio of 0.01 in the finetuning phase to preserve the per-
formance obtained from the demonstration.

• Soft Q learning: similar to the Q learning baseline, but with an entropy regularized reward. This
is the method proposed by Haarnoja et al. (2017a); Schulman et al. (2017).

• Behavior cloning with Q learning: the naive way of combining cross entropy loss with Q learn-
ing. First we perform behavior cloning with cross entropy loss on the demonstrations. Then we
treat the logit activations prior the softmax layer as an initialization of the Q function and finetune
with regular Q learning in the environment.

• Normalized actor-critic with importance sampling: the NAC method with the importance sam-
pling weighting term mentioned in Sec 3.1. The importance weighting term is used to correct the
action distribution mismatch between the demonstration and the current policy.
1reward = (1 − 1damage) [(cos θ − sin θ − lane ratio)× speed] + 1damage [−10], where 1damage is

an indicator function of whether the vehicle is damaged at the current state. lane ratio is the ratio between
distance to lane center and lane width. θ is the angle between the vehicle heading direction and the road
direction.
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Figure 2: Performances on the Torcs game. The x-axis shows the training iterations. The y-axis
shows the average total rewards. Solid lines are average values over 10 random seeds. Shaded
regions correspond to one standard deviation. The left figure shows the performance for each agent
when they only learn from demonstrations, while the right one shows the performance for each
agent when they interact with the environments after learning from demonstrations. Our method
consistently outperforms other methods in both cases.

• Path Consistency Learning (PCL): the PCL method that minimizes soft path consistency losses
extracted from action sequences from both off-policy data and on-policy data. Different from
original implementation Nachum et al. (2017), we only consider one step ahead the path.

5.3 COMPARISON TO BASELINES

We first compare our NAC method with all baselines on 300k transitions. The demonstration is
collected by a trained Q-learning expert policy. We execute the policy in the environment to collect
demonstrations. To avoid deterministic executions of the expert policy, we uniformly sample an
action with probability 0.01.

To explicitly compare different methods, we show separate figures for performances on demonstra-
tions and in environments. In Fig 2, we show that our method performs better than other methods
on demonstrations. When we start finetuning, the performance of our method continues to increase
and reaches peak performance faster than the baselines. In comparison, Q learning, PCL and soft
Q learning can barely learn from demonstrations. DQfD (Hester et al., 2017) has similar behavior
to ours but has lower performance. Behavior cloning learns well on demonstrations, but it has a
significant performance drop while interacting with environments. All the methods can ultimately
learn by interacting with the environment but only our method and DQfD start from a relatively high
performance. Empirically, we found that the importance weighted NAC method does not perform
as well as NAC. The reason might be the decrease in the gradient bias is not offset sufficiently by
the increase in the gradient variance.

We also test our method on the challenging GTA environment, where both the visual input and the
game logic are more complex. Due to the limit of environment execution speed, we only compare
our method with DQfD. As shown in Fig. 3a, our method outperforms DQfD both on demonstration
and in environment.

5.4 LEARNING FROM HUMAN DEMONSTRATIONS

For many practical problems, such as autonomous driving, we might have a large number of human
demonstrations, but no demonstration available from a trained agent at all. In contrast to a scripted
agent, humans usually act diversely, both in terms of multiple individuals (e.g. conservative players
will slow down before a U-turn; aggressive players will not) and a single individual (e.g. a player
may randomly turn or go straight at an intersection). We study how different methods perform with
diverse demonstrations. To collect human demonstrations, we asked 3 non-expert human players
to play TORCS for 3 hours each. Human players control the game with the combination of four
arrow keys, at 5Hz, the same rate as the trained agent. The experiment is run for 800k training
steps, as indicated from the experiments in Sec 5.3. In total, we collected around 150k transitions.
Comparing with data collected from trained agent, the data is more diverse and the performance of
the demonstration improves naturally when the players get familiar with the game. In Fig. 3b, we
show the comparison among our NAC method, DQfD, and behavior cloning; we omit Q learning,
soft Q learning, and the importance weighted NAC are shown to perform poorly in the demonstration
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(a) The on-demonstration and in-environment per-
formance of the NAC and DQfD methods on GTA.
The vertical line separates the learning from demon-
stration phase and finetuning in environment phase.
Our method consistently outperforms DQfD in both
phases.

(b) Performances on the Torcs game with human
demonstrations. DQfD performs well in the begin-
ning, but overfits in the end. The behavior cloning
method is much worse than NAC and DQfD. Our
NAC method performs best at convergence.

Figure 3: Performance on GTA (left) and performance on Torcs with human demonstrations (right)

Figure 4: Left: Learning from imperfect data when the imperfectness is 30%. Our NAC method
does not clone suboptimal behaviors and thus outperforms DQfD and behavior cloning. Right:
Learning from a limit amount of demonstrations. Even with only 30 minutes (10k transitions) of
experience, our method could still learn a policy that is comparable with supervise learning method.
More results are available in appendix Fig. 5 and Fig. 6.

phase. We observe that the behavior cloning method performs much worse than the other two
methods. DQfD initially is better than our method but later overfits quickly, which might be caused
by the supervised hinge loss being harmful when demonstrations are not optimal. NAC does not
assume either perfect or consistent demonstrations, and performs better than DQfD and behavior
cloning at convergence.

5.5 EFFECTS OF IMPERFECT DEMONSTRATIONS

In the real world, collected demonstrations might be far from optimal. The human demonstrations
above have already shown that imperfect demonstrations could have a large effect on performance.
To study this phenomenon in a principled manner, we collect a few versions of demonstrations with
varying degrees of noise. When collecting the demonstrations with the trained Q agent, we corrupt
a certain percentage of the demonstrations by choosing actions regarding (minaQ(s, a)). The
data corruption process is conducted while interacting with the environment; therefore, the error
accumulated after the corrupted frames will also influence the quality of the dataset in a similar
way as human demonstrations. We get 3 sets of {30%, 50% and 80%} percentage of imperfect
data. In the left of Fig. 4, we show that our method performs quite well compared with DQfD
and behavior cloning baselines. Supervised behavior cloning method is heavily influenced by the
imperfect demonstrations. DQfD is also heavily affected, but not as severely as the behavior cloning.
NAC is robust because it does not imitate the suboptimal behaviors.

5.6 EFFECTS OF DEMONSTRATION SIZE

In this section, we show comparisons among our method and baseline methods with different
amounts of demonstration data. We use a trained agent to collect three sets of demonstrations which
include 10k, 150k, and 300k transitions each. In the experiments we find that our algorithm per-
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forms well when the amount of data is large and is comparable to supervised methods even with
a limited amount of data. In Fig. 4(right), we show when there are extremely limited amounts of
demonstration data (10k transitions or 30 minutes of experience), our method performs on par with
supervised methods. In Fig. 6, we show the results for 150k and 300k transitions: our method out-
performs the baselines by a large margin with 300k transitions. In summary, our method can learn
from small amounts of demonstration data and dominates in terms of performance when there is a
sufficient amount of data.

5.7 INTUITIVE ANALYSIS

In this section, we analyze the reason why other reinforcement learning methods can hardly learn
from demonstrations while our method can. We use a concrete example to clarify and complement
the mathematical discussion in Section 3.2. Suppose at state si, we observe the demonstrated be-
havior choosing action a1, and receiving a positive reward of 1.0. The action space is a0,a1, a2 for
each state. Soft Q learning method takes an update of ∇Q(si, a1)(Q(si, a1) − Q̂(si, a1)) for the
parameter θ of the Q function, where Q̂(s0, a1) = 1.0+γ ∗V (s′i) and si is the next state after action
a1. This update pushes the value ofQ(si, a1) close to 1.0+γV (s′0). However, at the state si, we did
not observe other actions, as it is usually the case in real world. Hence, there is no regressing target
for Q(si, a0) and Q(si, a2). When we parametrize the Q function with a neural network, there is
no guarantee of how Q(si, a0) and Q(si, a2) will compare to Q(si, a1). As a result, the learning
algorithm cannot give meaningful Q values for the unobserved actions. The results in Figure 2 (left)
has confirmed our analysis. A similar analysis applies to the hard Q method as well.

However, in the NAC method, the policy gradient update part is (∇Q(si, a1)−∇V (si))(Q(si, a1)−
Q̂(si, a1)), where V (si) = log

∑
a exp(Q(si, a)). After manipulating the terms, the update is equal

to∇ exp(Q(si,a1))∑
a exp(Q(si,a))

(Q(si, a1)− Q̂(si, a1)). Note that the first term becomes the gradient of a cross
entropy loss between a softmax layer output and a synthetic label of action a1. The logits are
Q(si, ·). Intuitively, if the Q(si, a1) is under-estimated, the method tries to increase Q(si, a1) while
pushing down Q(si, a0) and Q(si, a2). When Q(si, a1) is over-estimated, the reverse process hap-
pens. It is worth to note that the proposed method naturally has a prior of reducing the unobserved
Q(si, a0) and Q(si, a2) values, when the current action a1 is good.

6 CONCLUSION

We proposed a Normalized Actor-Critic algorithm for reinforcement learning from demonstrations.
Our algorithm provides a unified approach for learning from reward and demonstration, and is robust
to potentially suboptimal demonstration data. An agent can be fine-tuned with rewards after training
on demonstrations by simply continuing to perform the same algorithm on on-policy data. Our
algorithm preserves and then improves the behaviors learned from demonstration while receiving
reward through interaction with an environment. Based on our experiments with the Torcs and GTA
environments, we show that our algorithm is able to learn effectively and is robust to the arbitrary
quality of demonstrations.
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Appendices
A APPENDIX

A.1 NORMALIZED ACTOR-CRITIC WITH Q PARAMETRIZATION

Usually the actor-critic method parametrizes π(s, a) and V (s) with a neural network that has two
heads. In this section, we explore an alternative parametrization: Q-parametrization. Instead of
outputting π and V directly, the neural network computes Q(s, a). We parametrize π and V based
on Q by specifying a fixed mathematical transform:

VQ(s) = α log
∑
a

exp(Q(s, a)/α) (13)

πQ(a|s) = exp((Q(s, a)− VQ(s))/α) (14)

Note that the Q-parametrization we propose here can be seen as a specific design of the network
architecture. Instead of allowing the net to output arbitrary π(s, a) and V (s) values, we restrict
the network to only output π(s, a) and V (s) pairs that satisfy the above relationship. This extra
restriction will not harm the network’s ability to learn since the above relationship has to be satisfied
at the optimal solution(Schulman et al., 2017; Haarnoja et al., 2017b; Nachum et al., 2017).

Based on the Q-parametrization, we can derive the update of the actor. Note that we assume the
behavioral policy is πQ, and we sample one step out of a trajectory, thus dropping the subscript t.
The goal is to maximize expected future reward, thus taking gradient of it we get:

∇Es,ãπQ
[R(s, a)]

=Es,ãπQ
[R(s, a)∇ logθ p(a, s|πQ)]

≈Es,ãπQ
[R(s, a)∇θ log πQ(a|s)]

(15)

where the last step ignores the state distribution, thus an approximation. By adding some baseline
functions, it turns to the following format, where Q̂(s, a) = R(s, a) + γVQ(s

′):

Es,a
[
∇θ log πQ(a|s)(Q̂(s, a)− b(s))

]
=Es

[∑
a

πQ(a|s)∇θ log πQ(a|s)(Q̂(s, a)− b(s))

]
(16)
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As in previous work, an entropy-regularized policy gradient simply add the gradient of the entropy
of the current policy with a tunable parameter α in order to encourage exploration. The entropy term
is:

Es [α∇θH(πQ(·|s))]

=Es

[
α∇θ

∑
a

−πQ(a|s) log πQ(a|s)

]

=Es

[
α
∑
a

−∇θπQ(a|s) log πQ(a|s)− πQ(a|s)∇θ log πQ(a|s)

]

=Es

[
α
∑
a

−∇θπQ(a|s) log πQ(a|s)− πQ(a|s)
1

πQ(a|s)
∇θπQ(a|s)

]

=Es

[
α
∑
a

−∇θπQ(a|s) log πQ(a|s)

]

=Es

[
α
∑
a

−πQ(a|s)∇θ log πQ(a|s) log πQ(a|s)

]

(17)

putting the two terms together and using the energy-based policy formulation (Eq. (14)) :

Es,a
[
∇θ log πQ(a|s)(Q̂(s, a)− b(s)) + α∇θH(πQ(·|s))

]
=Es

[∑
a

πQ(s, a)∇θ log πQ(s, a)(Q̂(s, a)− b(s)− (Q(s, a)− VQ(s)))

]
(18)

If we let the baseline b(s) be VQ(s), we get the update:

Es

[∑
a

πQ(s, a)∇θ log πQ(s, a)(Q̂(s, a)−Q(s, a))

]

=
1

α
Es,a

[
(∇θQ(s, a)−∇θVQ(s))(Q̂(s, a)−Q(s, a))

] (19)

where Q̂(s, a) could be obtained through bootstrapping byR(s, a)+γVQ(s′). In practice Q̂(s, a) is
a target Q value and VQ(s′) can be obtained from Eq. 13 and the parameters of the target network.
For the critic, the update is:

Es
[
∇θ

1

2
(VQ(s)− V̂ (s))2

]
=Es

[
∇θVQ(s)(VQ(s)− V̂ (s))

] (20)

where V̂ (s) could be obtained by V̂ (s) = Ea [R(s, a) + γVQ(s
′)] + αH(πQ(·|s)).

13



Under review as a conference paper at ICLR 2018

B EFFECTS OF IMPERFECT DEMONSTRATIONS

Figure 5: More results when introducing imperfect demonstrations. Left figure shows when there
are 50% imperfect actions and the right one shows the case for 80%. Our NAC method is highly
robust to noisy demonstrations.

C EFFECTS OF DEMONSTRATION AMOUNT

Figure 6: More results when varying the amount of demonstrations. The left and right figures
show when there are 150k and 300k transitions respectively. Our NAC method achieves superior
performance with a large amount of demonstrations and is comparable to supervise methods with
smaller amount of demonstrations.

D EXPERIMENT DETAILS

Network Architecture: We use the same architecture as in Mnih et al. (2015) to parametrize
Q(s, a). With this Q parametrization, we also output πQ(a|s) and VQ(s) based on Eq. (6) and
Eq. (5).

Hyper-parameters: We use a replay buffer with a capacity of 1 million steps and update the target
network every 10K steps. Initially, the learning rate is linearly annealed from 1e-4 to 5e-5 for the
first 1/10 of the training process and then it is kept as a constant (5e-5). Gradients are clipped at 10
to reduce training variance. The reward discount factor γ is set to 0.99. We concatenate the 4 most
recent frames as the input to the neural network. For the methods with an entropy regularizer, we set
α to 0.1, following Schulman et al. (2017). We truncate the importance sampling weighting factor
β = min

{
πQ(a|s)
µ(a|s) , c

}
at 10, i.e., c = 10.
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