
Published as a conference paper at ICLR 2018

DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL
FOR UNSUPERVISED ANOMALY DETECTION

Bo Zong†, Qi Song‡, Martin Renqiang Min†, Wei Cheng†
Cristian Lumezanu†, Daeki Cho†, Haifeng Chen†
†NEC Laboratories America
‡Washington State University, Pullman
{bzong, renqiang, weicheng, lume, dkcho, haifeng}@nec-labs.com
qsong@eecs.wsu.edu

ABSTRACT

Unsupervised anomaly detection on multi- or high-dimensional data is of great
importance in both fundamental machine learning research and industrial applica-
tions, for which density estimation lies at the core. Although previous approaches
based on dimensionality reduction followed by density estimation have made
fruitful progress, they mainly suffer from decoupled model learning with incon-
sistent optimization goals and incapability of preserving essential information
in the low-dimensional space. In this paper, we present a Deep Autoencoding
Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our
model utilizes a deep autoencoder to generate a low-dimensional representation and
reconstruction error for each input data point, which is further fed into a Gaussian
Mixture Model (GMM). Instead of using decoupled two-stage training and the
standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes
the parameters of the deep autoencoder and the mixture model simultaneously in
an end-to-end fashion, leveraging a separate estimation network to facilitate the
parameter learning of the mixture model. The joint optimization, which well bal-
ances autoencoding reconstruction, density estimation of latent representation, and
regularization, helps the autoencoder escape from less attractive local optima and
further reduce reconstruction errors, avoiding the need of pre-training. Experimen-
tal results on several public benchmark datasets show that, DAGMM significantly
outperforms state-of-the-art anomaly detection techniques, and achieves up to 14%
improvement based on the standard F1 score.

1 INTRODUCTION

Unsupervised anomaly detection is a fundamental problem in machine learning, with critical applica-
tions in many areas, such as cybersecurity (Tan et al. (2011)), complex system management (Liu et al.
(2008)), medical care (Keller et al. (2012)), and so on. At the core of anomaly detection is density
estimation: given a lot of input samples, anomalies are those ones residing in low probability density
areas.

Although fruitful progress has been made in the last several years, conducting robust anomaly
detection on multi- or high-dimensional data without human supervision remains a challenging
task. Especially, when the dimensionality of input data becomes higher, it is more difficult to
perform density estimation in the original feature space, as any input sample could be a rare event
with low probability to observe (Chandola et al. (2009)). To address this issue caused by the
curse of dimensionality, two-step approaches are widely adopted (Candès et al. (2011)), in which
dimensionality reduction is first conducted, and then density estimation is performed in the latent
low-dimensional space. However, these approaches could easily lead to suboptimal performance,
because dimensionality reduction in the first step is unaware of the subsequent density estimation
task, and the key information for anomaly detection could be removed in the first place. Therefore, it
is desirable to combine the force of dimensionality reduction and density estimation, although a joint
optimization accounting for these two components is usually computationally difficult. Several recent

1

Published as a conference paper at ICLR 2018

works (Zhai et al. (2016); Yang et al. (2017a); Xie et al. (2016)) explored this direction by utilizing
the strong modeling capacity of deep networks, but the resulting performance is limited either by a
reduced low-dimensional space that is unable to preserve essential information of input samples, an
over-simplified density estimation model without enough capacity, or a training strategy that does not
fit density estimation tasks.

Figure 1: Low-dimensional representations for samples from a private cybersecurity dataset: (1)
each sample denotes a network flow that originally has 20 dimensions, (2) red/blue points are
abnormal/normal samples, (3) the horizontal axis denotes the reduced 1-dimensional space learned
by a deep autoencoder, and (4) the vertical axis denotes the reconstruction error induced by the
1-dimensional representation.

In this paper, we propose Deep Autoencoding Gaussian Mixture Model (DAGMM), a deep learning
framework that addresses the aforementioned challenges in unsupervised anomaly detection from
several aspects.

First, DAGMM preserves the key information of an input sample in a low-dimensional space that
includes features from both the reduced dimensions discovered by dimensionality reduction and
the induced reconstruction error. From the example shown in Figure 1, we can see that anomalies
differ from normal samples in two aspects: (1) anomalies can be significantly deviated in the reduced
dimensions where their features are correlated in a different way; and (2) anomalies are harder to
reconstruct, compared with normal samples. Unlike existing methods that only involve one of the
aspects (Zimek et al. (2012); Zhai et al. (2016)) with sub-optimal performance, DAGMM utilizes a
sub-network called compression network to perform dimensionality reduction by an autoencoder,
which prepares a low-dimensional representation for an input sample by concatenating reduced
low-dimensional features from encoding and the reconstruction error from decoding.

Second, DAGMM leverages a Gaussian Mixture Model (GMM) over the learned low-dimensional
space to deal with density estimation tasks for input data with complex structures, which are yet
rather difficult for simple models used in existing works (Zhai et al. (2016)). While GMM has strong
capability, it also introduces new challenges in model learning. As GMM is usually learned by
alternating algorithms such as Expectation-Maximization (EM) (Huber (2011)), it is hard to perform
joint optimization of dimensionality reduction and density estimation favoring GMM learning, which
is often degenerated into a conventional two-step approach. To address this training challenge,
DAGMM utilizes a sub-network called estimation network that takes the low-dimensional input from
the compression network and outputs mixture membership prediction for each sample. With the
predicted sample membership, we can directly estimate the parameters of GMM, facilitating the
evaluation of the energy/likelihood of input samples. By simultaneously minimizing reconstruction
error from compression network and sample energy from estimation network, we can jointly train a
dimensionality reduction component that directly helps the targeted density estimation task.

Finally, DAGMM is friendly to end-to-end training. Usually, it is hard to learn deep autoencoders
by end-to-end training, as they can be easily stuck in less attractive local optima, so pre-training is
widely adopted (Vincent et al. (2010); Yang et al. (2017a); Xie et al. (2016)). However, pre-training
limits the potential to adjust the dimensionality reduction behavior because it is hard to make any

2

Published as a conference paper at ICLR 2018

significant change to a well-trained autoencoder via fine-tuning. Our empirical study demonstrates
that, DAGMM is well-learned by the end-to-end training, as the regularization introduced by the
estimation network greatly helps the autoencoder in the compression network escape from less
attractive local optima.

Experiments on several public benchmark datasets demonstrate that, DAGMM has superior per-
formance over state-of-the-art techniques, with up to 14% improvement of F1 score for anomaly
detection. Moreover, we observe that the reconstruction error from the autoencoder in DAGMM by
the end-to-end training is as low as the one made by its pre-trained counterpart, while the reconstruc-
tion error from an autoencoder without the regularization from the estimation network stays high. In
addition, the end-to-end trained DAGMM significantly outperforms all the baseline methods that rely
on pre-trained autoencoders.

2 RELATED WORK

Tremendous effort has been devoted to unsupervised anomaly detection (Chandola et al. (2009)), and
the existing methods can be grouped into three categories.

Reconstruction based methods assume that anomalies are incompressible and thus cannot be ef-
fectively reconstructed from low-dimensional projections. Conventional methods in this category
include Principal Component Analysis (PCA) (Jolliffe (1986)) with explicit linear projections, kernel
PCA with implicit non-linear projections induced by specific kernels (Günter et al.), and Robust PCA
(RPCA) (Huber (2011); Candès et al. (2011)) that makes PCA less sensitive to noise by enforcing
sparse structures. In addition, multiple recent works propose to analyze the reconstruction error
induced by deep autoencoders, and demonstrate promising results (Zhou & Paffenroth (2017); Zhai
et al. (2016)). However, the performance of reconstruction based methods is limited by the fact that
they only conduct anomaly analysis from a single aspect, that is, reconstruction error. Although the
compression on anomalous samples could be different from the compression on normal samples
and some of them do demonstrate unusually high reconstruction errors, a significant amount of
anomalous samples could also lurk with a normal level of error, which usually happens when the
underlying dimensionality reduction methods have high model complexity or the samples of interest
are noisy with complex structures. Even in these cases, we still have the hope to detect such “lurking”
anomalies, as they still reside in low-density areas in the reduced low-dimensional space. Unlike the
existing reconstruction based methods, DAGMM considers the both aspects, and performs density
estimation in a low-dimensional space derived from the reduced representation and the reconstruction
error caused by the dimensionality reduction, for a comprehensive view.

Clustering analysis is another popular category of methods used for density estimation and anomaly
detection, such as multivariate Gaussian Models, Gaussian Mixture Models, k-means, and so on (Bar-
nett & Lewis (1984); Zimek et al. (2012); Kim & Scott (2011); Xiong et al. (2011)). Because of the
curse of dimensionality, it is difficult to directly apply such methods to multi- or high- dimensional
data. Traditional techniques adopt a two-step approach (Chandola et al. (2009)), where dimen-
sionality reduction is conducted first, then clustering analysis is performed, and the two steps are
separately learned. One of the drawbacks in the two-step approach is that dimensionality reduction
is trained without the guidance from the subsequent clustering analysis, thus the key information
for clustering analysis could be lost during dimensionality reduction. To address this issue, recent
works propose deep autoencoder based methods in order to jointly learn dimensionality reduction
and clustering components. However, the performance of the state-of-the-art methods is limited by
over-simplified clustering models that are unable to handle clustering or density estimation tasks for
data of complex structures, or the pre-trained dimensionality reduction component (i.e., autoencoder)
has little potential to accommodate further adjustment by the subsequent fine-tuning for anomaly
detection. DAGMM explicitly addresses these issues by a sub-network called estimation network
that evaluates sample density in the low-dimensional space produced by its compression network.
By predicting sample mixture membership, we are able to estimate the parameters of GMM without
EM-like alternating procedures. Moreover, DAGMM is friendly to end-to-end training so that we can
unleash the full potential of adjusting dimensionality reduction components and jointly improve the
quality of clustering analysis/density estimation.

In addition, one-class classification approaches are also widely used for anomaly detection. Under
this framework, a discriminative boundary surrounding the normal instances is learned by algorithms,

3

Published as a conference paper at ICLR 2018

such as one-class SVM (Chen et al. (2001); Song et al. (2002); Williams et al. (2002)). When the
number of dimensions grows higher, such techniques usually suffer from suboptimal performance
due to the curse of dimensionality. Unlike these methods, DAGMM estimates data density in a jointly
learned low-dimensional space for more robust anomaly detection.

There has been growing interest in joint learning of dimensionality reduction (feature selection)
and Gaussian mixture modeling. Yang et al. (2014; 2017b) propose a method that jointly learns
linear dimensionality reduction and GMM. Paulik (2013) studies how to perform better feature
selection with a pre-trained GMM as a regularizer. Variani et al. (2015) and Zhang & Woodland
(2017) propose joint learning frameworks, where the parameters of GMM are directly estimated
through supervision information in speech recognition applications. Tüske et al. (2015a;b) investigate
how to use log-linear mixture models to approximate GMM posterior under the conditions that a
class/mixture prior distribution is given and a covariance matrix is globally shared. Unlike the existing
works, we focus on unsupervised settings: DAGMM extracts useful features for anomaly detection
through non-linear dimensionality reduction realized by a deep autoencoder, and jointly learns their
density under the GMM framework by mixture membership estimation, for which DAGMM can be
viewed as a more powerful deep unsupervised version of adaptive mixture of experts (Jacobs et al.
(1991)) in combination with a deep autoencoder. More importantly, DAGMM combines induced
reconstruction error and learned latent representation for unsupervised anomaly detection.

3 DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL

3.1 OVERVIEW

Figure 2: An overview on Deep Autoencoding Gaussian Mixture Model

Deep Autoencoding Gaussian Mixture Model (DAGMM) consists of two major components: a com-
pression network and an estimation network. As shown in Figure 2, DAGMM works as follows: (1)
the compression network performs dimensionality reduction for input samples by a deep autoencoder,
prepares their low-dimensional representations from both the reduced space and the reconstruction
error features, and feeds the representations to the subsequent estimation network; (2) the estimation
network takes the feed, and predicts their likelihood/energy in the framework of Gaussian Mixture
Model (GMM).

3.2 COMPRESSION NETWORK

The low-dimensional representations provided by the compression network contains two sources of
features: (1) the reduced low-dimensional representations learned by a deep autoencoder; and (2) the
features derived from reconstruction error. Given a sample x, the compression network computes its
low-dimensional representation z as follows.

zc = h(x; θe), x′ = g(zc; θd), (1)

zr = f(x,x′), (2)
z = [zc, zr], (3)

4

Published as a conference paper at ICLR 2018

where zc is the reduced low-dimensional representation learned by the deep autoencoder, zr includes
the features derived from the reconstruction error, θe and θd are the parameters of the deep autoencoder,
x′ is the reconstructed counterpart of x, h(·) denotes the encoding function, g(·) denotes the decoding
function, and f(·) denotes the function of calculating reconstruction error features. In particular, zr
can be multi-dimensional, considering multiple distance metrics such as absolute Euclidean distance,
relative Euclidean distance, cosine similarity, and so on. In the end, the compression network feeds z
to the subsequent estimation network.

3.3 ESTIMATION NETWORK

Given the low-dimensional representations for input samples, the estimation network performs density
estimation under the framework of GMM.

In the training phase with unknown mixture-component distribution φ, mixture means µ, and mixture
covariance Σ, the estimation network estimates the parameters of GMM and evaluates the likeli-
hood/energy for samples without alternating procedures such as EM (Zimek et al. (2012)). The
estimation network achieves this by utilizing a multi-layer neural network to predict the mixture
membership for each sample. Given the low-dimensional representations z and an integer K as the
number of mixture components, the estimation network makes membership prediction as follows.

p =MLN(z; θm), γ̂ = softmax(p), (4)

where γ̂ is a K-dimensional vector for the soft mixture-component membership prediction, and p
is the output of a multi-layer network parameterized by θm. Given a batch of N samples and their
membership prediction, ∀1 ≤ k ≤ K, we can further estimate the parameters in GMM as follows.

φ̂k =

N∑
i=1

γ̂ik
N
, µ̂k =

∑N
i=1 γ̂ikzi∑N
i=1 γ̂ik

, Σ̂k =

∑N
i=1 γ̂ik(zi − µ̂k)(zi − µ̂k)T∑N

i=1 γ̂ik
. (5)

where γ̂i is the membership prediction for the low-dimensional representation zi, and φ̂k, µ̂k, Σ̂k are
mixture probability, mean, covariance for component k in GMM, respectively.

With the estimated parameters, sample energy can be further inferred by

E(z) = − log

(K∑
k=1

φ̂k
exp

(
− 1

2 (z− µ̂k)
T Σ̂−1k (z− µ̂k)

)√
|2πΣ̂k|

)
. (6)

where | · | denotes the determinant of a matrix.

In addition, during the testing phase with the learned GMM parameters, it is straightforward to
estimate sample energy, and predict samples of high energy as anomalies by a pre-chosen threshold.

3.4 OBJECTIVE FUNCTION

Given a dataset of N samples, the objective function that guides DAGMM training is constructed as
follows.

J(θe, θd, θm) =
1

N

N∑
i=1

L(xi,x
′
i) +

λ1
N

N∑
i=1

E(zi) + λ2P (Σ̂). (7)

This objective function includes three components.

• L(xi,x′i) is the loss function that characterizes the reconstruction error caused by the
deep autoencoder in the compression network. Intuitively, if the compression network
could make the reconstruction error low, the low-dimensional representation could better
preserve the key information of input samples. Therefore, a compression network of lower
reconstruction error is always desired. In practice, L2-norm usually gives desirable results,
as L(xi,x′i) = ‖xi − x′i‖

2
2.

• E(zi) models the probabilities that we could observe the input samples. By minimizing the
sample energy, we look for the best combination of compression and estimation networks
that maximize the likelihood to observe input samples.

5

Published as a conference paper at ICLR 2018

• DAGMM also has the singularity problem as in GMM: trivial solutions are triggered when
the diagonal entries in covariance matrices degenerate to 0. To avoid this issue, we penalize
small values on the diagonal entries by P (Σ̂) =

∑K
k=1

∑d
j=1

1
Σ̂kjj

, where d is the number
of dimensions in the low-dimensional representations provided by the compression network.
• λ1 and λ2 are the meta parameters in DAGMM. In practice, λ1 = 0.1 and λ2 = 0.005

usually render desirable results.

3.5 RELATION TO VARIATIONAL INFERENCE

In DAGMM, we leverage the estimation network to make membership prediction for each sample.
From the view of probabilistic graphical models, the estimation network plays an analogous role of
latent variable (i.e., sample membership) inference. Recently, neural variational inference (Mnih &
Gregor (2014)) has been proposed to employ deep neural networks to tackle difficult latent variable
inference problems, where exact model inference is intractable and conventional approximate methods
cannot scale well. Theoretically, we can also adapt the membership prediction task of DAGMM into
the framework of neural variational inference. For sample xi, the contribution of its compressed
representation zi to the energy function can be upper-bounded as follows (Jordan et al. (1999)),

E(zi) = − log p(zi) = − log
∑
k

p(zi, k)

= − log
∑
k

Qθm(k | zi)
p(zi, k)

Qθm(k | zi)

≤ −
∑
k

Qθm(k | zi) log
p(zi, k)

Qθm(k | zi)

= −EQθm [log p(zi, k)− logQθm(k | zi)] (8)

= −EQθm [log p(zi | k)] + KL(Qθm(k | zi)||p(k)) (9)

= − log p(zi) + KL(Qθm(k | zi)||p(k | zi))
= E(zi) + KL(Qθm(k | zi)||p(k | zi)) (10)

where Qθm(k | zi) is the estimation network that predicts the membership of zi, KL(·||·) is the
Kullback-Leibler divergence between two input distributions, p(k) = φk is the mixing coefficient to
be estimated, and p(k | zi) is the posterior probability distribution of mixture component k given zi.

By minimizing the negative evidence lower bound in Equation (8), we can make the estimation
network approximate the true posterior and tighten the bound of energy function. In DAGMM,
we use Equation (6) as a part of the objective function instead of its upper bound in Equation (10)
simply because the energy function of DAGMM is tractable and efficient to evaluate. Unlike neural
variational inference that uses the deep estimation network to define a variational posterior distribution
as described above, DAGMM explicitly employs the deep estimation network to parametrize a sample-
dependent prior distribution. In the history of machine learning research, there were research efforts
towards utilizing neural networks to calculate sample membership in mixture models, such as adaptive
mixture of experts (Jacobs et al. (1991)). From this perspective, DAGMM can be viewed as a powerful
deep unsupervised version of adaptive mixture of experts in combination with a deep autoencoder.

3.6 TRAINING STRATEGY

Unlike existing deep autoencoder based methods (Yang et al. (2017a); Xie et al. (2016)) that rely
on pre-training, DAGMM employs end-to-end training. First, in our study, we find that pre-trained
compression networks suffer from limited anomaly detection performance, as it is difficult to make
significant changes in the well-trained deep autoencoder to favor the subsequent density estimation
tasks. Second, we also find that the compression network and estimation network could mutually
boost each others’ performance. On one hand, with the regularization introduced by the estimation
network, the deep autoencoder in the compression network learned by end-to-end training can reduce
reconstruction error as low as the error from its pre-trained counterpart, which meanwhile cannot be
achieved by simply performing end-to-end training with the deep autoencoder alone. On the other
hand, with the well-learned low-dimensional representations from the compression network, the
estimation network is able to make meaningful density estimations.

6

Published as a conference paper at ICLR 2018

In Section 4.5, we employ an example from a public benchmark dataset to discuss the choice between
pre-training and end-to-end training in DAGMM.

4 EXPERIMENTAL RESULTS

In this section, we use public benchmark datasets to demonstrate the effectiveness of DAGMM in
unsupervised anomaly detection.

4.1 DATASET

Dimensions # Instances Anomaly ratio (ρ)

KDDCUP 120 494,021 0.2
Thyroid 6 3,772 0.025

Arrhythmia 274 452 0.15
KDDCUP-Rev 120 121,597 0.2

Table 1: Statistics of the public benchmark datasets

We employ four benchmark datasets: KDDCUP, Thyroid, Arrhythmia, and KDDCUP-Rev.

• KDDCUP. The KDDCUP99 10 percent dataset from the UCI repository (Lichman (2013))
originally contains samples of 41 dimensions, where 34 of them are continuous and 7 are
categorical. For categorical features, we further use one-hot representation to encode them,
and eventually we obtain a dataset of 120 dimensions. As 20% of data samples are labeled
as “normal” and the rest are labeled as “attack”, “normal” samples are in a minority group;
therefore, “normal” ones are treated as anomalies in this task.
• Thyroid. The Thyroid (Lichman (2013)) dataset is obtained from the ODDS repository 1.

There are 3 classes in the original dataset. In this task, the hyperfunction class is treated as
anomaly class and the other two classes are treated as normal class, because hyperfunction
is a clear minority class.
• Arrhythmia. The Arrhythmia (Lichman (2013)) dataset is also obtained from the ODDS

repository. The smallest classes, including 3, 4, 5, 7, 8, 9, 14, and 15, are combined to form
the anomaly class, and the rest of the classes are combined to form the normal class.
• KDDCUP-Rev. This dataset is derived from KDDCUP. We keep all the data samples

labeled as “normal” and randomly draw samples labeled as “attack” so that the ratio between
“normal” and “attack” is 4 : 1. In this way, we obtain a dataset with anomaly ratio 0.2,
where “attack” samples are in a minority group and treated as anomalies. Note that “attack”
samples are not fixed, and we randomly draw “attack” samples in every single run.

Detailed information about the datasets is shown in Table 1.

4.2 BASELINE METHODS

We consider both traditional and state-of-the-art deep learning methods as baselines.

• OC-SVM. One-class support vector machine (Chen et al. (2001)) is a popular kernel-based
method used in anomaly detection. In the experiment, we employ the widely adopted radial
basis function (RBF) kernel in all the tasks.
• DSEBM-e. Deep structured energy based model (DSEBM) (Zhai et al. (2016)) is a state-of-

the-art deep learning method for unsupervised anomaly detection. In DSEBM-e, sample
energy is leveraged as the criterion to detect anomalies.
• DSEBM-r. DSEBM-e and DSEBM-r (Zhai et al. (2016)) share the same core technique, but

reconstruction error is used as the criterion in DSEBM-r for anomaly detection.

1http://odds.cs.stonybrook.edu/

7

Published as a conference paper at ICLR 2018

• DCN. Deep clustering network (DCN) (Yang et al. (2017a)) is a state-of-the-art clustering
algorithm that regulates autoencoder performance by k-means. We adapt this technique to
anomaly detection tasks. In particular, the distance between a sample and its cluster center
is taken as the criterion for anomaly detection: samples that are farther from their cluster
centers are more likely to be anomalies.

Moreover, we include the following DAGMM variants as baselines to demonstrate the importance of
individual components in DAGMM.

• GMM-EN. In this variant, we remove the reconstruction error component from the objec-
tive function of DAGMM. In other words, the estimation network in DAGMM performs
membership estimation without the constraints from the compression network. With the
learned membership estimation, we infer sample energy by Equation (5) and (6) under the
GMM framework. Sample energy is used as the criterion for anomaly detection.

• PAE. We obtain this variant by removing the energy function from the objective function
of DAGMM, and this DAGMM variant is equivalent to a deep autoenoder. To ensure
the compression network is well trained, we adopt the pre-training strategy (Vincent et al.
(2010)). Sample reconstruction error is the criterion for anomaly detection.

• E2E-AE. This variant shares the same setting with PAE, but the deep autoencoder is learned
by end-to-end training. Sample reconstruction error is the criterion for anomaly detection

• PAE-GMM-EM. This variant adopts a two-step approach. At step one, we learn the
compression network by pre-training deep autoencoder. At step two, we use the output from
the compression network to train the GMM by a traditional EM algorithm. The training
procedures in the two steps are separated. Sample energy is used as the criterion for anomaly
detection.

• PAE-GMM. This variant also adopts a two-step approach. At step one, we learn the
compression network by pre-training deep autoencoder. At step two, we use the output from
the compression network to train the estimation network. The training procedures in the two
steps are separated. Sample energy is used as the criterion for anomaly detection.

• DAGMM-p. This variant is a compromise between DAGMM and PAE-GMM: we first
train the compression network by pre-training, and then fine-tune DAGMM by end-to-end
training. Sample energy is the criterion for anomaly detection.

• DAGMM-NVI. The only difference between this variant and DAGMM is that this variant
adopts the framework of neural variational inference (Mnih & Gregor (2014)) and replaces
Equation (6) with the upper bound in Equation (10) as a part of the objective function.

4.3 DAGMM CONFIGURATION

In all the experiment, we consider two reconstruction features from the compression network: relative
Euclidean distance and cosine similarity. Given a sample x and its reconstructed counterpart x′, their

relative Euclidean distance is defined as
‖x−x′‖

2

‖x‖2
, and the cosine similarity is derived by x·x′

‖x‖2‖x′‖2
.

In Appendix D, for readers of interest, we discuss why reconstruction features are important to
DAGMM and how to select reconstruction features in practice.

The network structures of DAGMM used on individual datasets are summarized as follows.

• KDDCUP. For this dataset, its compression network provides 3 dimensional input to the
estimation network, where one is the reduced dimension and the other two are from the
reconstruction error. The estimation network considers a GMM with 4 mixture components
for the best performance. In particular, the compression network runs with FC(120, 60,
tanh)-FC(60, 30, tanh)-FC(30, 10, tanh)-FC(10, 1, none)-FC(1, 10, tanh)-FC(10, 30,
tanh)-FC(30, 60, tanh)-FC(60, 120, none), and the estimation network performs with FC(3,
10, tanh)-Drop(0.5)-FC(10, 4, softmax).

• Thyroid. The compression network for this dataset also provides 3 dimensional input to the
estimation network, and the estimation network employs 2 mixture components for the best
performance. In particular, the compression network runs with FC(6, 12, tanh)-FC(12, 4,

8

Published as a conference paper at ICLR 2018

tanh)-FC(4, 1, none)-FC(1, 4, tanh)-FC(4, 12, tanh)-FC(12, 6, none), and the estimation
network performs with FC(3, 10, tanh)-Drop(0.5)-FC(10, 2, softmax).
• Arrhythmia. The compression network for this dataset provides 4 dimensional input, where

two of them are the reduced dimensions, and the estimation network adopts a setting of
2 mixture components for the best performance. In particular, the compression network
runs with FC(274, 10, tanh)-FC(10, 2, none)-FC(2, 10, tanh)-FC(10, 274, none), and the
estimation network performs with FC(4, 10, tanh)-Drop(0.5)-FC(10, 2, softmax).
• KDDCUP-Rev. For this dataset, its compression network provides 3 dimensional input to

the estimation network, where one is the reduced dimension and the other two are from the
reconstruction error. The estimation network considers a GMM with 2 mixture components
for the best performance. In particular, the compression network runs with FC(120, 60,
tanh)-FC(60, 30, tanh)-FC(30, 10, tanh)-FC(10, 1, none)-FC(1, 10, tanh)-FC(10, 30,
tanh)-FC(30, 60, tanh)-FC(60, 120, none), and the estimation network performs with FC(3,
10, tanh)-Drop(0.5)-FC(10, 2, softmax).

where FC(a, b, f) means a fully-connected layer with a input neurons and b output neurons activated
by function f (none means no activation function is used), and Drop(p) denotes a dropout layer with
keep probability p during training.

All the DAGMM instances are implemented by tensorflow (Abadi et al. (2016)) and trained by
Adam (Kingma & Ba (2015)) algorithm with learning rate 0.0001. For KDDCUP, Thyroid, Arrhyth-
mia, and KDDCUP-Rev, the number of training epochs are 200, 20000, 10000, and 400, respectively.
For the sizes of mini-batches, they are set as 1024, 1024, 128, and 1024, respectively. Moreover, in
all the DAGMM instances, we set λ1 as 0.1 and λ2 as 0.005. For readers of interest, we discuss how
λ1 and λ2 impact DAGMM in Appendix F.

For the baseline methods, we conduct exhaustive search to find the optimal meta parameters for them
in order to achieve the best performance. We detail their exact configuration in Appendix A.

4.4 ACCURACY

Metric. We consider average precision, recall, and F1 score as intuitive ways to compare anomaly
detection performance. In particular, based on the anomaly ratio suggested in Table 1, we select
the threshold to identify anomalous samples. For example, when DAGMM performs on KDDCUP,
the top 20% samples of the highest energy will be marked as anomalies. We take anomaly class as
positive, and define precision, recall, and F1 score accordingly.

In the first set of experiment, we follow the setting in (Zhai et al. (2016)) with completely clean
training data: in each run, we take 50% of data by random sampling for training with the rest 50%
reserved for testing, and only data samples from the normal class are used for training models.

Table 2 reports the average precision, recall, and F1 score after 20 runs for DAGMM and its baselines.
In general, DAGMM demonstrates superior performance over the baseline methods in terms of
F1 score on all the datasets. Especially on KDDCUP and KDDCUP-Rev, DAGMM achieves 14%
and 10% improvement at F1 score, compared with the existing methods. For OC-SVM, the curse
of dimensionality could be the main reason that limits its performance. For DSEBM, while it
works reasonably well on multiple datasets, DAGMM outperforms as both latent representation
and reconstruction error are jointly considered in energy modeling. For DCN, PAE-GMM, and
DAGMM-p, their performance could be limited by the pre-trained deep autoencoders. When a deep
autoencoder is well-trained, it is hard to make any significant change on the reduced dimensions and
favor the subsequent density estimation tasks. For GMM-EN, without the reconstruction constraints,
it seems difficult to perform reasonable density estimation. In terms of PAE, the single view of
reconstruction error may not be sufficient for anomaly detection tasks. For E2E-AE, we observe that it
is unable to reduce reconstruction error as low as PAE and DAGMM do on KDDCUP, KDDCUP-Rev,
and Thyroid. As the key information of data could be lost during dimensionality reduction, E2E-AE
suffers poor performance on KDDCUP and Thyroid. In addition, the performance of DAGMM
and DAGMM-NVI is quite similar. As GMM is a fairly simple graphical model, we cannot spot
significant improvement brought by neural variational inference in DAGMM. In Appendix B, for
readers of interest, we show the cumulative distribution functions of the energy function learned by
DAGMM for all the datasets under the setting of clean training data.

9

Published as a conference paper at ICLR 2018

Method KDDCUP Thyroid
Precision Recall F1 Precision Recall F1

OC-SVM 0.7457 0.8523 0.7954 0.3639 0.4239 0.3887
DSEBM-r 0.1972 0.2001 0.1987 0.0404 0.0403 0.0403
DSEBM-e 0.7369 0.7477 0.7423 0.1319 0.1319 0.1319

DCN 0.7696 0.7829 0.7762 0.3319 0.3196 0.3251
GMM-EN 0.1932 0.1967 0.1949 0.0213 0.0227 0.0220

PAE 0.7276 0.7397 0.7336 0.1894 0.2062 0.1971
E2E-AE 0.0024 0.0025 0.0024 0.1064 0.1316 0.1176

PAE-GMM-EM 0.7183 0.7311 0.7246 0.4745 0.4538 0.4635
PAE-GMM 0.7251 0.7384 0.7317 0.4532 0.4881 0.4688
DAGMM-p 0.7579 0.7710 0.7644 0.4723 0.4725 0.4713

DAGMM-NVI 0.9290 0.9447 0.9368 0.4383 0.4587 0.4470
DAGMM 0.9297 0.9442 0.9369 0.4766 0.4834 0.4782

Method Arrhythmia KDDCUP-Rev
Precision Recall F1 Precision Recall F1

OC-SVM 0.5397 0.4082 0.4581 0.7148 0.9940 0.8316
DSEBM-r 0.1515 0.1513 0.1510 0.2036 0.2036 0.2036
DSEBM-e 0.4667 0.4565 0.4601 0.2212 0.2213 0.2213

DCN 0.3758 0.3907 0.3815 0.2875 0.2895 0.2885
GMM-EN 0.3000 0.2792 0.2886 0.1846 0.1746 0.1795

PAE 0.4393 0.4437 0.4403 0.7835 0.7817 0.7826
E2E-AE 0.4667 0.4538 0.4591 0.7434 0.7463 0.7448

PAE-GMM-EM 0.3970 0.4168 0.4056 0.2822 0.2847 0.2835
PAE-GMM 0.4575 0.4823 0.4684 0.6307 0.6278 0.6292
DAGMM-p 0.4909 0.4679 0.4787 0.2750 0.2810 0.2780

DAGMM-NVI 0.5091 0.4892 0.4981 0.9211 0.9211 0.9211
DAGMM 0.4909 0.5078 0.4983 0.9370 0.9390 0.9380

Table 2: Average precision, recall, and F1 from DAGMM and the baseline methods. For each metric,
the best result is shown in bold.

In the second set of experiment, we investigate how DAGMM responds to contaminated training data.
In each run, we reserve 50% of data by random sampling for testing. For the rest 50%, we take all
samples from the normal class mixed with c% of samples from the anomaly class for model training.

Ratio c DAGMM DCN
Precision Recall F1 Precision Recall F1

1% 0.9201 0.9337 0.9268 0.7585 0.7611 0.7598
2% 0.9186 0.9340 0.9262 0.7380 0.7424 0.7402
3% 0.9132 0.9272 0.9201 0.7163 0.7293 0.7228
4% 0.8837 0.8989 0.8912 0.6971 0.7106 0.7037
5% 0.8504 0.8643 0.8573 0.6763 0.6893 0.6827

Ratio c DSEBM-e OC-SVM
Precision Recall F1 Precision Recall F1

1% 0.6995 0.7135 0.7065 0.7129 0.6785 0.6953
2% 0.6780 0.6876 0.6827 0.6668 0.5207 0.5847
3% 0.6213 0.6367 0.6289 0.6393 0.4470 0.5261
4% 0.5704 0.5813 0.5758 0.5991 0.3719 0.4589
5% 0.5345 0.5375 0.5360 0.1155 0.3369 0.1720

Table 3: Anomaly detection results on contaminated training data from KDDCUP

Table 3 reports the average precision, recall, and F1 score after 20 runs of DAGMM, DCN, DSEBM-
e, and OC-SVM on the KDDCUP dataset, respectively. As expected, contaminated training data
negatively affect detection accuracy. When contamination ratio c increases from 1% to 5%, average
precision, recall, and F1 score decrease for all the methods. Meanwhile, we notice that DAGMM is
able to maintain good detection accuracy with 5% contaminated data. For OC-SVM, we adopt the
same parameter setting used in the experiment with clean training data, and observe that OC-SVM is

10

Published as a conference paper at ICLR 2018

more sensitive to contamination ratio. In order to receive better detection accuracy, it is important to
train a model with high-quality data (i.e., clean or keeping contamination ratio as low as possible).

In sum, the DAGMM learned by end-to-end training achieves the state-of-the-art accuracy on the
public benchmark datasets, and provides a promising alternative for unsupervised anomaly detection.

4.5 VISUALIZATION ON THE LEARNED LOW-DIMENSIONAL REPRESENTATION

In this section, we use an example to demonstrate the advantage of DAGMM learned by end-to-end
training, compared with the baselines that rely on pre-trained deep autoencoders.

(a) KDDCUP@DAGMM (b) KDDCUP@PAE

(c) KDDCUP@DAGMM-p (d) KDDCUP@DCN

Figure 3: KDDCUP samples in the learned 3-dimensional space by DAGMM, PAE, DAGMM-p, and
DCN, where red points are samples from anomaly class and blue ones are samples from normal class

Figure 3 shows the low-dimensional representation learned by DAGMM, PAE, DAGMM-p, and
DCN, from one of the experiment runs on the KDDCUP dataset. First, we can see from Figure 3a that
DAGMM can better separate anomalous samples from normal samples in the learned low-dimensional
space, while anomalies overlap more with normal samples in the low-dimensional space learned
by PAE, DAGMM-p, or DCN. Second, Even if DAGMM-p and DCN take effort to fine-tune the
pre-trained deep autoencoder by its estimation network or k-means regularization, one could barely
see significant change among Figure 3b, Figure 3c, and Figure 3d, where many anomalous samples
are still mixed with normal samples. Indeed, when a deep autoencoder is pre-trained, it tends to be
stuck in a good local optima for the purpose of reconstruction only, but it could be suboptimal for the
subsequent density estimation tasks. In addition, in our study, we find that the reconstruction error in
a trained DAGMM is as low as the error received from a pre-trained deep autoencoder (e.g., around
0.26 in terms of per-sample reconstruction error for KDDCUP). Meanwhile, we also observe that it
is difficult to reduce the reconstruction error for a deep autoencoder of the identical structure by end-
to-end training (e.g., around 1.13 in terms of per-sample reconstruction error for KDDCUP). In other
words, the compression network and estimation network mutually boost each others’ performance
during end-to-end training: the regularization introduced by the estimation network helps the deep
autoencoder escape from less attractive local optima for better compression, while the compression
network feeds more meaningful low-dimensional representations to estimation network for robust

11

Published as a conference paper at ICLR 2018

density estimation. In Appendix C, for readers of interest, we show the visualization of the latent
representation learned by DSEBM.

In summary, our experimental results show that DAGMM suggests a promising direction for density
estimation and anomaly detection, where one can combine the forces of dimensionality reduction and
density estimation by end-to-end training.

In Appendix E, we provide another case study to discuss which kind of samples benefit more from
joint training in DAGMM for readers of interest.

5 CONCLUSION

In this paper, we propose the Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsu-
pervised anomaly detection. DAGMM consists of two major components: compression network
and estimation network, where the compression network projects samples into a low-dimensional
space that preserves the key information for anomaly detection, and the estimation network evaluates
sample energy in the low-dimensional space under the framework of Gaussian Mixture Modeling.
DAGMM is friendly to end-to-end training: (1) the estimation network predicts sample mixture mem-
bership so that the parameters in GMM can be estimated without alternating procedures; and (2) the
regularization introduced by the estimation network helps the compression network escape from less
attractive local optima and achieve low reconstruction error by end-to-end training. Compared with
the pre-training strategy, the end-to-end training could be more beneficial for density estimation tasks,
as we can have more freedom to adjust dimensionality reduction processes to favor the subsequent
density estimation tasks. In the experimental study, DAGMM demonstrates superior performance
over state-of-the-art techniques on public benchmark datasets with up to 14% improvement on the
standard F1 score, and suggests a promising direction for unsupervised anomaly detection on multi-
or high-dimensional data.

12

Published as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pp. 265–283, 2016.

V. Barnett and T. Lewis. Outliers in statistical data. Wiley, 1984.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
J. ACM, 58(3):11:1–11:37, 2011. ISSN 0004-5411.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput.
Surv, 41:15:1–15:58, 2009.

Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang. One-class svm for learning in image
retrieval. In International Conference on Image Processing, volume 1, pp. 34–37, 2001.

Simon Günter, Nicol N. Schraudolph, and S. V. N. Vishwanathan. Fast Iterative Kernel Principal
Component Analysis. jmlr, 8:1893–1918.

Peter J Huber. Robust statistics. In International Encyclopedia of Statistical Science, pp. 1248–1251.
Springer, 2011.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

I. T. Jolliffe. Principal component analysis. In Principal Component Analysis. Springer Verlag, New
York, 1986.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Fabian Keller, Emmanuel Muller, and Klemens Bohm. Hics: High contrast subspaces for density-
based outlier ranking. In International Conference on Data Engineering, pp. 1037–1048. IEEE,
2012.

JooSeuk Kim and Clayton D. Scott. Robust kernel density estimation. CoRR, abs/1107.3133, 2011.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representations, 2015.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/
ml.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In International Conference on
Data Mining, pp. 413–422. IEEE, 2008.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
ICML, pp. 1791–1799, 2014.

Matthias Paulik. Lattice-based training of bottleneck feature extraction neural networks. In Inter-
speech, pp. 89–93, 2013.

Q. Song, W. J. Hu, and W. F. Xie. Robust support vector machine with bullet hole image classification.
IEEE Trans. Systems, Man and Cybernetics, 32:440–448, 2002.

Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for streaming data. In
IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22, pp. 1511,
2011.

Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney. Speaker adaptive joint training of
gaussian mixture models and bottleneck features. In IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), pp. 596–603, 2015a.

Zoltán Tüske, Muhammad Ali Tahir, Ralf Schlüter, and Hermann Ney. Integrating gaussian mixtures
into deep neural networks: softmax layer with hidden variables. In ICASSP, pp. 4285–4289, 2015b.

13

http://nic.schraudolph.org/pubs/GueSchVis07.pdf
http://nic.schraudolph.org/pubs/GueSchVis07.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published as a conference paper at ICLR 2018

Ehsan Variani, Erik McDermott, and Georg Heigold. A gaussian mixture model layer jointly
optimized with discriminative features within a deep neural network architecture. In ICASSP, pp.
4270–4274, 2015.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

Graham Williams, Rohan Baxter, Hongxing He, and Simon Hawkins. A comparative study of RNN
for outlier detection in data mining. In Proceedings of ICDM02, pp. 709–712, 2002.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning, pp. 478–487, 2016.

Liang Xiong, Barnabás Póczos, and Jeff G. Schneider. Group anomaly detection using flexible genre
models. In Advances in Neural Information Processing Systems, pp. 1071–1079, 2011.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In International Conference on Machine Learning,
2017a.

Xi Yang, Kaizhu Huang, and Rui Zhang. Unsupervised dimensionality reduction for gaussian mixture
model. In International conference on neural information processing, pp. 84–92. Springer, 2014.

Xi Yang, Kaizhu Huang, John Yannis Goulermas, and Rui Zhang. Joint learning of unsupervised
dimensionality reduction and gaussian mixture model. Neural Processing Letters, 45(3):791–806,
2017b.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based models
for anomaly detection. In International Conference on Machine Learning, pp. 1100–1109, 2016.

C. Zhang and P. C. Woodland. Joint optimisation of tandem systems using gaussian mixture density
neural network discriminative sequence training. In ICASSP, pp. 5015–5019, 2017.

Chong Zhou and Randy C. Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 665–674, 2017.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised outlier detection
in high-dimensional numerical data. Statistical Analysis and Data Mining, 5:363–387, 2012.

14

Published as a conference paper at ICLR 2018

A BASELINE CONFIGURATION

OC-SVM. Unlike other baselines that only need decision thresholds in the testing phase, OC-SVM
needs parameter ν be set in the training phase. Although ν intuitively means anomaly ratio in training
data, it is non-trivial to set a reasonable ν in the case where training data are all normal samples and
anomaly ratio in the testing phase could be arbitrary. In this study, we simply perform exhaustive
search to find the optimal ν that renders the highest F1 score on individual datasets. In particular,
ν is set to be 0.1, 0.02, 0.04, and 0.1 for KDDCUP, Thyroid, Arrhythmia, and KDDCUP-Rev,
respectively.

DSEBM. We use the network structure for the encoding in DAGMM as guidelines to set up DSEBM
instances. For KDDCUP and KDDCUP-Rev, it is configured as FC(120, 60, softplus)-FC(60, 30,
softplus)-FC(30, 10, softplus)-FC(10, 1, softplus). For Thyroid, it is FC(6, 12, softplus)-FC(12,
4, softplus)-FC(4, 1, softplus). For Arrhythmia, it is FC(274, 10, softplus)-FC(10, 2, softplus).
Moreover, for KDDCUP, Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs are 200,
20000, 10000, and 400, respectively, and the sizes of mini-batches are 1024, 1024, 128, and 1024,
respectively.

DCN. We use the network configuration for the autoencoder in DAGMM as guidelines to set up
autoencoders in DCN. For KDDCUP and KDDCUP-Rev, the structure is FC(120, 60, tanh)-FC(60,
30, tanh)-FC(30, 10, tanh)-FC(10, 1, none)-FC(1, 10, tanh)-FC(10, 30, tanh)-FC(30, 60, tanh)-
FC(60, 120, none). For Thyroid, it is FC(6, 12, tanh)-FC(12, 4, tanh)-FC(4, 1, none)-FC(1,
4, tanh)-FC(4, 12, tanh)-FC(12, 6, none). For Arrhythmia, it is FC(274, 10, tanh)-FC(10, 2,
none)-FC(2, 10, tanh)-FC(10, 274, none). Moreover, for KDDCUP, Thyroid, Arrhythmia, and
KDDCUP-Rev, the numbers of epochs for per-layer pre-training are 200, 20000, 10000, and 400,
respectively, the numbers of epochs for fine tuning are 200, 20000, 10000, and 400, respectively, and
the sizes of mini-batches in all the training phases are 1024, 1024, 128, and 1024, respectively.

GMM-EN. GMM-EN also borrows the wisdom from the network configurations in DAGMM. For
KDDCUP, it is FC(120, 60, tanh)-FC(60, 30, tanh)-FC(30, 10, tanh)-FC(10, 1, none)-FC(1, 10,
tanh)-Drop(0.5)-FC(10, 4, softmax). For Thyroid, it is FC(6, 12, tanh)-FC(12, 4, tanh)-FC(4, 1,
none)-FC(1, 10, tanh)-Drop(0.5)-FC(10, 2, softmax). For Arrhythmia, it is FC(274, 10, tanh)-
FC(10, 2, none)-FC(2, 10, tanh)-Drop(0.5)-FC(10, 2, softmax). For KDDCUP-Rev, it is FC(120,
60, tanh)-FC(60, 30, tanh)-FC(30, 10, tanh)-FC(10, 1, none)-FC(1, 10, tanh)-Drop(0.5)-FC(10,
2, softmax). For KDDCUP, Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs for
training are 200, 20000, 10000, and 400, respectively, and the sizes of mini-batches are 1024, 1024,
128, and 1024, respectively.

PAE. PAE shares identical network structures with the autoencoder in DAGMM. For KDDCUP,
Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs for per-layer pre-training are 200,
20000, 10000, and 400, respectively, the numbers of epochs for fine tuning are 200, 20000, 10000,
and 400, respectively, and the sizes of mini-batches in all the training phases are 1024, 1024, 128,
and 1024, respectively.

E2E-AE. E2E-AE shares identical network structures with the autoencoder in DAGMM. For KDD-
CUP, Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs for end-to-end training are
200, 20000, 10000, and 400, respectively, and the sizes of mini-batches are 1024, 1024, 128, and
1024, respectively.

PAE-GMM-EM. PAE-GMM and DAGMM share identical network configurations. For KDDCUP,
Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs for per-layer pre-training are 200,
20000, 10000, and 400, respectively, the numbers of epochs for fine tuning are 200, 20000, 10000,
and 400, respectively, and the sizes of mini-batches in all the training phases are 1024, 1024, 128,
and 1024, respectively. For GMM learning, the EM algorithm stops when the maximum difference of
the parameters between current iteration and its previous iteration is smaller than 10−6.

15

Published as a conference paper at ICLR 2018

PAE-GMM. PAE-GMM and DAGMM share identical network configurations. For KDDCUP,
Thyroid, Arrhythmia, and KDDCUP-Rev, the numbers of epochs for per-layer pre-training are 200,
20000, 10000, and 400, respectively, the numbers of epochs for fine tuning or GMM training are 200,
20000, 10000, and 400, respectively, and the sizes of mini-batches in all the training phases are 1024,
1024, 128, and 1024, respectively.

DAGMM-p. DAGMM-p and DAGMM share identical network configurations, but they are only
different in training strategies: DAGMM adopts the strategy of end-to-end training, while DAGMM-p
relies on pre-training to compression network and then joint fine-tuning. For KDDCUP, Thyroid,
Arrhythmia, and KDDCUP-Rev, the numbers of epochs for per-layer pre-training are 200, 20000,
10000, and 400, respectively, the numbers of epochs for fine tuning are 200, 20000, 10000, and 400,
respectively, and the sizes of mini-batches in all the training phases are 1024, 1024, 128, and 1024,
respectively.

DAGMM-NVI. DAGMM and DAGMM-NVI share identical network configurations and training
strategies as discussed in Section 4.

B CUMULATIVE DISTRIBUTION FUNCTION OF THE ENERGY FUNCTION
LEARNED BY DAGMM

(a) KDDCUP (b) Thyroid

(c) Arrhythmia (d) KDDCUP-Rev

Figure 4: The cumulative distribution functions of the energy function are learned by DAGMM on
KDDCUP, Arrhythmia, Thyroid, and KDDCUP-Rev, respectively. The horizontal axis denotes the
energy space, and the vertical axis denotes the percentage.

Figure 4 shows the cumulative distribution function (cdf) of the energy function learned by DAGMM
on KDDCUP, Arrhythmia, Thyroid, and KDDCUP-Rev, respectively. In particular, on KDDCUP and
KDDCUP-Rev, we observe rapid energy increase at around 80%, and most samples whose energy is
beyond the 80th percentile are true anomalous samples.

16

Published as a conference paper at ICLR 2018

C LOW-DIMENSIONAL REPRESENTATION LEARNED BY DSEBM

(a) All samples (b) Normal samples only

Figure 5: KDDCUP samples in the reduced 1-dimensional space by DSEBM, where red points are
samples from the anomaly class and blue ones are samples from the normal class

Figure 5 demonstrates the reduced 1-dimensional representation for KDDCUP samples learned by
DSEBM, where Figure 5a includes all the samples and Figure 5b includes the normal samples only.
As shown above, normal and anomalous samples are mixed in the range of [−8,−7.8]. For samples
in this range, it is difficult to use the energy derived from the latent representation to separate them.

D RECONSTRUCTION FEATURES IN DAGMM

In this section, we detail the discussion on reconstruction features.

Why reconstruction features are important? We realize the importance of reconstruction features
from our investigation on a private network security dataset. In this dataset, normal samples are
normal network flows, and anomalies are network flows with spoofing attack. As it is difficult to
analyze the samples from their original space with 20 dimensions, we utilize deep autoencoders to
perform dimension reduction. In this case, we are a little bit ambitious, and reduce dimensions from
20 to 1. In the reduced 1-dimensional space, for some of the anomalies, we are able to easily separate
them from normal samples. However, for the rest, their latent representations are quite similar to
the representations of the normal samples. Meanwhile, in the original space, they are actually quite
different from the normal ones. Inspired by this observation, we investigate their L2 reconstruction
error, and obtain the plot shown in Figure 1. In Figure 1, the red points in the top-right corner are the
anomalies sharing similar representations with the normal samples in the reduced space. With the
additional view from reconstruction error, it becomes easier to separate these anomalies from the
normal samples. In our study, this concrete example motivates us to include reconstruction features
into DAGMM.

What are the guidelines for reconstruction feature selection? In practice, one can select recon-
struction features by the following rules. First, for an error metric used to derive a reconstruction
feature, its analytical form should be continuous and differentiable. Second, the output of an error
metric should be in a range of relatively small values for the ease of training the estimation network
in DAGMM. In the experiment of this paper, we select cosine similarity and relative Euclidean
distance based on these two rules. For cosine similarity, it is continuous and differentiable, and the
range of its output is [−1, 1]. For relative Euclidean distance, it is also continuous and differentiable.
Theoretically, the range of its output is [0,+∞). On the datasets considered in the experiment, we
observe that its output is usually a small positive value; therefore, we include this metric as one of the
reconstruction features.

In sum, as long as an error metric meets the above two rules, it could serve as a candidate metric to
derive a reconstruction feature for DAGMM.

17

Published as a conference paper at ICLR 2018

E CASE STUDY: WHEN JOINT TRAINING OUTPERFORMS DECOUPLED
TRAINING?

In this section, we perform a case study to investigate what kind of samples benefit more from the
joint training applied in DAGMM over decoupled training. In the evaluation, we employ PAE-GMM
as a representative for the methods that leverage decoupled training, and the following results are
generated from one run on the KDDCUP dataset.

PAE-GMM detect PAE-GMM miss

DAGMM detect 34,285 12,038
DAGMM miss 1,640 926

Table 4: The comparison of anomaly detection results between DAGMM and PAE-GMM

Table 4 presents the comparison between DAGMM and PAE-GMM in terms of their anomaly
detection results. In the testing data of this run, there are 48, 889 anomalies in total, where 34, 285 of
them are detected by both techniques, 926 anomalies can be detected by neither of them, 1, 640 can
only be detected by PAE-GMM, and 12, 038 of them can only be detected by DAGMM. Next, we
drill deeper and investigate the commonalities of these 12, 038 anomalies that can only be detected
by DAGMM.

Figure 6 illustrates sample distribution in the low-dimensional spaces learned by DAGMM and
PAE-GMM, where Figure 6a (6b) includes all the normal samples and anomalies, Figure 6c (6d)
includes all the normal samples and the anomalies detected by both techniques, and Figure 6e (6f)
includes all the normal samples and the anomalies detected by DAGMM only. From Figure 6c and 6d,
we observe that the anomalies of low cosine similarity and high relative Euclidean distance could
be the easy ones that are captured by both techniques. For the difficult ones shown in Figure 6e
and 6f, we observe that they usually have medium level of relative Euclidean distance (in the range
of [1.0, 1.2] for both cases) with larger than 0.6 cosine similarity. For such anomalous samples, the
model learned by PAE-GMM has difficult time to separate them from the normal samples. In addition,
we also observe that the model learned by DAGMM tends to assign lower cosine similarity to such
anomalies than PAE-GMM does, which also makes it easier to differentiate the anomalies from the
normal samples.

F HOW THE HYPERPARAMETERS IN THE OBJECTIVE FUNCTION IMPACT
DAGMM

As shown in Equation (7), the objective function of DAGMM includes three components: the loss
function from deep autoencoder, the energy function from estimation network, and the penalty func-
tion for covariance matrices. The coefficient ratio among the three components can be characterized
as 1 : λ1 : λ2. In terms of λ1, a large value could make the loss function of deep autoencoder
play little role in optimization so that we are unable to obtain a good reduced representation for
input samples, while a small value could lead to ineffective estimation network so that GMM is not
well trained. For λ2 of a large value, DAGMM tends to find GMM with large covariance, which is
less desirable as many samples will have high energy as rare events. For λ2 of a small value, the
regularization may not be strong enough to counter the singularity effect.

In our exploration, we find the ratio 1 : 0.1 : 0.005 consistently delivers expected results across all
the datasets in the experiment. To investigate the sensitivity of this ratio, we vary its base and see
how different bases affect anomaly detection accuracy. For example, when the base is set to 2, λ1
and λ2 are adjusted to 0.2 and 0.01, respectively.

Table 5 shows the average precision, recall, and F1 score after 20 runs of DAGMM on the KDDCUP
dataset. As we vary the base from 1 to 9 with step 2, DAGMM performs in a consistent way, and λ1,
λ2 are not sensitive to the changes on the base.

18

Published as a conference paper at ICLR 2018

(a) All anomalies@DAGMM (b) All anomalies@PAE-GMM

(c) Both detect@DAGMM (d) Both detect@PAE-GMM

(e) Only DAGMM detect@DAGMM (f) Only DAGMM detect@PAE-GMM

Figure 6: KDDCUP samples in the learned 3-dimensional space by DAGMM and PAE-GMM, where
red points are samples from anomaly class and blue ones are samples from normal class

Base Precision Recall F1

1 0.9298 0.9445 0.9371
3 0.9301 0.9442 0.9371
5 0.9296 0.9451 0.9373
7 0.9300 0.9453 0.9376
9 0.9300 0.9439 0.9369

Table 5: Sensitivity of λ1 and λ2 with fixed ratio 1 : 0.1 : 0.005 on KDDCUP

19

	Introduction
	Related Work
	Deep Autoencoding Gaussian Mixture Model
	Overview
	Compression Network
	Estimation Network
	Objective function
	Relation to Variational Inference
	Training Strategy

	Experimental Results
	Dataset
	Baseline Methods
	DAGMM Configuration
	Accuracy
	Visualization on the Learned Low-Dimensional Representation

	Conclusion
	Baseline configuration
	Cumulative distribution function of the energy function learned by DAGMM
	Low-dimensional representation learned by DSEBM
	Reconstruction features in DAGMM
	Case study: When joint training outperforms decoupled training?
	How the hyperparameters in the objective function impact DAGMM

