
Published as a conference paper at ICLR 2017

NONPARAMETRIC NEURAL NETWORKS

George Philipp, Jaime G. Carbonell
Carnegie Mellon University
Pittsburgh, PA 15213, USA
george.philipp@email.de; jgc@cs.cmu.edu

ABSTRACT

Automatically determining the optimal size of a neural network for a given task
without prior information currently requires an expensive global search and train-
ing many networks from scratch. In this paper, we address the problem of auto-
matically finding a good network size during a single training cycle. We intro-
duce nonparametric neural networks, a non-probabilistic framework for conduct-
ing optimization over all possible network sizes and prove its soundness when
network growth is limited via an `p penalty. We train networks under this frame-
work by continuously adding new units while eliminating redundant units via an
`2 penalty. We employ a novel optimization algorithm, which we term “Adaptive
Radial-Angular Gradient Descent” or AdaRad, and obtain promising results.

1 INTRODUCTION

Automatically choosing a neural network model for a given task without prior information is a
challenging problem. Formally, let Θ be the space of all models considered. The goal of model
selection is then, usually, to find the value of the hyperparameter θ ∈ Θ that minimizes a certain
criterion c(θ), such as the validation error achieved by the model represented by θ when trained
to convergence. Because Θ is large, structured and heterogeneous, c is complex, and gradients
of c are generally not available, the most popular methods for optimizing c perform zero-order,
black-box optimization and do not use any information about c except its value for certain values
of θ. These methods select one or more values of θ, compute c at those values and, based on
the results, select new values of θ until convergence is achieved or a time limit is reached. The
most popular such methods are grid search, random search (e.g. Bergstra & Bengio (2012)) and
Bayesian optimization using Gaussian processes (e.g. Snoek et al. (2012)). Others utilize random
forests (Hutter et al., 2009), deep neural networks (Snoek et al., 2015) and recently Bayesian neural
networks (Springenberg et al., 2016) and reinforcement learning (Zoph & Le, 2017).

These black-box methods have two drawbacks. (A) To obtain each value of c, they execute a full
network training run. Each run can take days on many cores or multiple GPUs. (B) They do not
exploit opportunities to improve the value of c further by altering θ during each training run. In
this paper, we present a framework we term nonparametric neural networks for selecting network
size. We dynamically and automatically shrink and expand the network as needed to select a good
network size during a single training run. Further, by altering network size during training, the
network ultimately chosen can achieve a higher accuracy than networks of the same size that are
trained from scratch and, in some cases, achieve a higher accuracy than is possible by black-box
methods.

There has been a recent surge of interest in eliminating unnecessary units from neural networks,
either during training or after training is complete. This strategy is called pruning. Alvarez &
Salzmann (2016) utilize an `2 penalty to eliminate units and Molchanov et al. (2017) compare a
variety of strategies, whereas Figurnov et al. (2016) focuses on thinning convolutional layers in
the spatial dimensions. While some of these methods even allow some previously pruned units to
be added back in (e.g. Feng & Darrell (2015)), all of these strategies require a high-performing
network model as a starting point from which to prune, something that is generally only available in
well-studied vision and NLP tasks. We do not require such a starting point in this paper.

In section 2, we introduce the nonparametric framework and state its theoretical soundness, which
we prove in section 7.1. In section 3, we develop the machinery for training nonparametric networks,
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including a novel normalization layer in section 3.2, CapNorm, and a novel training algorithm in
section 3.3, AdaRad. We provide experimental evaluation and analysis in section 4, further relevant
literature in section 5 and conclude in section 6.

2 NONPARAMETRIC NEURAL NETWORKS

For the purpose of this section, we define a parametric neural network as a function
f(x) = σL.(σL−1.(..σ2.(σ1.(xW1)W2)..)WL) of a d0-dimensional row vector x, where Wl ∈
Rdl−1∗dl , 1 ≤ l ≤ L are dense weight matrices of fixed dimension and σl : R → R, 1 ≤ l ≤ L
are fixed non-linear transformations that are applied elementwise, as signified by the .() operator.
The number of layers L is also fixed. Further, the weight matrices are trained by solving the mini-
mization problem minW=(W )l

1
|D|

∑
(x,y)∈D e(f(W, x), y) + Ω(W), where D is the dataset, e is

an error function that consumes a vector of fixed size dL and the label y, and Ω is the regularizer.

We define a nonparametric neural network in the same way, except that the dimensionality of the
weight matrices is undetermined. Hence, the optimization problem becomes

min
d=(d)l,dl∈Z+,1≤l≤L−1

min
W=(W )l,Wl∈Rdl−1∗dl ,1≤l≤L

1

|D|
∑

(x,y)∈D

e(f(W, x), y) + Ω(W) (1)

Note that the dimensions d0 and dL are fixed because the data and the error function e are fixed. The
parameter value now takes the form of a pair (d,W).

There is no guarantee that optimization problem 1 has a global minimum. We may be able to
reduce the value of the objective further and further by using larger and larger networks. This would
be problematic, because as networks become better and better with regards to the objective, they
would become more and more undesirable in practice. It turns out that in an important case, this
degeneration does not occur. Define the fan-in regularizer Ωin and the fan-out regularizer Ωout as

Ωin(W, λ, p) = λ

L∑
l=1

dl∑
j=1

||[Wl(1, j),Wl(2, j), ..,Wl(dl−1, j)]||p (2)

Ωout(W, λ, p) = λ

L∑
l=1

dl−1∑
i=1

||[Wl(i, 1),Wl(i, 2), ..,Wl(i, dl)]||p (3)

In plain language, we either penalize the incoming weights (fan-in) of each unit with a p-norm,
or the outgoing weights (fan-out) of each unit. We now state the core theorem that justifies our
formulation of nonparametric networks. The proof is found in the appendix in section 7.1.

Theorem 1. Nonparametric neural networks achieve a global training error minimum at some finite
dimensionality when Ω is a fan-in or a fan-out regularizer with λ > 0 and 1 ≤ p <∞.

3 TRAINING NONPARAMETRIC NETWORKS

Training nonparametric networks is more difficult than training parametric networks, because the
space over which we optimize the parameter (d,W) is no longer a space of form Rd, but is an
infinite, discrete union of such spaces. However, we would still like to utilize local, gradient-based
search. We notice, like (Wei et al., 2016), that there are pairs of parameter values with different
dimensionality that are still in some sense “close” to one another. Specifically, we say that two
parameter values (d1,W1) and (d2,W2) are f -equivalent if ∀x ∈ Rd0 , f(W1, x) = f(W2, x)
where not necessarily d1 = d2. During iterative optimization, we can “jump” between those two
parameter values while maintaining the output of f and thus preserving locality. We define a zero
unit as any unit for which either the fan-in or fan-out or both are the zero vector. Given any parameter
value, the most obvious way of generating another parameter value that is f -equivalent to it is to
add a zero unit to any hidden layer l where σl(0) = 0 holds. Further, if we have a parameter value
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that already contains a zero unit in such a hidden layer, removing it yields an f -equivalent parameter
value.

Thus, we will use the following strategy for training nonparametric networks. We use gradient-based
methods to adjust W while periodically adding and removing zero units. We use only nonlinearities
that satisfy σ(0) = 0. It should be noted that while adding and removing zero units leaves the output
of f invariant, it does change the value of the fan-in and fan-out regularizers and thus the value of
the objective. While it is possible to design regularizers that do not penalize such zero units, this is
highly undesirable as it would stifle the regularizers ability to “reign in” the growth of the network
during training.

To be able to reduce the network size during training, we must produce zero units and, it turns out,
the fan-in and fan-out regularizers naturally produce such units as they induce sparsity, i.e. they
cause individual weights to become exactly zero. This is well studied under the umbrella of sparse
regression (see e.g. Tibshirani (1996)). The cases p = 1 and p = 2 are especially attractive because
it is computationally convenient to integrate them into a gradient-based optimization framework via
a shrinkage / group shrinkage operator respectively (see e.g. Back & Teboulle (2006)). Further,
p = 1 and p = 2 differ in their effect on the parameter value. p = 1 sets individual weights to
zero and thus leads to sparse fan-ins and fan-outs and thus ultimately to sparse weight matrices. A
unit can only become a zero unit if each weight in its fan-in or each weight in its fan-out has been
set to zero individually. p = 2, on the other hand, sets entire fan-ins (for the fan-in regularizer) or
fan-outs (for the fan-out regularizer) to zero at once. Once the resulting zero units are removed, we
obtain dense weight matrices. (For a basic comparison of 1-norm and 2-norm regularizers, see Yuan
& Lin (2006) and for a comparison in the context of neural networks, see Collins & Kohli (2014).)
While there is recent interest in learning very sparse weight matrices (e.g. Guo et al. (2016)), current
hardware is geared towards dense weight matrices (Wen et al., 2016). Hence, for the remainder of
this paper, we will focus on the case p = 2. Further, we will focus on the fan-in rather than the
fan-out regularizer.

When a new zero unit is added, we must choose its fan-in and fan-out. While one of the two weight
vectors must be zero, the other can have an arbitrary value. We make the simple choice of initializing
the other weight vector randomly. Since we are going to use the fan-in regularizer, we will initialize
the fan-out to zero and the fan-in randomly. This will give each new unit the chance to learn and
become useful before the regularizer can shrink its fan-in to zero. If it does become zero nonetheless,
the unit is eliminated.

3.1 SELF-SIMILAR NONLINEARITIES

For layers 1 through L− 1, it is best to use nonlinearities that satisfy σ(cs) = cσ(s) for all c ∈ R≥0

and s ∈ R. We call such nonlinearities self-similar. ReLU (Dahl et al., 2013) is an example of this.
Self-similarity also implies σ(0) = 0.

Recall that the fan-in and fan-out regularizers shrink the values of weights during training. This in
turn affects the scale of the values to which the nonlinearities are applied. (These values are called
pre-activations.) The advantage of self-similar nonlinearities is that this change of scale does not
affect the shape of the feature.

In contrast, the impact of a nonlinearity such as tanh on pre-activations varies greatly based on their
scale. If the pre-activations have very large absolute values, tanh effectively has a binary output.
If they have very small absolute values, tanh mimics a linear function. In fact, all nonlinearities
that are differentiable at 0 behave approximately like a linear function if the pre-activations have
sufficiently small absolute values. This would render the unit ineffective. Since we expect some
units to have small pre-activations due to shrinkage, this is undesirable.

By being invariant to the scale of pre-activations, self-similar nonlinearities further eliminate the
need to tune how much regularization to assign to each layer. This is expressed in the following
proposition which is proved in section 7.2.

Proposition 1. If all nonlinearities in a nonparametric network model except possibly σL are self-
similar, then the objective function 1 using a fan-in or fan-out regularizer with different regulariza-
tion parameters λ1, .., λL for each layer is equivalent to the same objective function using the single
regularization parameter λ = (

∏L
l=1 λl)

1
L for each layer, up to rescaling of weights.
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1 input: αr: radial step size; αφ: angular step size; λ: regularization hyperparameter; β: mixing
rate; ε: numerical stabilizer; d0: initial dimensions; W0: initial weights; ν: unit addition
rate; νfreq: unit addition frequency; T : number of iterations

2 φmax = 0; cmax = 0; d = d0; W = W0;
3 for l = 1 to L do
4 set φ̄l (angular quadratic running average) and cl (angular quadratic running average capacity)

to zero vectors of size d0
l ;

5 end
6 for t = 1 to T do
7 set Dt to mini-batch used at iteration t;
8 G = 1

|D|∇W

∑
(x,y)∈Dt e(f(W, x), y);

9 for l = L to 1 do
10 for j = dl to 1 do
11 decompose [Gl(i, j)]i into a component parallel to [Wl(i, j)]i (call it r) and a

component orthogonal to [Wl(i, j)]i (call it φ) such that [Gl(i, j)]i = r + φ;
12 φ̄l(j) = (1− β)φ̄l(j) + β||φ||22; cl(j) = (1− β)cl(j) + β;
13 φmax = max(φmax, φ̄l(j)); cmax = max(cmax, cl(j)) ;

14 φadj =

√
φmax
cmax√

φ̄l(j)

cl(j)
+ε

φ;

15 [Wl(i, j)]i = [Wl(i, j)]i − αrr ;
16 rotate [Wl(i, j)]i by angle αφ||φadj||2 in direction − φadj

||φadj||2 ;

17 shrink([Wl(i, j)]i, αrλ
|Dt|
|D| );

18 if l < L and [Wl(i, j)]i is a zero vector then
19 remove column j from Wl; remove row j from Wl+1; remove element j from φ̄l

and cl; decrement dl;
20 end
21 end
22 if t = 0 mod νfreq then
23 ν′ = ν; // if ν 6∈ Z, we can set e.g. ν′ = Poisson(ν)
24 add ν′ randomly initialized columns to Wl; add ν′ zero rows to Wl+1; add ν′ zero

elements to φ̄l and cl; dl = dl + ν′;
25 end
26 end
27 end
28 return W;

Algorithm 1: AdaRad with `2 fan-in regularizer and the unit addition / removal scheme used in this
paper in its most instructive (bot not fastest) order of computation. Note that []i notation is used to
indicate a vector over index i.

3.2 CAPPED BATCH NORMALIZATION (CapNorm)

Recently, Ioffe & Szegedy (2015) proposed a strategy called batch normalization that quickly be-
came the standard for keeping feed-forward networks well-conditioned during training. In our ex-
periments, nonparametric networks trained without batch normalization could not compete with
parametric networks trained with it. Batch normalization cannot be applied directly to nonparamet-
ric networks with a fan-in or fan-out regularizer, as it would allow us to shrink the absolute value of
individual weights arbitrarily while compensating with the batch normalization layer, thus negating
the regularizer. Hence, we make a small adjustment which results in a strategy we term capped
batch normalization or CapNorm. We subtract the mean of the pre-activations of each hidden unit,
but only scale their standard deviation if that standard deviation is greater than one. If it is less than
one, we do not scale it. Also, after the normalization, we do not add or multiply the result with a
free parameter. Hence, CapNorm replaces each pre-activation z with z−µ

max(σ,1) , where µ is the mean
and σ is the standard deviation of that unit’s pre-activations across the current mini-batch.
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Table 1: Computational cost of efficient implementations of various algorithms, per mini-batch and
weight. Operations that do not scale with the number of weights are not included. Operations
associated with the computation of the gradient of the loss term (e.g. lines 7 and 8 in algorithm 1)
as well as unit addition and removal (e.g. lines 18 to 24 in algorithm 1) are not included as they do
not vary between algorithms.

Algorithm Network types Cost per mini-batch and weight

SGD, no `2 shrinkage param., nonparam. 1 multiplication
SGD with `2 shrinkage param., nonparam. 3 multiplications
AdaRad, no `2 shrinkage param., nonparam. 4 multiplications
AdaRad with `2 shrinkage param., nonparam. 4 multiplications
RMSprop, no `2 shrinkage param. 4 multiplications, 1 division, 1 square root
RMSprop with `2 shrinkage param. 6 multiplications, 1 division, 1 square root

3.3 ADAPTIVE RADIAL-ANGULAR GRADIENT DESCENT (AdaRad)

The staple method for training neural networks is stochastic gradient descent. Further, there are
several popular variants: momentum and Nesterov momentum (Sutskever et al., 2013), AdaGrad
(Duchi et al., 2011) and AdaDelta (Zeiler, 2012), RMSprop (Tieleman & Hinton, 2012) and Adam
(Kingma & Ba, 2015). All of these methods center around two key principles: (1) averaging the
gradient obtained over consecutive iterations to smooth out oscillations and (2) normalizing each
component of the gradient so that each weight learns at roughly the same speed. Principle (2) turns
out to be especially important for nonparametric neural networks. When a new unit is added, it
does not initially contribute to the quality of the output of the network and so does not receive much
gradient from the loss term. If the gradient is not normalized, that unit may take a very long time to
learn anything useful. However, if we use a fan-in regularizer, we cannot normalize the components
of the gradient outright as in e.g. RMSprop, as we would also have to scale the amount of shrinkage
induced by the regularizer accordingly. This, in turn, would cause the fan-in of new units to become
zero before they can learn anything useful.

We resolve this dilemma with a new training algorithm: Adaptive Radial-Angular Gradient Descent
(AdaRad), shown in algorithm 1. Like in all the algorithms cited above, we begin each iteration
by computing the gradient G of the loss term over the current mini-batch (line 8). Then, for each
1 ≤ l ≤ L and 1 ≤ j ≤ dl, we decompose the sub-vector [Gl(1, j), Gl(2, j), .., Gl(dl−1, j)] into a
component parallel to its corresponding fan-in [Wl(1, j),Wl(2, j), ..,Wl(dl−1, j)] and a component
orthogonal to it (line 11). Out of the two, we normalize only the orthogonal component (line 14)
while the parallel component is left unaltered. Finally, the normalized orthogonal component of
each sub-vector is added to its corresponding fan-in in radial-angular coordinates instead of cartesian
coordinates (line 16). This ensures that it does not affect the length of the fan-in. Like the parallel
component, we leave the induced shrinkage unaltered. Note that `2 shrinkage acts only to shorten
the length of each fan-in, but does not alter its direction. Hence, AdaRad with an `2 regularizer
applies a normalized shift to each fan-in that alters its direction but not its length (angular shift), as
well as an un-normalized shift that includes shrinkage that alters the length of the fan-in but not its
direction (radial shift, lines 15 and 17).

AdaRad has two step sizes: One for the radial and one for the angular shift, αr and αφ respectively.
This is desirable as they both control the behavior of the training algorithm in different ways. The
radial step size controls how long it takes for the fan-in of a unit to be shrunk to zero, i.e. the time
a unit has to learn something useful. On the other hand, the angular step size controls the general
speed of learning and is tuned to achieve the quickest possible descent along the error surface.

Like RMSprop and unlike Adam, AdaRad does not make use of the principle of momentum. We
have developed a variant called AdaRad-M that does. It is described in the appendix in section 7.3.

Using AdaRad over SGD incurs additional computational cost. However, that cost scales more
gracefully than the cost of, for example, RMSprop. AdaRad normalizes at the granularity of fan-ins
instead of the granularity of individual weights, so many of its operations scale only with the number
of units and not with the number of weights in the network. In Table 1, we compare the costs of SGD,
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Figure 1: Architecture of the nonparametric networks used in the experiments. Activations flow
rightward, gradients flow leftward. In color, we show how each element corresponds to our defini-
tion of a neural network in section 2. CapNorm does not fully fit our definition of nonlinearity as it
requires information from multiple datapoints to compute its value. Hence, theorem 1 and propo-
sition 1 do not technically apply. However, CapNorm is a benign operation that does not lead to
problems in practice.

AdaRad and RMSprop. Further, RMSprop has a larger memory footprint than AdaRad. Compared
to SGD, it requires an additional cache of size equal to the number of weights, whereas AdaRad
only requires 2 additional caches of size equal to the number of units.

4 EXPERIMENTS

We evaluated our framework using the network architecture shown in Figure 1 with ReLU nonlin-
earities and CapNorm, and using AdaRad as the training algorithm. We used two hidden layers
(L = 3) and started off with ten units in each hidden layer and each fan-in initialized randomly with
expected length 1. We add one new unit with random fan-in of expected length 1 and zero fan-out
to each layer every epoch. While this does not lead to fast convergence - we have to wait until tens
or hundreds of units are added - we believe that growing nets from scratch is a good test case for
investigating the robustness of our framework. After the validation error stopped improving, we
ceased adding units, allowing all remaining redundant units to be eliminated. We set αr = 1

50λ , as
this allows each new unit ≈ 50 epochs to train before being eliminated by shrinkage, assuming the
length of the fan-in is not altered by the gradient of the loss term.

When training parametric networks, we replaced CapNorm with batch normalization, either with
or without trainable free mean and variance parameters. We trained the network using one of the
following algorithms: SGD, momentum, Nesterov momentum, RMSprop or Adam. Further experi-
mental details can be found in the appendix in section 7.4.

4.1 PERFORMANCE

In this section, we investigate our two core questions: (A) Do nonparametric networks converge to
a good size? (B) Do nonparametric networks achieve higher accuracy than parametric networks?

We evaluated our framework using three standard benchmark datasets - the mnist dataset, the rect-
angles images dataset and the convex dataset (Bergstra & Bengio, 2012). We started by training
nonparametric networks. Through preliminary experiments, we determined a good starting angular
step size for all datasets. We chose to start with αφ = 30 and repeatedly divided αφ by 3 when the
validation error stopped improving. By varying the random seed, we trained 10 nets each for several
values of the regularization parameter λ per dataset and then chose a typical representative from
among those 10 trained nets. Results are shown in black in figure 2. Values of λ are 3 ∗ 10−3, 10−3

and 3 ∗ 10−4 for MNIST, 3 ∗ 10−5 and 10−6 for rectangles images and 10−5 and 10−8 for convex.
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Figure 2: Test classification error of trained networks. Nonparametric networks are shown in black,
parametric networks in red and blue. Error bars indicate the range over 10 random reruns of the same
setting. For parametric networks, the square represents the median test error over those 10 runs. For
nonparametric networks, the square represents the test error and size of a single representative run
that was close to the median in both size and error. In brackets below or above each plotted point,
we show the number of units in the two hidden layers.

Then, we trained parametric networks of the same size as the chosen representatives. The top per-
formers after an exhaustive grid search are shown in red in figure 2. Finally, we conducted an
exhaustive random search where we also varied the size of both hidden layers. The top performers
are shown in blue in the same figure.

We obtain different results for the three datasets. For mnist, nonparametric networks substantially
outperform parametric networks of the same size. The best nonparametric network is close in per-
formance to the best parametric network, while being substantially smaller (144 first layer units
versus 694). For rectangles images, nonparametric networks underperform parametric networks of
the same size when λ is large and outperform them when λ is small. Here, the best nonparametric
network has the globally best performance, as measured by the median test error over 10 random
reruns, using substantially fewer parameters than the best parametric network.

While results for the first two datasets are very promising, nonparametric networks performed badly
on the convex dataset. Parametric networks of the same size perform substantially better and also
have a smaller range of performance across random reruns. Even if the model found by training
nonparametric networks were re-trained as a parametric network, the apparent tendency of nonpara-
metric networks to converge to relatively small sizes hurts us here as we would still miss out on a
significant amount of performance.

We also conducted experiments with AdaRad-M, but found that performance was very similar to that
of AdaRad. Hence, we omit the results. Similarly, we found no significant difference in performance
between parametric networks trained with RMSprop and those trained with Adam.

4.2 ANALYSIS OF THE NONPARAMETRIC TRAINING PROCESS

In this section, we analyze in detail a single training run of a nonparametric network. We chose
mnist as dataset, set λ = 3 ∗ 10−4 and lowered the angular step size to 10 as we did not use step size
annealing. We trained for 1000 epochs while adding one unit to each hidden layer per epoch, then
trained another 1000 epochs without adding new units. The final network had 193 units in the first
hidden layer and 36 units in the second hidden layer. The results are shown in figure 3.

In part (A), we show the validation classification error. As a comparison, we trained two parametric
networks with 193 and 36 hidden units for 1000 epochs, once using SGD and the same step size and
λ as the nonparametric network, and once using optimal settings (RMSprop, α = 300, λ = 0). It is
not suprising that the parametric networks reach a good accuracy level faster, as the nonparametric
network must wait for its units to be added. Also, the parametric network benefits from an increased
step size - in this case α = 300. This was true throughout our experimental evaluation.
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Figure 3: Detailed statistics of a nonparametric training run. See main text for details.

In (B), we show the training cross-entropy error for the same training runs. Interestingly, parametric
networks reach an error very close to zero. In fact, the unregularized network reaches a value of
≈ 10−6 and the regularized network reaches a value of ≈ 10−4. Both made zero classification
mistakes on the training set after training. In contrast, the nonparametric network did not have a
near-zero training cross-entropy error. Towards the end of training, it still misclassified around 30
out of 50.000 training examples. However, this did not harm its performance on the validation or
test set. In fact, the validation error of nonparametric networks tended to improve slowly for many
epochs, whereas unregularized parametric networks (which were the best parametric networks when
early stopping is used) tended to have a slightly increasing validation error in the long run.

In (C), we show the size of the two hidden layers during training. These curves are very typical of
all training runs we examined. For the first ≈ 50 epochs, no units are eliminated. This is because
we chose αr = 1

50λ , which guarantees that units that are added with a fan-in of length 1 take ≈ 50
epochs to be eliminated, assuming no impact from the gradient of the loss term. If the layer requires
a relatively large number of units, it will keep growing linearly for a while and then either plateau
or shrink slightly. Once we no longer add units after 1000 epochs, both layers shrink linearly by
≈ 50 units over ≈ 50 iterations, as the units that were added roughly between epochs 950 and
1000 are eliminated in succession. Overall, this process shows the value of controlling αφ and αr
independently, as we can manage the “overhead” of extraneous units present during training while
still ensuring an ideal speed of learning. In (D), we show the length of time individual units in the
first hidden layer were present during training. On the x axis, we show the epoch during which a
given unit was added. On the y axis, we show the number of epochs the unit was present. Green
bars represent units that survived until the end, while black bars represent units that did not. As
one might expect, units were more likely to survive the earlier they were added. Units that did not
survive were eliminated in ≈ 50 epochs. The same graph for the second hidden layer is shown in
figure 4.

In (E) and (F), we show the lengths of fan-ins (blue) and fan-outs (red) of units in the hidden layers.
For each layer, we depict the following units in dark colors: three randomly chosen units that were
initially present as well as units that were added at epochs 0, 25, 50, 100, 200, 300, .., 1000. In
addition, in light colors, we show three units that were added late but not eliminated. We see a
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Table 2: Test classification error of various models trained on the poker dataset.

Algorithm λ Starting net size Final net size Error

Logistic regression (ours) 49.9%
Naive bayes (OpenML) 48.3%
Decision tree (OpenML) 26.8%

Nonparametric net

10−3 10-10-10-10 23-24-15-4 0.62%
10−5 10-10-10-10 94-135-105-35 0.022%
10−6 10-10-10-10 210-251-224-104 0.001%
10−7 10-10-10-10 299-258-259-129 0%

Parametric net

23-24-15-4 unchanged 0.20%
94-135-105-35 unchanged 0.003%

210-251-224-104 unchanged 0.003%
299-258-259-129 unchanged 0.002%

consistent pattern for individual units. First, their length decreases linearly as the CapNorm layer
filters the component of the gradient parallel to the fan-ins as long as the standard deviation of the
pre-activations σ exceeds 1. During this period, the unit learns something useful and so the fan-out
increases in length. When finally σ < 1, the parallel component of the gradient starts to slow down
the decay and, if the unit has become useful enough, reverses it. If the decay is not reversed, the unit
is eliminated. If it is reversed, both fan-in and fan-out will attain a length comparable to those of
well-established units.

From a global perspective, we notice that fan-ins in the first layer have lengths much less than 1.
This is because first layer units encode primarily AND functions of highly correlated input features,
meaning weights of small magnitude are sufficient to attain σ = 1. In contrast, lengths of fan-ins
in the second layer are more chaotic. We found this is because σ = 1 is generally NOT attained
in the second layer. In fact, the network compensated for lower activation values in the second
layer by assigning fan-ins of stable lengths between 3.5 and 4.5 to the 10 output units. The network
can assign these lengths dynamically without altering the output of the network because ReLU is
self-similar, as described in section 3.1.

4.3 SCALABILITY

Finally, we wanted to verify whether nonparametric networks could be applied to a large dataset.
We visited OpenML http://www.openml.org/, a website containing many datasets as well
as the performance of various machine learning models applied to those datasets. We applied non-
parametric networks to the largest classification dataset 1 on OpenML meeting our standards 2. This
was the poker dataset http://www.openml.org/d/354. It is a binary classification dataset
with 1.025.010 datapoints and 14 features per datapoint. We had no prior information about this
dataset. In general, we think that nonparametric networks are most useful in cases with no prior
information and thus no possibility of choosing a good parametric model a priori.

We made the following changes to the experimental setup for poker: (i) we used 4 hidden layers
instead of 2 (ii) we added a unit every tenth of an epoch instead of every epoch and (iii) we multiplied
the radial step size by 10, i.e. αr = 1

5λ . The latter two changes were made as poker is approximately
one order of magnitude larger than mnist, and we wanted to approximately preserve the rate of unit
addition and elimination per mini-batch. Those changes were made a priori and were not based on
examining their performance.

After some exploration, we set the starting angular step size for nonparametric networks to 10. We
trained nonparametric networks for various values of λ, obtaining nets of different sizes. We then
trained parametric networks of those same sizes with RMSprop, where the step size was chosen by
validation, independently for each network size.

1in terms of number of datapoints
2our standards were: at least 10 published classification accuracy values; no published classification accu-

racy values exceeding 95%; no extreme label imbalance

9

http://www.openml.org/
http://www.openml.org/d/354


Published as a conference paper at ICLR 2017

The results are shown in Table 2. Both parametric and nonparametric networks perform very well,
achieving less than 1% test error even for small networks. The nonparametric networks had a higher
error for larger values of λ and a slightly lower error for smaller values of λ. In fact, the best
nonparametric network made no mistake on the test set of 100.000 examples. For comparison, we
show that linear models perform roughly as well as random guessing on poker. Also, the best result
published on OpenML, achieved by a decision tree classifier, vastly underperforms our 4-hidden
layer networks.

To achieve convergence, networks required many more mini-batches on poker than they did on
the smaller datasets used in section 4.1. However, since units were added to the nonparametric
networks at roughly the same rate per mini-batch, the time it took those networks to converge to a
stable network size (as in Figure 3C) was a much smaller fraction of the overall training time under
poker compared to the smaller datasets. Thus, the downside of increased training time as shown in
Figure 3A incurred when networks are built gradually was ameliorated.

5 FURTHER BACKGROUND

Several strategies have been introduced to address the drawbacks of black-box model selection.
Maclaurin et al. (2015) indeed calculate the gradient of the validation error after training with re-
spect to certain hyperparameters, though their method only applies to specific networks trained with
very specific algorithms. (Luketina et al., 2016) and (Larsen et al., 1998) train certain hyperpa-
rameters jointly with the network using second order information. Such methods are limited to
continuous hyperparameters and are often applied specifically to regularization hyperparameters.
Several papers try to speed up the global model search by estimating the validation error of trained
networks without fully training them. Saxe et al. (2011) use the validation error with randomly ini-
tialized convolutional layers as a proxy. Klein et al. (2017) predict the validation error after training
based on the progress made during the first few epochs.

Several papers have achieved increased performance by growing networks during training. Our
main inspiration was Wei et al. (2016), who utilize a notion similar to our f -equivalence, though
they enlarge their network in a somewhat ad-hoc way. The work of Chen et al. (2016) is similar, but
focuses on convergence speed. Pandey & Dukkipati (2014) transform a trained small network into
a larger network by multiplying weight matrices with large, random matrices.

The performance of a network of given size can be improved by injecting knowledge from other
nets trained on the same task. Ba & Caruana (2014) use the predictions of a large network on a
dataset to train a smaller network on those predictions, achieving an accuracy comparable to the
large network. Hinton et al. (2015) compress the information stored in an ensemble of networks
into a single network. Simonyan & Zisserman (2015) train very deep convolutional networks by
initializing some layers with the trained layers of shallower networks. Romero et al. (2015) train
deep, thin networks utilizing hints from wider, shallower networks.

Bayesian neural networks (e.g. McKay (1992), De Freitas (2003)) use a probabilistic prior instead of
a regularizer to control the complexity of the network. Gaussian processes can been used to mimick
“infinitely wide” neural networks (e.g. Williams (1997), Hazan & Jaakkola (2015)), thus eliminating
the need to choose layer width and replacing it with the need to choose a kernel. Compared to these
and other Bayesian approaches, we work within the popular feed-forward function optimization
paradigm, which has advantages in terms of computational and algorithmic complexity.

Adding units to a network one at a time is an idea with a long history. Ash (1989) adds units to a
single hidden layer, whereas Gallant (1986) builds up pyramid and tower structures and Fahlman &
Lebiere (1990) effectively create a new layer for each new unit. While these papers provided inspi-
ration to us, the methods they present for determining when to add a new unit requires training the
network to convergence first, which is impractical in modern settings. We circumvent this problem
by adding units agnostically and providing a mechanism for removing unnecessary units.

10
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6 CONCLUSION

We introduced nonparametric neural networks - a simple, general framework for automatically
adapting and choosing the size of a neural network during a single training run. We improved
the performance of the trained nets beyond what is achieved by regular parametric networks of the
same size and obtained results competitive with those of an exhaustive random search, for two of
three datasets. While we believe there is room for performance improvement in several areas - e.g.
unit initialization, unit addition schedule, additional regularization and starting network size - we
see this paper as validation of the basic concept. We also proved the theoretical soundness of the
framework.

In future work, we plan to extend our framework to include convolutional layers and to automatically
choosing the depth of networks, as done by e.g. Wen et al. (2016). Part of our motivation to develop
nonparametric networks was to control the layer size via a continuous parameter. We want to make
use of this by tuning λ during training, either by simple annealing or in a comprehensive framework
such as the one introduced in Luketina et al. (2016). We want to use nonparametric networks to
learn more complicated network topologies for e.g. semi-supervised or multi-task learning. Finally,
we plan to investigate the possibility of sampling units with different nonlinearities and training an
ever-growing network for lifelong learning.
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7 APPENDIX

7.1 PROOF OF THEOREM 1

First, we restate the theorem formally.
Theorem 1. For all

• L, d0, dL ∈ Z+

• finite datasets D of points (x, y) with x ∈ Rd0 and y ∈ Y for some set Y

• sets of nonlinearities {σl : R → R, 1 ≤ l ≤ L} where each σl fulfils the following
conditions:

– There exists a function b1,l : R≥0 → R≥0 such that for all S ∈ R≥0, −S ≤ s ≤ S,
we have |σl(s)| ≤ b1,l(S) ∗ |s|.

– It is left- and right-differentiable everywhere.
– There exists a function b2,l : R≥0 → R≥0 such that for all S ∈ R≥0, −S ≤ s ≤ S,

we have |σ←l (s)| ≤ b2,l(S) and |σ→l (s)| ≤ b2,l(S), where the superscripts indicate
directional derivatives.

• error functions e : (RdL × Y )→ R that fulfils the following conditions:

– It is non-negative everywhere.
– It is differentiable with respect to its first argument everywhere.
– There exists a function b3 : R≥0 → R≥0 such that for all S ∈ R≥0, v ∈ RdL and
y ∈ Y , we have e(v, y) ≤ S =⇒ ||de(v,y)

dv ||∞ ≤ b3(S)

• λ > 0 and 1 ≤ p <∞

• Ω ∈ {Ωin,Ωout}

we have that

E(d,W) =
1

|D|
∑

(x,y)∈D

e(f(W, x), y) + Ω(W, λ, p) (4)

attains a global minimum.

Most commonly used nonlinearities are admissible under this theorem as long as σ(0) = 0, i.e.
the sigmoid non-linearity is not admissible, but the tanh non-linearity is. Note that nonlinearities,
away from zero, are allowed to grow at an almost arbitrary pace. For example, polynomial or even
exponential nonlinearities are possible. Note that the first condition on nonlinearities is technically
implied by the other two as long as σ(0) = 0, though we will not prove this.

The conditions for the error function cover the two most popular choices: cross-entropy coupled
with softmax (as in Figure 1) - and the square of the `2 distance.

We will prove this theorem through a sequence of lemmas. Throughout this process, all inputs to
the main theorem are considered fixed and fulfilling their respective conditions.
Lemma 1. Theorem 1 holds if d is fixed.

I.e. in the parametric case, 4 attains a global minimum.

Proof. Let d be fixed. Let B = E(d,0), where 0 is the value of W of dimensionality d where all
individual weights are set to zero. Then let WB be the space of all W of dimensionality d which
have at least one individual weight with absolute value greater than B

λ . Clearly, E(d,W) > B for
all W ∈WB . Since Rd\WB is compact and E is continuous, there exists a point Wmin that is a
minimum of E inside Rd\WB . Further, Rd\WB contains at least one point, namely 0, for which
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E ≤ B, so a minimum within Rd\WB is indeed a global minimum, the existence of which was
required.

Now, some definitions:

• We call a parameter value (d,W) a local minimum of E iff it is a local minimum in its
second component, W.

• We call a local minimum of E B-locally minimal for some B ∈ R iff the value of E at that
minimum does not exceed B.

• We call the proper dimensionality of W the dimensionality obtained when eliminating
from W all units which have a zero fan-in or a zero fan-out or both.

• We call a parameter value (d,W) proper if d is the proper dimensionality of W. We also
call a local minimum with such a parameter value proper.

• Denote (d1, .., dl) by d≤l and (W1, ..,Wl) by W≤l.

• D = {(x(0), y(0)), (x(1), y(1)), .., (x(N), y(N))}
• We denote intermediate computations of the neural network f(W, x) as follows:

x0 := x (5)
zl := xl−1Wl 1 ≤ l ≤ L (6)
xl := σl.(zl) 1 ≤ l ≤ L (7)

f(W, x) = xL (8)

• We denote the gradients of e(f(W, x), y), when they are defined, as follows:

gl :=
de(f(W, x), y)

dxl
0 ≤ l ≤ L (9)

hl :=
de(f(W, x), y)

dzl
1 ≤ l ≤ L (10)

Gl :=
de(f(W, x), y)

dWl
1 ≤ l ≤ L (11)

• Vector and matrix indeces are written in brackets. For example, the j’th component of z(n)
l

is denoted by z(n)
l (j).

• We denote by square brackets a vector and by its subscript the index the vector is over, e.g.
[vi]i is a vector over index i.

Lemma 2. Under the conditions of theorem 1 and the additional condition that the σl are differen-
tiable everywhere, if Ω is the fan-in regularizer, then for all B, the set of values of d for which there
exist proper B-local minima is bounded.

Lemma 3. Under the conditions of theorem 1 and the additional condition that the σl are differ-
entiable everywhere, if Ω is the fan-out regularizer, then for all B, the set of values of d for which
there exist proper B-local minima is bounded.

Lemmas 2 and 3 are the core segments of the overall proof. Here we show that that very large nets
have no “good” local minima.

Proof of lemma 2. Throughout this proof, we consider B fixed.

Claim 1a: There exist constants Bx,l, 0 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 0 ≤ l ≤ L, we have ||x(n)

l ||1 ≤ Bx,l.
Claim 1b: There exist constants Bz,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, we have ||z(n)

l ||1 ≤ Bz,l.
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Claim 1c: There exist constants Bdσ,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, for all 1 ≤ j ≤ dl, we have |σ′(z(n)

l (j))| ≤ Bdσ,l.
First, we notice that it is sufficient to prove the bounds exist for a specific datapoint. The uniform
bound across all datapoints is then simply the maximum of the individual bounds. Denote by (x, y)
an arbitrary fixed datapoint throughout the proof of the above claims. Also, notice that the claims
are trivially true if there are no proper B-local minima. Hence, throughout the proof of the claims,
we assume there exists at least one such minimum.

We will prove the claims jointly by induction. The order of the induction follows the order of
computation of the neural network. Our starting case will be x0, followed by z1, f ′1 and x1 etc.

The starting case is obvious as x0 = x is fixed and does not depend on the parameter (d,W). Hence
we can choose Bx,0 = ||x||1.

Now assume we have Bx,l−1 such that sup(d,W)properB-locally minimal ||xl−1||1 ≤ Bx,l−1. Then:

sup
(d,W)properB-locally minimal

||zl||1 (12)

= sup
(d,W)properB-locally minimal

||xl−1Wl||1 (13)

≤ sup
(d,W),||xl−1||1≤Bx,l−1,λ

∑dl
j=1 ||[Wl(i,j)]i||p≤B

||xl−1Wl||1 (14)

= sup
d≤l

( sup
Wl,λ

∑dl
j=1 ||[Wl(i,j)]i||p≤B

( sup
W<l,||xl−1||1≤Bx,l−1

||xl−1Wl||1)) (15)

≤ sup
d≤l

( sup
Wl,λ

∑dl
j=1 ||[Wl(i,j)]i||p≤B

( sup
u,dim(u)=dl−1,||u||1≤Bx,l−1

||uTWl||1)) (16)

= sup
d≤l

( sup
Wl,λ

∑dl
j=1 ||[Wl(i,j)]i||p≤B

( sup
u,dim(u)=dl−1,||u||1≤Bx,l−1

dl∑
j=1

|uT [Wl(i, j)]i|)) (17)

= sup
d≤l

( sup
cj≥0,

∑dl
j=1 cj≤

B
λ

( sup
Wl,||[Wl(i,j)]i||p=cj

( sup
u,dim(u)=dl−1,||u||1≤Bx,l−1

dl∑
j=1

|uT [Wl(i, j)]i|)))(18)

≤ sup
d≤l

( sup
cj≥0,

∑dl
j=1 cj≤

B
λ

dl∑
j=1

( sup
Wl,||[Wl(i,j)]i||p=cj

( sup
u,dim(u)=dl−1,||u||1≤Bx,l−1

|uT [Wl(i, j)]i|)))(19)

= sup
d≤l

( sup
cj≥0,

∑dl
j=1 cj≤

B
λ

dl∑
j=1

( sup
v,dim(v)=dl−1,||v||p=cj

( sup
u,dim(u)=dl−1,||u||1≤Bx,l−1

|uT v|))) (20)

≤ sup
d≤l

( sup
cj≥0,

∑dl
j=1 cj≤

B
λ

dl∑
j=1

( sup
v,dim(v)=dl−1,||v||∞≤cj ,u,dim(u)=dl−1,||u||1≤Bx,l−1

|uT v|)) (21)

≤ sup
d≤l

( sup
cj≥0,

∑dl
j=1 cj≤

B
λ

dl∑
j=1

cjBx,l−1) (22)

≤ sup
d≤l

BBx,l−1

λ
(23)

=
BBx,l−1

λ
(24)

A line-by-line explanation of the above is as follows:

13 Replacing zl by its definition.
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14 Relaxing the conditions on (d,W) by replacing proper B-local minimality by two condi-
tions that proper B-local minimality implies. The first condition is the induction hypothe-
sis. The second condition follows because E ≤ B and so specifically Ωin(W) ≤ B and
so specifically Ωin(Wl) ≤ B

15 Breaking up the supremum into three stages. We drop components of d and W that are
immaterial to the value of the objective of the supremum.

16 We further relax the innermost sup by no longer requiring that xl−1 be the intermediate
output of some neural network but an arbitrary vector of fixed size and limited length.
W<l then becomes immaterial.

17 Replacing the `1 norm by its definition.

18 We fix the length of each fan-in in the second sup and add an additional sup over these
lengths.

19 Jensen’s inequality

20 Simplifying the notation by replacing rows of Wl by vector v.

21 Relaxing the conditions on v.

22 Using an elementary property of norms.

23 obvious

24 obvious

And therefore, we may choose Bz,l =
BBx,l−1

λ as required.

Now consider the other inductive steps. Assuming we have a valid Bz,l, we have at all proper B-
local minima |σ′l(zl(j))| ≤ b2,l(Bz,l) because |zl(j)| ≤ ||zl||1 ≤ Bz,l and hence we can choose
Bdσ,l = b2,l(Bz,l) as required. Finally, at all proper B-local minima, ||xl||1 = ||σl.(zl)||1 =∑dl
j=1 |σl(zl(j))| ≤

∑dl
j=1 b1,l(Bz,l)|zl(j)| = b1,l(Bz,l)||zl||1 ≤ b1,l(Bz,l)Bz,l and so we can

choose Bx,l = b1,l(Bz,l)Bz,l. This completes the proof of claims 1(a)-(c).

Claim 2a: There exist constants Bg,l, 0 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 0 ≤ l ≤ L, for all 1 ≤ i ≤ dl, we have |g(n)

l (i)| ≤ Bg,l.
Claim 2b: There exist constants Bh,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, for all 1 ≤ i ≤ dl, we have |h(n)

l (i)| ≤ Bh,l.
Again, we can restrict our attention to a single datapoint and again, we will prove these claims
by induction, but going backwards along the flow of the gradient. The starting case is gL. At all
proper B-local minima, E ≤ B, so specifically e(xL, y) ≤ B and therefore we have ||gL||∞ =

||de(xL,y)
dxL

||∞ ≤ b3(B) and so specifically |gL(i)| ≤ b3(B) and so we can choose Bg,L = b3(B) as
required.

Now we assume we have a valid Bg,l. At all proper B-local minima we have |hl(i)| = | de
dzl(i)

| =

| de
dxl(i)

dxl(i)
dzl(i)

| = |gl(i)||σ′(zl(i))| ≤ Bg,lBdσ,l. Therefore we can choose Bh,l = Bg,lBdσ,l as
required.

Finally, assume we have Bh,l. Then we have |gl−1(i)| = | de
dxl−1(i) | = |

∑dl
j=1

de
dzl(j)

dzl(j)
dxl(i)

| =

|
∑dl
j=1 hl(j)Wl(i, j)| ≤

∑dl
j=1 |hl(j)||Wl(i, j)| ≤ Bh,l

∑dl
j=1 |Wl(i, j)| ≤

Bh,l
∑dl
j=1 ||[Wl(i, j)]i||p ≤ Bh,lB, so we can choose Bg,l−1 = Bh,lB as required.

Claim 3: There is a constant B2, such that at all proper B-local minima, for all 1 ≤ l ≤ L, for all
1 ≤ j ≤ dl, we have

∑N
n=1 |g

(n)
l (j)| ≥ B2.

At any proper parameter value, all fan-ins are non-zero. Therefore Ω is differentiable with re-
spect to W, and therefore E is differentiable with respect to W. Hence, at any proper B-
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local minimum, we have ∇WE = 0, so in particular for any l, j we have dE
d[Wl(i,j)]i

=

0, so 1
N

∑N
n=1

de
d[Wl(i,j)]i

= − dΩ
d[Wl(i,j)]i

and so specifically || 1
N

∑N
n=1

de
d[Wl(i,j)]i

|| p
p−1

=

|| dΩ
d[Wl(i,j)]i

|| p
p−1

, where p
p−1 can take the value∞. Further analyzing the right hand side, we have

|| dΩ
d[Wl(i,j)]i

|| p
p−1

= ||d(λ||[Wl(i,j)]i||p)
d[Wl(i,j)]i

|| p
p−1

= λ. Therefore, at all proper B-local minima we have:

λ (25)

=
1

N
||
∑
n

de

d[Wl(i, j)]i
|| p
p−1

(26)

=
1

N
||
∑
n

de

dxl(j)

dxl(j)

d[Wl(i, j)]i
|| p
p−1

(27)

=
1

N
||
∑
n

gl(j)
dxl(j)

dzl(j)

dzl(j)

d[Wl(i, j)]i
|| p
p−1

(28)

=
1

N
||
∑
n

gl(j)σ
′
l(zl(j))xl−1|| p

p−1
(29)

≤ 1

N
||
∑
n

gl(j)σ
′
l(zl(j))xl−1||1 (30)

=
1

N

dl−1∑
i=1

|
∑
n

gl(j)σ
′
l(zl(j))xl−1(i)| (31)

≤ 1

N

dl−1∑
i=1

∑
n

|gl(j)||σ′l(zl(j))||xl−1(i)| (32)

=
1

N

∑
n

|gl(j)||σ′l(zl(j))|||xl−1||1 (33)

≤ 1

N

∑
n

|gl(j)|Bdσ,lBx,l−1 (34)

Hence, we can choose B2 = max1≤l≤L
λN

Bdσ,lBx,l−1
as required. Note that in the above equations,

we have omitted all (n) superscripts for brevity.

Claim 4: There exist constants Dl, 1 ≤ l ≤ L such that at all proper B-local minima, for all
1 ≤ l ≤ L, we have dl ≤ Dl.

Note that this claim is tantamount to proving the hypothesis of the Lemma.

We will prove this by induction going backwards. Since dL is fixed, we can simply pick DL = dL.
Now assume we have a valid Dl+1. Then at all proper B-local minima we have

dlB2 (35)

≤
N∑
n=1

dl∑
i=1

|g(n)
l (i)| (36)

=

N∑
n=1

dl∑
i=1

|
dl+1∑
j=1

Wl+1(i, j)h
(n)
l+1(j)| (37)

≤
N∑
n=1

dl∑
i=1

dl+1∑
j=1

|Wl+1(i, j)h
(n)
l+1(j)| (38)
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Therefore, by the box principle, there exists an n′ and j′ such that
∑dl
i=1 |Wl+1(i, j′)h

(n′)
l+1 (j′)| ≥

dlB2

dl+1N
. So further, we have

dlB2

dl+1N
(39)

≤
dl∑
i=1

|Wl+1(i, j′)h
(n′)
l+1 (j′)| (40)

≤ |h(n′)
l+1 (j′)|

dl∑
i=1

|Wl+1(i, j′)| (41)

≤ Bh,l+1||[Wl+1(i, j′)]i||1 (42)

≤ Bh,l+1d
p−1
p

l ||[Wl+1(i, j′)]i||p (43)

≤ Bh,l+1d
p−1
p

l B (44)

And therefore, dl ≤ (
BBh,l+1Ndl+1

B2
)p and so we can choose Dl = (

BBh,l+1NDl+1

B2
)p, which com-

pletes the proof.

For brevity, we will only give a summary of the proof of lemma 3, as it is very similar to the proof
of lemma 2.

Sketch of proof of lemma 3. As in the previous proof, we consider B fixed.

Claim 1a: There exist constants Bx,l, 0 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 0 ≤ l ≤ L, for all 1 ≤ j ≤ dl, we have |x(n)

l (j)| ≤ Bx,l.
Claim 1b: There exist constants Bz,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, for all 1 ≤ j ≤ dl, we have |z(n)

l (j)| ≤ Bz,l.
Claim 1c: There exist constants Bdσ,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, for all 1 ≤ j ≤ dl, we have |σ′(z(n)

l (j))| ≤ Bdσ,l.
As in the previous proof, we proceed by induction along the order of feed-forward execution of
the neural network. However, we use the arguments we used for Claims 2(a)-(b) in the previous
proof. This is because the fan-out regularizer “appears” like a fan-in regularizer when the direction
of signal flow is reversed.

Claim 2a: There exist constants Bg,l, 0 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 0 ≤ l ≤ L, we have ||g(n)

l ||1 ≤ Bg,l.
Claim 2b: There exist constants Bh,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, we have ||h(n)

l ||1 ≤ Bh,l.
As in the previous proof, we proceed by induction along the flow of the gradient. However, we use
the arguments we used for Claims 1(a)-(c) in the previous proof.

Claim 3: There is a constant B2, such that at all proper B-local minima, for all 0 ≤ l ≤ L − 1, for
all 1 ≤ j ≤ dl, we have

∑N
n=1 |x

(n)
l (j)| ≥ B2.

Claim 4: There exist constants Dl, 0 ≤ l ≤ L − 1 such that at all proper B-local minima, for all
0 ≤ l ≤ L− 1, we have dl ≤ Dl.

The arguments mirror those of Claim 3 and 4 from the previous proof, but with the role of activation
and gradient reversed. Also, here, Claim 4 is proved by induction along the order of feed-forward
execution.
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Lemma 4. Under the conditions of theorem 1, for all B, the set of values of d for which there exist
proper B-local minima is bounded.

This is the stronger version of the previous lemmas where we only use directional differentiability of
the σl instead of actual differentiability. The proof is a rather tedious extension of the previous two
proofs and not very instructive, which is why we broke out the differential case as its own lemmas.
Following this lemma, we immediately prove the main theorem.

Proof. We will describe how to amend the proof of lemma 2. The proof of lemma 3 can be amended
similarly.

First, we define a signature S with dimensionality d as a binary sequence of vectors. Then, for all d,
x′ ∈ Rd0 , W′ of dimensionality d and S of dimensionality d, we define a linearized neural network
that is linearized at point x′ with weights W′ and signature S f [S,W′,x′] as follows: First, obtain x′l
and z′l for 1 ≤ l ≤ L by evaluating f(W′, x′) as usual. Then, for each σl used in f , define a vector of
functions σ[S,W′,x′]

l , where each element is a linear function with σ[S,W′,x′]
l (j)(z′l(j)) = σl(z

′
l(j))

and with dσ
[S,W′,x′]
l (j)(s)

ds = σ←l (z′l(j)) if Sl(j) = 0 and with dσ
[S,W′,x′]
l (j)(s)

ds = σ→l (z′l(j)) if
Sl(j) = 1. Finally, we obtain f [S,W′,x′] from f by, for each 1 ≤ l ≤ L, replacing σl that is applied
elementwise with σ[S,W′,x′]

l where each component is applied to the respective component of zl.

In plain language, we linearize a neural network at a point by evaluating it at that point and replac-
ing each nonlinearity by a straight line as indicated by the value and directional derivative of that
nonlinearity wherever it is evaluated, where the direction of the derivative used is governed by S.

Similarly, define a partially linearized neural network f [S≥l,W
′,x′] in the same fashion, except only

layers l and above are linearized. Finally, define a partially linearized neural network f [S≥l,i,W
′,x′]

in the same fashion, except only layers l and above as well as unit i in layer l − 1 are linearized.

e is composed of functions that are differentiable or directionally differentiable with respect to W,
so e itself is directionally differentiable with respect to W. Specifically, let us analyze the directional
derivative of e with respect to some perturbation of WL−1.

∇δWL−1
e(f(W, x), y) (45)

= ∇δWL−1
e(σL.(σL−1.(xL−2WL−1)WL), y) (46)

= ∇δxL=∇δWL−1
σL.(σL−1.(xL−2WL−1)WL)e(xL, y) (47)

=
de

dxL
∇δWL−1

(σL.(σL−1.(xL−2WL−1)WL))T (48)

=

dL∑
j=1

de

dxL
(j)∇δWL−1

(σL.(σL−1.(xL−2WL−1)WL))(j) (49)

=

dL∑
j=1

de

dxL
(j)∇δzL=∇δWL−1

[σL−1.(xL−2WL−1)WL](σL.(zL))(j) (50)

=

dL∑
j=1

de

dxL
(j)σ∗L(zL(j))∇δWL−1

(σL−1.(xL−2WL−1)WL)(j) (51)

=

dL∑
j=1

de

dxL
(j)σ∗L(zL(j))

dL−1∑
i=1

WL(i, j)∇δWL−1
(σL−1.(xL−2WL−1))(i) (52)

= (
de

dxL
. ∗ σ∗L.(zL))WT

L∇δWL−1
(σL−1.(xL−2WL−1))T (53)
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=

dL−1∑
j=1

((
de

dxL
. ∗ σ∗L.(zL))WT

L )(j)σ∗L−1(zL−1(j))∇δWL−1
(xL−2WL−1)(j) (54)

=

dL−1∑
j=1

((
de

dxL
. ∗ σ∗L.(zL))WT

L )(j)σ∗L−1(zL−1(j))

dL−2∑
i=1

xL−2(i)∇δWL−1
WL−1(i, j) (55)

=

dL−1∑
j=1

((
de

dxL
. ∗ σ∗L.(zL))WT

L )(j)σ∗L−1(zL−1(j))

dL−2∑
i=1

xL−2(i)δWL−1(i, j) (56)

= ((((
de

dxL
. ∗ σ∗L.(zL))WT

L ). ∗ σ∗L−1.(zL−1))TxL−2).δWL−1(i, j) (57)

Here, a ∗ superscript is a “wildcard” that can stand for a left or a right derivative. When combined
with the .() elementwise operation, it can mean a different derivative (left or right) for each element.

We use the chain rule for directional derivatives (lines 47, 50 and 54), the linearity of the directional
derivative (lines 52 and 55), the fact that the directional derivative of a differentiable function is the
dot product of its gradient with the perturbation (line 48), and the fact that the directional derivative
of a left- and right-differentiable scalar function is either the product of its left derivative with the
perturbation or the product of its right derivative with the perturbation (lines 51 and 54).

We notice that the final expression in line 57 is the same expression we would obtain if the σl were
differentiable, except with a ∗ instead of a ′ superscript. Now the linearized neural networks come
into play. We can choose a signature S that matches the wildcards in the above directional derivative
and get ∇δWL−1

e(f(W, x), y) = de(f [S,W,x](W,x),y)
dWL−1

.δWL−1, because the forward evaluation of

f [S,W,x] and f are identical at x and the backward evaluation picks out the correct left and right
derivatives. In fact, it is sufficient to choose a partially linearized network with signature S≥L−1 to
achieve the above identity.

So far, we have investigated the directional derivative with respect to δWL−1. However, the same
arguments hold for all 1 ≤ l ≤ L. We can expand ∇δWl

e(f(W, x), y) in the same way, except
we repeat the transformation from line 48 to line 53 L− l times. Hence, we have what we will call
claim 0.

Claim 0: For all (d,W), for all x ∈ Rd0 , for all 1 ≤ l ≤ L, for all δWl, we can choose a signature

S or a partial signature S≥l, such that∇δWl
e(f(W, x), y) = de(f [S,W,x](W,x),y)

dWl
.δWl.

Now, we refer back to the proof of lemma 2. Claims 1(a)-(c) hold as before, except in Claim 1(c)
we replace |σ′(z(n)

l (j))| ≤ Bdσ,l with |σ←(z
(n)
l (j))| ≤ Bdσ,l and |σ→(z

(n)
l (j))| ≤ Bdσ,l. Further,

note that claims 1(a)-(c) also hold for neural networks that are linearized at the respective B-local
minimum and datapoint at which they are evaluated.

Claims 2(a)-(b) are changed as follows:

Claim 2a: There exist constants Bg,l, 0 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 0 ≤ l ≤ L, for all 1 ≤ i ≤ dl, for all signatures S or partial signatures S≥l+1 of

matching dimensionality we have |g(n)[S,W,x(n)]
l (i)| ≤ Bg,l.

Claim 2b: There exist constants Bh,l, 1 ≤ l ≤ L, such that at all proper B-local minima, for all
1 ≤ n ≤ N , for all 1 ≤ l ≤ L, for all 1 ≤ i ≤ dl, for all signatures S or partial signatures S≥l+1,i

of matching dimensionality we have |h(n)[S,W,x(n)]
l (i)| ≤ Bh,l.

The proof is as before, where derivatives of the σl are again replaced by a left or right derivative as
indicated by the signature.

Claim 3 and its proof change somewhat.

Claim 3: There exists a constant B2, such that at all proper B-local minima, for all 1 ≤ l ≤ L, for

all 1 ≤ j ≤ dl, we have
∑N
n=1

∑
S≥l+1

|g(n)[S≥l+1,W,x(n)]
l (j)| ≥ B2, where

∑
S≥l+1

is the sum
over all partial signatures.
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At all proper B-local minima, we have for all l, i and j:

0 (58)
≤ ∇δWl(i,j)E (59)

= ∇δWl(i,j)(
1

N

N∑
n=1

e(f(W, x(n)), y(n)) + Ω(W)) (60)

=
1

N

N∑
n=1

∇δWl(i,j)e(f(W, x(n)), y(n)) +∇δWl(i,j)Ω(Wl) (61)

=
1

N

N∑
n=1

de(f [Si,j,n≥l ,W,x(n)](W, x(n)), y(n))

dWl(i, j)
δW (i, j) +

dΩ(Wl)

dWl(i, j)
δW (i, j) (62)

Here, ∇δWl(i,j) stands for the directional derivative with respect to a change in the scalar
value Wl(i, j). Because this is a special case of a directional derivative with respect to δWl,
we can use Claim 0 to obtain line 62. Note that to use Claim 0, we have to choose a
different partial signature for each value of i, j, and n, which we indicate by superscript.
Specifically, we now choose δWl(i, j) = −1 and corresponding signatures. Then, for all

l, i and j we have 0 ≤ 1
N

∑N
n=1

de(f
[S
i,j,n
≥l ,W,x(n)]

(W,x(n)),y(n))
dWl(i,j)

(−1) + dΩ(Wl)
dWl(i,j)

(−1), and

hence − 1
N

∑N
n=1

de(f
[S
i,j,n
≥l ,W,x(n)]

(W,x(n)),y(n))
dWl(i,j)

≥ dΩ(Wl)
dWl(i,j)

. Since dΩ(Wl)
dWl(i,j)

≥ 0, we have

| 1
N

∑N
n=1

de(f
[S
i,j,n
≥l ,W,x(n)]

(W,x(n)),y(n))
dWl(i,j)

| ≥ | dΩ(Wl)
dWl(i,j)

|. So in particular for all l and j we have

|| 1
N [

∑N
n=1

de(f
[S
i,j,n
≥l ,W,x(n)]

(W,x(n)),y(n))
dWl(i,j)

]i|| p
p−1
≥ ||[ dΩ(Wl)

dWl(i,j)
]i|| p

p−1
= λ. So further we have:

λ (63)

≤ || 1

N
[

N∑
n=1

de(f [Si,j,n≥l ,W,x(n)](W, x(n)), y(n))

dWl(i, j)
]i|| p

p−1
(64)

=
1

N
||[

N∑
n=1

g
(n)[Si,j,n≥l ,W,x(n)]

l (j)(σ
[Si,j,n≥l ,W,x(n)]

l )′(z
(n)
l (j))x

(n)
l−1(i)]i|| p

p−1
(65)

≤ 1

N
||[

N∑
n=1

|g
(n)[Si,j,n≥l+1

,W,x(n)]

l (j)||(σ
[Si,j,n≥l ,W,x(n)]

l )′(z
(n)
l (j))||x(n)

l−1(i)|]i|| p
p−1

(66)

≤ 1

N
Bdσ,l||[

N∑
n=1

|g
(n)[Si,j,n≥l+1

,W,x(n)]

l (j)||x(n)
l−1(i)|]i|| p

p−1
(67)

≤ 1

N
Bdσ,l||[

N∑
n=1

∑
S≥l+1

|g(n)[S≥l+1,W,x(n)]
l (j)||x(n)

l−1(i)|]i|| p
p−1

(68)

≤ 1

N
Bdσ,l||[

N∑
n=1

∑
S≥l+1

|g(n)[S≥l+1,W,x(n)]
l (j)||x(n)

l−1(i)|]i||1 (69)

=
1

N
Bdσ,l

dl−1∑
i=1

N∑
n=1

∑
S≥l+1

|g(n)[S≥l+1,W,x(n)]
l (j)||x(n)

l−1(i)| (70)

≤ 1

N
Bdσ,lBx,l−1

N∑
n=1

∑
S≥l+1

|g(n)[S≥l+1,W,x(n)]
l (j)| (71)
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At line 65, we use the chain rule. Note that x and z do not need the [Si,j,n≥l ,W, x(n)] superscript

because the forward evaluation of f(W, x(n)) and f [Si,j,n≥l ,W,x(n)](W, x(n)) are equivalent. So, we
can set B2 = max1≤l≤L

λN
Bdσ,lBx,l−1

, as required.

Finally, claim 4 is the same as in Lemma 2. The only difference in the proof is that when we
invoke the box principle, we choose a specific signature S′≥l+1 in addition to n′ and j′ such that∑dl
i=1 |Wl+1(i, j′)h

(n′)[S′≥l+1,W,x(n)]

l+1 (j′)| ≥ dlB2

dl+1N2Dl+1+..+DL
. This is possible because of the

induction hypothesis, which bounds the number of partial signatures S≥l+1 by 2Dl+1+..+DL . Hence

we can set Dl = (
BBh,l+1NDl+12Dl+1+..+DL

B2
)p, which completes the proof.

Proof of theorem 1. Clearly, E is bounded below by zero. Therefore, it has a greatest lower bound,
which we callB. Denote (t, t, .., t) by dt. If d is assumed to be fixed at dt, E has a global minimum
by lemma 1. Let Wt denote one such global minimum. Let Et denote the value of E at (dt,Wt).

Now let d′ and d′′ be two arbitrary values of d with d′l ≥ d′′l for all 0 ≤ l ≤ L. (Denote such a
relation by d′ ≥ d′′.) Then, any value that E can attain with d = d′′ it can attain with d = d′

because we can change any d′′-dimensional value of W into a d′-dimensional value by adding
d′l − d′′l units with zero fan-in and fan-out to each layer without changing E. In particular, this
implies that (E)t is a decreasing sequence because dt+1 ≥ dt. Since it is also bounded below by
B, it converges. Call its limit C.

Assume C > B. Then there exists some (d′,W′) with E(d′,W′) < C. However, any value that E
can attain with d = d′ it can attain with d = dt′ where t′ = maxl d

′
l, because dt′ ≥ d′. Therefore

C > E(d′,W′) ≥ Et′ ≥ C. Contradiction. Therefore, C = B.

Now assume that for some t, Wt has a unit that has zero fan-in but not zero fan-out, or vice versa.
Then by setting the non-zero fan to zero, the output of f is unchanged for all x ∈ Rd0 and the
value of Ω is reduced. Therefore, we reduce E, which contradicts the fact that (dt,Wt) is a global
minimum of E when d is fixed to dt. Therefore, all units in Wt that have zero fan-in also have zero
fan-out, and vice versa.

Let dproper
t be the proper dimensionality of Wt and Wproper

t be the result of removing all units with
zero fan-in or fan-out from Wt. Indeed, as we have shown, all units removed had both zero fan-in
and fan-out. Assume (dproper

t ,Wproper
t ) is not a local minimum of E. Then there exists a W′ of

dimensionality dproper
t with E(dproper

t ,W′) < E(dproper
t ,Wproper

t ). When we add the zero units that
were removed from Wt to obtain Wproper

t back into W′, we obtain another weight parameter value
we call W′′. Since E is invariant under the addition and removal of units with both zero fan-in and
zero fan-out, we have both E(dproper

t ,W′) = E(dt,W
′′) and E(dproper

t ,Wproper
t ) = E(dt,Wt).

Therefore, we have E(dt,W
′′) < E(dt,Wt), which contradicts that Wt is a global minimum of

E when d is fixed to dt. Therefore, (dproper
t ,Wproper

t ) is a local minimum of E. In particular, it is a
proper Et-local minimum of E and therefore a proper E0-local minimum of E.

From lemma 4, we know that the set of proper E0-local minima is bounded. Hence, the set
{dproper

t , t ≥ 0} is bounded, i.e there exists some dmax with dmax ≥ dproper
t for all t. Hence, if

we denote maxl d
max
l by T , we have dT ≥ dproper

t for all t and therefore ET ≤ E(dproper
t ,Wproper

t ).
But E(dproper

t ,Wproper
t ) = E(dt,Wt) = Et, and therefore Et ≥ ET for all t.

But (E)t converges to B from above. Therefore ET = B, therefore E(dT ,WT ) = B and so E
attains its greatest lower bound which means it attains a global minimum, as required.
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7.2 PROOF OF PROPOSITION 1

Proposition 1. If all nonlinearities in a nonparametric network model except possibly σL are self-
similar, then the objective function 1 using a fan-in or fan-out regularizer with different regulariza-
tion parameters λ1, .., λL for each layer is equivalent to the same objective function using the single
regularization parameter λ = (

∏L
l=1 λl)

1
L for each layer, up to rescaling of weights.

Proof. Choose arbitrary positive λ1, .., λL and let λ = (
∏L
l=1 λl)

1
L . We have:

f(W, x) (72)
= σL.(σL−1.(..σ2.(σ1.(xW1)W2)..)WL) (73)

= σL.(σL−1.(..σ2.(σ1.((

L∏
l=1

λl
λ

)xW1)W2)..)WL) (74)

= σL.(σL−1.(..σ2.((

L∏
l=2

λl
λ

)σ1.(
λ1

λ
xW1)W2)..)WL) (75)

= σL.(
λL
λ
σL−1.(..σ2.(

λ2

λ
σ1.(

λ1

λ
xW1)W2)..)WL) (76)

= σL.(σL−1.(..σ2.(σ1.(x(
λ1

λ
W1))(

λ2

λ
W2))..)(

λL
λ
WL)) (77)

The line-by-line explanation is as follows:

73 Insert the definition of f .

74 Insert a multiplicative factor of value 1.

75 Utilize the self-similarity of σ1.

76 Repeat the previous step L− 2 times.

77 Utilize linearity.

Further, assuming we use a fan-in regularizer, we have:

L∑
l=1

λl

dl∑
j=1

||[Wl(i, j)]i||p (78)

=

L∑
l=1

λl
λ
λ

dl∑
j=1

||[Wl(i, j)]i||p (79)

=

L∑
l=1

λ

dl∑
j=1

||[λl
λ
Wl(i, j)]i||p (80)

The argument is equivalent for the fan-out regularizer.

We find that the value of the objective is preserved when we replace all regularization parameters
with the same value λ = (

∏L
l=1 λl)

1
L and rescale Wl by λl

λ . This completes the proof.
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7.3 ADARAD-M

1 input: αr: radial step size; αφ: angular step size; λ: regularization hyperparameter; βarith:
arithmetic mixing rate; βquad: quadratic mixing rate; ε: numerical stabilizer; d0: initial
dimensions; W0: initial weights; ν: unit addition rate; νfreq: unit addition frequency; T :
number of iterations

2 φmax = 0; cmax = 0; d = d0; W = W0;
3 for l = 1 to L do
4 set φ̃l (angular arithmetic running average) to the zero matrix of size d0

l−1 × d0
l ;

5 set φ̄l (angular quadratic running average), cl (quadratic running average capacity) and al
(arithmetic running average capacity) to zero vectors of size d0

l ;
6 end
7 for t = 1 to T do
8 set Dt to mini-batch used at iteration t;
9 G = 1

|D|∇W

∑
(x,y)∈Dt e(f(W, x), y);

10 for l = L to 1 do
11 alt = FALSE;
12 for j = dl to 1 do
13 decompose [Gl(i, j)]i into a component parallel to [Wl(i, j)]i (call it r) and a

component orthogonal to [Wl(i, j)]i (call it φ) such that [Gl(i, j)]i = r + φ;
14 φ̄l(j) = (1− βquad)φ̄l(j) + βquad||φ||22; cl(j) = (1− βquad)cl(j) + βquad;
15 φmax = max(φmax, φ̄l(j)); cmax = max(cmax, cl(j)) ;
16 [φ̃l(i, j)]i = (1− βarith)[φ̃l(i, j)]i + βarithφ; al(j) = (1− βarith)al(j) + βarith;

17 φadj =

√
φmax
cmax√

φ̄l(j)

cl(j)
+ε

[φ̃l(i,j)]i
al(j)

;

18 [Wl(i, j)]i = [Wl(i, j)]i − αrr;
19 rotate [Wl(i, j)]i by angle αφ||φadj||2 in direction − φadj

||φadj||2 ;

20 rotate [φ̃l(i, j)]i by angle αφ||φadj||2 in direction [Wl(i,j)]i
||[Wl(i,j)]i||2 ;

21 shrink([Wl(i, j)]i, αrλ
|Dt|
|D| );

22 if l < L and [Wl(i, j)]i is a zero vector then
23 remove column j from Wl and φ̃l; remove row j from Wl+1 and φ̃l+1; remove

element j from φ̄l, cl and al; decrement dl;
24 alt = TRUE;
25 end
26 end
27 if t = 0 mod νfreq then
28 ν′ = ν; // if ν 6∈ Z, we can set e.g. ν′ = Poisson(ν)

29 add ν′ randomly initialized columns to Wl; add ν′ zero columns to φ̃l; add ν′ zero rows
to Wl+1 and φ̃l+1; add ν′ zero elements to φ̄l, cl and al; dl = dl + ν′;

30 end
31 if alt then
32 for j = 1 to dl+1 do
33 [φ̃l+1(i, j)]i = [φ̃l+1(i, j)]i − [φ̃l+1(i,j)]i.[Wl+1(i,j)]i

||[Wl+1(i,j)]i||22
[Wl+1(i, j)]i;

34 end
35 end
36 end
37 end
38 return W;

Algorithm 2: AdaRad-M with `2 fan-in regularizer and the unit addition / removal scheme used in
this paper in its most instructive (bot not fastest) order of computation.
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AdaRad-M is shown in algorithm 2. The main difference in comparison to AdaRad (see algorithm
1) is that, for each fan-in, we maintain an exponential running average of the orthogonal component
[φ̃l(i, j)]i (line 16) which we use to compute the angular shift (line 17). Hence, AdaRad-M, like
Adam but unlike RMSprop and AdaRad, makes use of the principle of momentum.

One issue of note is that the running average of the orthogonal component is not itself orthogonal
to the current value of the fan-in. Hence, if some multiple of it was added to the fan-in in radial-
angular coordinates, it would change the length of the fan-in. This is undesirable as explained in
section 3.3. Therefore, we take steps to the ensure that [φ̃l(i, j)]i is kept orthogonal to [Wl(i, j)]i.
First, whenever we rotate [Wl(i, j)]i (line 19), we rotate [φ̃l(i, j)]i in the same manner (line 20).
Second, whenever a unit in layer l and hence rows of Wl+1 and φ̃l+1 are deleted, we explicitly
re-orthogonalize them (line 33).

7.4 EXPERIMENTAL DETAILS

Life lengths of units in 2nd hidden layer
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Figure 4: Length of time individual units in the second hidden layer were present during training.
The x axis depicts the epoch at which a given unit was added.

In table 3, we show all hyperparameter values and related choices that were universal across all
training runs and, unless specified otherwise, datasets.

7.4.1 PROTOCOL FOR SECTION 4.1

1. We conducted a grid search over λ ∈ {10−2, 3 ∗ 10−3, 10−3, 3 ∗ 10−4, 10−4, 3 ∗
10−5, 10−5, 3 ∗ 10−6, 10−6, 3 ∗ 10−7, 10−7, 3 ∗ 10−8, 10−8} and αφ ∈
{1, 3, 10, 30, 100, 300, 1.000, 3.000, 10.000, 30.000, 100.000} for nonparametric (NP)
networks using AdaRad and a single random seed, for each of the mnist, rectangles-images
and convex datasets. By examining validation classification error (VCE) and other metrics
(but not test error), we chose the single value αφ = 30 for all NP experiments from now
on. Further, we chose a few interesting values of λ for each dataset. From now on, all
experiments were conducted independently for each dataset.

2. We trained 10 NP networks for each chosen value of λ, with 10 different random seeds.
Out of the 10 nets produced, we manually chose a single net as a typical representative by
approximating the median of both network size, measured in number of weight parameters,
and the test classification error (TCE) across the 10 runs. This representative, as well as the
range of sizes and TCEs are shown in black in figure 2.

3. For each chosen representative, we conducted a grid search for parametric (P) net-
works by fixing the size of the net to the size of the representative. The grid was over
α ∈ {1, 3, 10, 30, 100, 300, 1.000, 3.000, 10.000, 30.000, 100.000}, over training algo-
rithm (one of SGD, momentum, Nesterov momentum, RMSprop, Adam), and over whether
batch normalization layers had free trainable mean and variance parameters. We introduced
the last choice to more closely mimic CapNorm, which does not include free parameters.
We set λ = 0 as `2 regularization is not compatible with regular (uncapped) batch normal-
ization. In preliminary experiments, networks trained with `2 regularization and no batch
normalization were not competitive. We used the same random seed as in step 1.
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Hyperaparameter Value
network architecture see figure 1
number of hidden layers (not poker) 2
number of hidden layers (poker) 4
αr: radial step size for AdaRad (not poker) 1

50λ

αr: radial step size for AdaRad (poker) 1
5λ

ν: unit addition rate for AdaRad 1
νfreq: unit addition frequency for AdaRad (not poker) once per epoch
νfreq: unit addition frequency for AdaRad (poker) ten times per epoch
βarith: arithmetic mixing rate for AdaRad, momentum,
Nesterov momentum and Adam

0.1

βquad: quadratic mixing rate for AdaRad, RMSprop and
Adam

0.005

ε: numerical stabilizer for AdaRad, RMSprop and
Adam

10−8

number of starting units for NP networks 10 per hidden layer
W0: initial weights (P and NP) W 0

l (i, j) ∼ N (0, 1√
d0
l−1

)

fan-in [Wl(i, j)]i for a newly added unit j W 0
l (i, j) ∼ N (0, 1√

dl−1
)

batch size 1000
batch sampling every epoch, batches are sam-

pled without replacement
type of validation (not poker) one random train-valid split for

each random seed
type of validation (poker) one single random train-valid-

test split for all training runs
train-valid split (MNIST) 50.000 - 10.000
train-valid split (rectangles images) 10.000 - 2.000
train-valid split (convex) 7.000 - 1.000
train-valid-test split (poker) 800.000 - 125.010 - 100.000

Table 3: Hyperparameters and related choices.

4. We chose the 10 best performing settings from the grid search by VCE and produced 10
reruns for each setting using the same 10 random seeds as in step 2. Then we chose the best
setting out of the 10 by median VCE. We depict the median as well as the range of TCE for
that best setting in red in figure 2. Note that the setting that had the lowest median TCE in
all cases also had the lowest median VCE.

5. We conducted a random search for P networks with 500 random settings. We chose α
uniformly from the interval [1, 100.000] in log scale. Training algorithm and type of batch
normalization were chosen uniformly at random from the same sets as in step 3. The size of
each hidden layer was chosen uniformly at random between the size of the corresponding
layer in the largest NP representative, and 5 times that size. We used the same random seed
as in step 1.

6. We chose the 10 best settings by VCE and reran them 10 times, using the same 10 random
seeds as in step 2. By considering network size and median VCE, we chose 2 or 3 settings
to display in blue in figure 2, including the setting with the lowest median VCE. In each
case, the setting with the lowest median VCE also had the lowest median TCE.

For NP networks, we trained until the VCE had not improved for 100 epochs. Then, we rewound
the last 100 epochs and kept training without adding units. After no units had been eliminated and
the VCE had not improved for 100 epochs, we set λ to zero, rewound the last 100 epochs and kept
training. After the VCE had not improved for 100 epochs, we rewound again and divided the angular
step size by 3. After the VCE had not improved for 5 epochs, we rewound and divided the angular
step size by 3 again. We kept doing this until the angular step size was too small to change the VCE.

For P networks, we trained until the VCE had not improved for 100 epochs, then rewound and
divided the step size by 3. We kept training until the VCE had not improved for 5 epochs, then
rewound again and divided the step size by 3. We kept doing this until the step size was too small to
change the VCE.
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7.4.2 PROTOCOL FOR SECTION 4.3

1. We conducted a grid search over λ ∈ {10−3, 3 ∗ 10−4, 10−4, 3 ∗ 10−5, 10−5, 3 ∗
10−6, 10−6, 3 ∗ 10−7, 10−7} and αφ ∈ {1, 10, 100, 1.000, 10.000} for NP networks us-
ing AdaRad, a single random seed and the poker data set. By examining VCE and other
metrics (but not test error), we chose the single value αφ = 10. For this value, we chose
several values of λ. The size and TCE of the nets trained using those values of λ are shown
in table 2.

2. For each trained NP network shown in table 2, we trained P networks of
the same size using RMSprop and each of the following step sizes: α ∈
{1, 3, 10, 30, 100, 300, 1.000, 3.000, 10.000}. For each network size, the TCE of the net-
work with the lowest VCE is shown in table 2. For all network sizes, the network with the
lowest TCE also had the lowest VCE.

For NP networks, we trained until the VCE had not improved for 10 epochs. Then, we rewound
the last 10 epochs and kept training without adding units. After no units had been eliminated and
the VCE had not improved for 10 epochs, we set λ to zero, rewound the last 10 epochs and kept
training. After the VCE had not improved for 10 epochs, we rewound again and divided the angular
step size by 3. After the VCE had not improved for 0.5 epochs, we rewound and divided the angular
step size by 3 again. We kept doing this until the angular step size was too small to change the VCE.

For P networks, we trained until the VCE had not improved for 10 epochs, then rewound and divided
the step size by 3. We kept training until the VCE had not improved for 0.5 epochs, then rewound
again and divided the step size by 3. We kept doing this until the step size was too small to change
the VCE.
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