
Workshop track - ICLR 2018

AN ANALYSIS OF THE DELAYED GRADIENTS
PROBLEM IN ASYNCHRONOUS SGD

Ajay Jain
Department of EECS
Massachusetts Institute of Technology
Cambridge, MA
ajayjain@mit.edu

Anand Srinivasan
AlphaSheets, Inc
San Francisco, CA
anand@alphasheets.com

Parnian Barekatain
IdeaFlow, Inc
Menlo Park, CA
parni@ideapad.io

ABSTRACT

Gradient descent can be effectively distributed across multiple workers via data
parallelism or model parallelism. A common goal among all approaches is to
minimize worker idle time. Parameter synchronization, such as after each mini-
batch in SGD, requires the parameter server to wait for the slowest worker to
reply before applying an update. There is a fully asynchronous method (Dean
et al., 2012), originally termed Downpour SGD, which minimizes worker idle time
by allowing gradients computed on stale parameters to be sent to the parameter
server. In practice, direct usage of asynchronous SGD leads to added noise during
training from stale gradients (referred as the ”delayed gradient problem”), which
nontrivially decreases test accuracy. Delay compensation, such as that detailed by
Zheng et al. (2016a), as well as various warm-start schemes, can help convergence.
In this paper, we present a detailed analysis of the failure modes of ASGD due
to delayed gradients under broad sweeps of hyperparameter selections. With a
convolutional model, we find that learning rate and batch size selection are the
majorizing factors in whether delayed gradients significantly reduce test accuracy.
Careful selection of learning rate and batch size, or use of adaptive learning rate
methods, is effective in minimizing the delayed gradient problem up to a large
(n = 257) number of workers.

1 INTRODUCTION

Neural network training has scaled to many workers by both model parallelism, where a model is
split across different workers, and data parallelism, where training data is sharded or distributed to
worker copies. Distributed approaches differ in how model parameters are synchronized, but the
fastest (gradients computed per unit of time) approaches are fully asynchronous and allow gradient
updates computed from stale parameters (Dean et al., 2012).

Asynchronous optimization methods have advantages in shared clusters where individual workers
may experience slow-downs from concurrent jobs, varying network conditions, or heterogeneous
hardware. Chen et al. (2017) add additional backup workers such that a parameter server operating
synchronous SGD can proceed to the next batch before the slowest workers reply.

However, due to the delayed application of gradients, ASGD suffers from accuracy degradation, for
which various methods of delay compensation have been proposed:

• Dean et al. (2012) find that Adagrad adaptive learning rate optimization greatly increased
the robustness of Downpour SGD.

• Chen et al. (2017) find that gradually introducing workers over the first 3 epochs is impor-
tant for stability at high delay values. The authors also clip gradients for ASGD.

1



Workshop track - ICLR 2018

• Zheng et al. (2016b) adds the first-order term in the Taylor expansion of the gradient func-
tion to delayed gradient submissions.

To increase per-worker workload in synchronous training, Goyal et al. (2017) use large mini-batches
(8k images) split across the cluster, and proportionally large learning rates. Even with ASGD, where
mini-batches are not divided among workers, large mini-batches and learning rates would reduce the
frequency of worker-server communications. We study the impact of batch size and learning rate on
convergence in the presence of delayed gradients to better recommend exact use cases for ASGD.

2 METHODS

In our experiments, we train a LeNet-5 model for the MNIST digit recognition task over 30 epochs,
using SGD with m = 0.9. To simulate delayed gradient submissions in asynchronous SGD, we
create a wrapper around synchronous PyTorch optimizers which store gradients in a buffer and re-
applies them after a constant delay.

To show that constant-delay synchronous SGD is a faithful simulation of gradient delay in fully
asynchronous SGD, we conduct a Monte-Carlo simulation of N workers submitting gradients asyn-
chronously to a parameter server. The time for a worker to process and submit a gradient is assumed
to be normally distributed – that is, the time between gradient t and t′ arriving at the server from
worker i is Ti,t′ − Ti,t ∼ N(1, σ2). Then, we find that the number of updates on the server before
gradient t′ arrives fits a normal distribution centered at N − 1 (Figure 1, where σ = 0.2). While
there is variance in this update count, the approximation of ASGD by a single worker with fixed
simulated delay allows us to study the delayed gradient problem in isolation. Chen et al. (2017)
conduct similar fixed simulations of delayed gradients on one worker in order to study the behavior
of ASGD.

Figure 1: Distribution of update delay (in batches) for simulated ASGD. A normal fit is superim-
posed in orange.

Finally, to analyze the effect of delayed gradient application on test accuracy, we run the constant-
delay SGD over a parameter sweep of learning rates, batch sizes, and delays. We also compare
performance against Adam, which is expected to have lower sensitivity to initial learning rate.

3 EXPERIMENTAL RESULTS

Asynchronous SGD simulated at different submission delays shows best performance at low learn-
ing rates (lr = 10−3) and low batch sizes (b = 64, b = 128). Test accuracy significantly degrades
at batch sizes larger than 256 and lr ≥ 10−2.5. We observe that regardless of delay amount, test
accuracy scales smoothly upward with lr, then sharply drops off. SGD with more delay is less
resilient to learning rate adjustment, with the test accuracy dropping off sooner. One plausible ex-
planation for low test accuracy at high learning rates in delayed SGD is that gradients are more
variant near the start of training, so delayed updates add significant noise to the parameter search.
Indeed, in Goyal et al. (2017), a gradual warmup schedule is used effectively to reduce test error
for synchronous minibatch SGD with large minibatch sizes and proportionally scaled learning rates.

2



Workshop track - ICLR 2018

64 128 256 512 1024
batch_size

0.000010

0.000032

0.000100

0.000316

0.001000

0.003162

0.010000

0.031623

0.100000

0.316228

lr

0.141 0.099 0.086 0.142 0.096

0.495 0.104 0.214 0.101 0.112

0.950 0.877 0.848 0.290 0.096

0.979 0.968 0.944 0.667 0.297

0.988 0.983 0.976 0.962 0.913

0.990 0.988 0.988 0.983 0.974

0.991 0.992 0.989 0.989 0.986

0.990 0.989 0.991 0.989 0.988

0.103 0.981 0.103 0.988 0.988

0.098 0.103 0.113 0.113 0.113

0 batch delay

64 128 256 512 1024
batch_size

0.155 0.124 0.097 0.101 0.101

0.869 0.407 0.220 0.101 0.089

0.947 0.888 0.388 0.369 0.103

0.983 0.970 0.937 0.794 0.508

0.986 0.985 0.977 0.959 0.918

0.991 0.987 0.988 0.983 0.973

0.987 0.987 0.987 0.987 0.981

0.986 0.986 0.985 0.113 0.113

0.113 0.096 0.113 0.113 0.113

0.103 0.101 0.113 0.113 0.103

1 batch delay

64 128 256 512 1024
batch_size

0.207 0.070 0.101 0.098 0.117

0.806 0.191 0.098 0.204 0.105

0.948 0.903 0.393 0.316 0.204

0.980 0.971 0.928 0.835 0.178

0.989 0.984 0.977 0.959 0.874

0.988 0.990 0.985 0.981 0.972

0.989 0.988 0.987 0.984 0.981

0.113 0.973 0.113 0.113 0.113

0.101 0.113 0.113 0.113 0.113

0.113 0.101 0.101 0.113 0.113

2 batch delay

0.0

0.2

0.4

0.6

0.8

1.0

64 128 256 512 1024
batch_size

0.000010

0.000032

0.000100

0.000316

0.001000

0.003162

0.010000

0.031623

0.100000

0.316228

lr

0.205 0.214 0.153 0.098 0.096

0.845 0.254 0.135 0.132 0.089

0.948 0.884 0.113 0.217 0.101

0.980 0.972 0.938 0.824 0.113

0.987 0.983 0.978 0.958 0.898

0.987 0.990 0.988 0.976 0.963

0.981 0.113 0.975 0.982 0.113

0.113 0.113 0.181 0.113 0.113

0.103 0.113 0.103 0.113 0.113

0.098 0.096 0.098 0.113 0.101

4 batch delay

64 128 256 512 1024
batch_size

0.098 0.103 0.089 0.104 0.098

0.847 0.174 0.182 0.101 0.103

0.947 0.888 0.332 0.113 0.104

0.983 0.969 0.931 0.314 0.309

0.989 0.983 0.971 0.956 0.866

0.990 0.988 0.986 0.974 0.922

0.113 0.113 0.948 0.113 0.113

0.113 0.103 0.113 0.113 0.113

0.103 0.113 0.103 0.113 0.113

0.113 0.113 0.103 0.103 0.113

6 batch delay

64 128 256 512 1024
batch_size

0.270 0.141 0.090 0.103 0.101

0.603 0.254 0.101 0.101 0.129

0.949 0.825 0.641 0.116 0.101

0.980 0.968 0.928 0.799 0.113

0.989 0.983 0.977 0.942 0.543

0.988 0.985 0.113 0.904 0.626

0.113 0.113 0.113 0.113 0.113

0.098 0.101 0.113 0.113 0.113

0.098 0.098 0.103 0.113 0.098

0.098 0.113 0.113 0.113 0.103

8 batch delay

0.0

0.2

0.4

0.6

0.8

1.0

Test accuracy after 30 epochs with SGD, momentum = 0.9

Figure 2: MNIST test accuracy under synchronous and delayed update schemes.

However, our experiments on Delayed SGD indicate that learning rate warmup only initially im-
proves test accuracy but quickly falls off as soon as the full learning rate is applied. Learning rate
schedule likely has little effect in mitigating delayed gradient noise. We find that optimizers which
employ per-parameter adaptive learning rates, such as Adam (Kingma & Ba, 2014), increase re-
siliency to learning rate and batch size selections, achieving test accuracy comparable to baseline up
to 256 delay, in comparison to SGD, which cannot handle more than 32 delay.

64 128 256 512 1024 2048 4096
batch_size

0.000010

0.000032

0.000100

0.000316

0.001000

0.003162

0.010000

0.031623

0.100000

lr

0.937 0.913 0.885 0.842 0.728 0.546 0.181

0.975 0.965 0.957 0.918 0.899 0.828 0.725

0.987 0.984 0.979 0.972 0.953 0.930 0.888

0.991 0.988 0.989 0.988 0.980 0.971 0.962

0.986 0.989 0.991 0.989 0.987 0.985 0.978

0.988 0.990 0.989 0.985 0.988 0.989 0.987

0.986 0.987 0.987 0.988 0.989 0.990 0.987

0.915 0.951 0.963 0.975 0.975 0.980 0.948

0.113 0.103 0.113 0.098 0.113 0.113 0.113

0 batch delay

64 128 256 512 1024 2048 4096
batch_size

0.938 0.930 0.892 0.837 0.759 0.496 0.168

0.975 0.965 0.939 0.898 0.849 0.777 0.530

0.989 0.985 0.974 0.947 0.915 0.826 0.755

0.990 0.991 0.934 0.977 0.968 0.895 0.757

0.991 0.985 0.988 0.983 0.963 0.914 0.449

0.113 0.113 0.113 0.113 0.896 0.113 0.113

0.103 0.113 0.113 0.113 0.113 0.113 0.113

0.113 0.103 0.113 0.103 0.113 0.113 0.113

0.096 0.113 0.098 0.089 0.103 0.113 0.113

8 batch delay

64 128 256 512 1024 2048 4096
batch_size

0.932 0.925 0.888 0.819 0.736 0.651 0.238

0.978 0.960 0.939 0.892 0.806 0.718 0.543

0.987 0.986 0.973 0.948 0.834 0.842 0.581

0.988 0.988 0.976 0.967 0.798 0.513 0.594

0.918 0.983 0.113 0.113 0.772 0.113 0.255

0.113 0.113 0.113 0.113 0.113 0.102 0.113

0.103 0.113 0.103 0.113 0.113 0.113 0.113

0.113 0.097 0.101 0.103 0.097 0.113 0.101

0.097 0.097 0.097 0.103 0.097 0.098 0.101

16 batch delay

0.0

0.2

0.4

0.6

0.8

1.0

Test accuracy after 20 epochs with Adam

Figure 3: Using Adam instead of SGD, LeNet convergence is reached within 20 epochs even with
delayed gradients for many batch sizes. Even so, there remains a sharp dropoff in accuracy at larger
learning rates. On left, observe that SGD takes significantly longer to converge in the presence of
substantial gradient delay.

Most importantly, we observe that, even for many-worker scenarios (delay=32, 128, and 256; Figure
3), hand-tuned learning rates and batch sizes using Adam can lead to results comparable (98.21%,
98.19%, and 97.94% accuracy respectively) to the 1-worker synchronous case. The heuristic we use
to achieve this is roughly to halve the learning rate and halve the batch size when the number of
workers is doubled. Figure (3) shows the dramatic difference in test accuracy convergence between
SGD and Adam in these scenarios.

4 CONCLUSION

Our results highlight that learning rate and batch size are the major factors in ASGD stability. Fur-
thermore, asynchronous gradient methods with adaptive optimizers and carefully chosen batch sizes
can be a highly effective research tool for fast model search, even on large clusters.

3



Workshop track - ICLR 2018

ACKNOWLEDGMENTS

We would like to thank Jason Yosinski of Uber AI Labs for his advice throughout this research.

REFERENCES

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Józefowicz. Revisiting dis-
tributed synchronous SGD. CoRR, abs/1604.00981, 2017. URL http://arxiv.org/abs/
1604.00981.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231, 2012.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation for distributed deep learning.
arXiv preprint arXiv:1609.08326, 2016a.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation for distributed deep learning.
CoRR, abs/1609.08326, 2016b. URL http://arxiv.org/abs/1609.08326.

4

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1609.08326

	Introduction
	Methods
	Experimental Results
	Conclusion

