
Workshop track - ICLR 2017

Neural ExpectationMaximization

Klaus Greff∗& Sjoerd van Steenkiste∗& Jürgen Schmidhuber
Dalle Molle Institute for Artificial Intelligence (IDSIA)
Lugano, Switzerland
{klaus,sjoerd,juergen}@idsia.ch

Abstract

We introduce a novel framework for clustering that combines generalized EM
with neural networks and can be implemented as an end-to-end differentiable
recurrent neural network. It learns its statistical model directly from the data and
can represent complex non-linear dependencies between inputs. We apply our
framework to a perceptual grouping task and empirically verify that it yields the
intended behavior as a proof of concept.

1 Introduction

Many real world tasks such as reasoning and physical interaction require identification and manipu-
lation of conceptual entities. A first step towards solving these tasks is the automated discovery of
symbol-like representations that are both distributed and disentangled (Hinton, 1984).

In this paper we are concerned with the domain of images where entities (such as objects) naturally
form groups of pixels that share mutual information. We are interested in perceptual grouping
(or clustering) to recover these entities, and build a structured representation that can be used in a
symbol-like fashion. This task relies on regularities in the data-generating distribution and should
generalize across different images to arbitrary combinations of known entities.

Perceptual grouping has been formalized as inference in a generative compositional model of
images, and tackled in several ways. For example Jojic & Frey (2001) use generalized Expectation
Maximization (EM) to infer how to split the frames of a video into (inferred) image patches. Masked
RBMs (Le Roux et al., 2011) model the objects using a Restricted Boltzmann Machine, and use Block-
Gibbs sampling to infer the clustering of pixels. In contrast, we parametrize the distribution over
objects using a neural network embedded in an EM procedure for grouping. This framework, which
we call Neural-EM (N-EM), can be implemented as a recurrent neural network (RNN) and trained
end-to-end using gradient descent, similar to Tagger (Greff et al., 2016). However, in comparison we
maintain a close connection to the EM framework, which offers theoretical insights and guarantees,
thus helping to build a deeper understanding for this class of trainable clustering methods.

2 Neural ExpectationMaximization

In this section we derive the Neural Expectation Maximization (N-EM) framework based on gen-
eralized Expectation Maximization (EM; Dempster et al. 1977). Starting with a brief summary of
EM for mixture models, we then describe how the distribution over possible components can be
parametrized with a neural network. Subsequently we adapt the steps of EM to the neural model, and
show that the resulting computational graph takes the form of a recurrent neural network (RNN).
Finally we provide an objective function for training this clustering method end-to-end on many
images using gradient descent. Note that the following is not restricted to images, but also applies to
other modalities.

Mixture Models Clustering is a classic application of EM in which we consider a mixture model,
where each cluster k is represented by a distribution with parameters θk . A set of binary latent
variables Z encodes the cluster assignments, such that zn,k = 1 iff point n was generated by cluster k.

∗Both authors contributed equally to this work

1

Workshop track - ICLR 2017

Assuming the points to be iid. given the parameters, the data likelihood for each point xn becomes:

P(xn |θ) =
∑

z
P(xn ,z|θk) =

K∑
k=1

πk P(xn |zn,k = 1, θk), where P(zn,k = 1) = πk . (1)

Because of the summation over z, directly optimizing log P(x|θ) is often difficult, while the opti-
mization of log P(x,z|θ) is usually straightforward. In these cases EM can be used to iteratively
compute a Maximum Likelihood Estimate (MLE), by alternating between re-estimation of the latent
variables Z (E-step) and of the parameters θ (M-step). This procedure is initialized with random θ
and is guaranteed to converge (albeit only to a local maximum).

Parametrizing Clusters In order to cluster pixels into natural entities, we need to represent
complex dependencies between them. Assuming all pixels to be identically distributed is therefore
clearly insufficient and instead we choose to parametrize each cluster k by a vector θk = {h1, . . . ,hD }.
A neural network f transforms this representation into a separate distribution for each pixel. In the
simplest case we assume a Gaussian distribution with fixed σ around a mean µn = f (θ)n generated
by the network for each pixel n:

P(xn |θ) =

K∑
k=1

πkN (xn | f (θk)n ,σ). (2)

In contrast to (1) we no longer assume the pixels of the image to be identically distributed given θ and
thus are able to represent complex non-linear dependencies between them. Note that the parameters
θ refer to the representation, and not to the weights of the neural network (which we treat as fixed for
now).

E-Step In the E-step we simply use (2) in order to compute the posterior distribution of the latent
variables for each pixel given the last estimate of the parameters: γn = P(zn |x,θold).

M-Step The M-Step aims to find the value of θ that would maximize the expected log-likelihood
using the parameter posteriors computed in the E-Step. This quantity presents a lower bound for the
log-likelihood and is often written as the Q function:

Q(θ,θold) =
∑
Z

P(Z |x,θold) log P(x,Z |θ). (3)

Unfortunately there is no analytical form for finding the maximum of Q(θ,θold) for our parametriza-
tion. However, since f is differentiable, we can simply improve θ using gradient ascent1:

θnew = θold + η
∂Q

∂θ
where

∂Q

∂θk
∝

N∑
n=1

γk,n (f (θk)n − xn)
∂ f (θk)n
∂θk

. (4)

For sufficiently small learning rate η this will increase the Q function. Neural-EM therefore belongs
to the class of generalized EM algorithms, and thus always converges to a (local) optimum of the
data log likelihood (Wu, 1983).

N-EM & RNN-EM We observe that the unrolled gradient ascent updates in (4) form a compu-
tational graph that is end-to-end differentiable, which allows us to train the network weights by
back-propagation through time (eg. Werbos (1988); Williams (1989)). We refer to this trainable
procedure as Neural Expectation Maximization (N-EM).

The structure of N-EM resembles K copies of a recurrent neural network with hidden states θk that,
at each timestep, receive γk � (µk − x) as their input. Each generates a new µk , which are then used
by the E-step to re-estimate γ. In order for an RNN to accurately mimic the M-Step from (4) to
update its hidden state, we must impose several restrictions on its weights and structure. Instead in
the RNN-EM procedure we choose to substitute that part of the computational graph of N-EM with
a standard RNN, without imposing any restrictions. Although RNN-EM can no longer guarantee
convergence of the data log likelihood, its recurrent weights are likely to increase the representational
power of the clustering procedure. Figure 1 presents the computational graph of a single RNN-EM
(time) step.

1Here we assumed the parametrization from (2), yet a similar update arises for many typical parametrizations.

2

Workshop track - ICLR 2017

Figure 1: Illustration of a single step of
RNN-EM. It receives the prediction error as
(x − µold) masked with γold (obtained from
the previous E-step) as input. The RNN im-
plements the M-step by combining the input
with its previous state to generate a new µ,
from which a new γ is computed by taking
the E-step. Shaded areas indicate K parallel
operations (with shared RNN weights).

Training EM In order to cluster the pixels of an image into objects, we require information about
the statistical regularities of the data-distribution. In N-EM and RNN-EM, this knowledge is encoded
by the weights of the neural network. We train them with gradient descent to minimize a two part
loss function:

L = − log
∑
k

P(X |θk ,Z) + EX [log
∑
k

P(X |θk , Z̄)]. (5)

The first term maximizes the data log likelihood (the same as for EM) and pushes each cluster to
better reconstruct its pixels. However, by itself, this term only considers the intra-cluster likelihood,
which can lead to degenerate solutions like color-quantization where the system relies entirely on the
E-step for reconstruction.

The second term is about minimizing the expected out-of-cluster data log likelihood, where Z̄ = 1−Z
denotes a point not being part of a cluster. This part is equivalent to the cross entropy error between
the predictions and the prior for X masked by 1−γ. It pushes each cluster to specialize and not make
strong predictions about points in other clusters.

3 Empirical Validation and Future Directions

We present preliminary results of N-EM and RNN-EM on Shapes (Reichert & Serre, 2013) and
Pascal VOC (Everingham et al., 2015) as a proof of concept of the introduced framework.

Figure 2 displays the grouping learned by N-EM and RNN-EM on Shapes. The groupings learned
by RNN-EM are markedly better, averaging an Adjusted Mutual information (AMI) score of 0.83
across the validation set, compared to a less powerfull N-EM with an AMI score of 0.41. We observe
that RNN-EM outperforms Reconstruction Clustering (Greff et al., 2015) and its performance is
comparable to Tagger (Greff et al., 2016), even though a much simpler architecture (single-layer
RNN with 250 neurons) was used.

Figure 2: Learned groupings by N-EM (left) and RNN-EM (right) on the Shapes dataset.

Figure 3 in Appendix A displays the groupings learned by RNN-EM on Pascal VOC. These are far
from optimal and we hypothesize that this is the result of insufficient representational capacity by the
neural network used (single layer RNN with 2000 neurons). Nevertheless, it is promising that even in
suboptimal conditions RNN-EM makes an attempt at grouping, in this case mostly based on color.

Future Directions In future work we continue to improve RNN-EM on the perceptual grouping
task. Additionally we want to adapt RNN-EM to learn object-like representations for sequential
data (e.g. by considering a next-step prediction objective in the recurrence) and to compose these
representations hierarchically.

3

Workshop track - ICLR 2017

References
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the

EM algorithm. Journal of the royal statistical society., pp. 1–38, 1977.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of
Computer Vision, 111(1):98–136, 2015.

Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via Reconstruction
Clustering. arXiv:1511.06418 [cs], November 2015.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Jürgen Schmidhuber, and Harri
Valpola. Tagger: Deep Unsupervised Perceptual Grouping. arXiv:1606.06724 [cs], June 2016.

Geoffrey E. Hinton. Distributed representations. 1984.

Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites in video layers. In Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference On, volume 1, pp. I–I. IEEE, 2001.

Nicolas Le Roux, Nicolas Heess, Jamie Shotton, and John Winn. Learning a generative model of
images by factoring appearance and shape. Neural Computation, 23(3):593–650, 2011.

David P. Reichert and Thomas Serre. Neuronal Synchrony in Complex-Valued Deep Networks.
arXiv:1312.6115 [cs, q-bio, stat], December 2013.

Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339–356, 1988.

Ronald J. Williams. Complexity of exact gradient computation algorithms for recurrent neural net-
works. Technical report, Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern
University, College of Computer Science, 1989.

CF Jeff Wu. On the convergence properties of the EM algorithm. The Annals of statistics, pp. 95–103,
1983.

4

Workshop track - ICLR 2017

A Pascal VOC Visualizations

Figure 3: Learned groupings by RNN-EM on Pascal VOC.

B Experimental Setup

The following subsections provide detailed information about the experimental setup of our emperical
evaluation.

B.1 Shapes

For RNN-EM we use a single layer RNN with 250 sigmoidal neurons followed by a sigmoid output
layer that corresponds to the number of pixels in the image. Similarly for N-EM we use a hidden layer
with 250 sigmoidal units and a sigmoid output layer. At each M-step we propagate the corresponding
gradient ascent update for the Q-function from Equation 3 once (as described in Equation 4 but
adapted to the binary case and corresponding likelihood based on binomial cross-entropy).

We set K = 3 and use 10 EM steps for both architectures. We find that further increasing this number
no longer provides a substantial improvement. When decreasing the number of EM steps we find
performance drop exponentially until performance reaches an AMI score of approximately 0.1.

Both models are trained with Adam using the default learning rate of 0.001. We stop training after the
validation reconstruction error2 no longer decreased for 10 epochs. We have evaluated each model
with different random seeds and found the reported results to be stable. In all cases we were able to
obtain the reported AMI score within 100-120 epochs.

B.2 Pascal VOC

We used the same RNN-EM configuration as described for Shapes except for an increase in the
number of neurons in the hidden layer from 250 to 2000, usage of linear output units, and a decrease
in the learning rate of Adam from 0.001 to 0.0001. Our observations regarding stability across
different random seeds remains the same.

2Note that we do not stop on the AMI score as this is not part of our objective function and only measured to
evaluate the performance after training.

5

	Introduction
	Neural Expectation Maximization
	Empirical Validation and Future Directions
	Pascal VOC Visualizations
	Experimental Setup
	Shapes
	Pascal VOC

