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Abstract

Since manually labeling training data is slow and expensive, recent industrial and sci-
entific research efforts have turned to weaker or noisier forms of supervision sources.
However, existing weak supervision approaches fail to model multi-resolution
sources for sequential data, like video, that can assign labels to individual elements
or collections of elements in a sequence. A key challenge in weak supervision is
estimating the unknown accuracies and correlations of these sources without using
labeled data. Multi-resolution sources exacerbate this challenge due to complex
correlations and sample complexity that scales in the length of the sequence. We
propose Dugong, the first framework to model multi-resolution weak supervision
sources with complex correlations to assign probabilistic labels to training data.
Theoretically, we prove that Dugong, under mild conditions, can uniquely recover
the unobserved accuracy and correlation parameters and use parameter sharing
to improve sample complexity. Our method assigns clinician-validated labels to
population-scale biomedical video repositories, helping outperform traditional
supervision by 36.8 F1 points and addressing a key use case where machine learning
has been severely limited by the lack of expert labeled data. On average, Dugong im-
proves over traditional supervision by 16.0 F1 points and existing weak supervision
approaches by 24.2 F1 points across several video and sensor classification tasks.

1 Introduction

Modern machine learning models rely on a large amount of labeled data for their success. However,
since hand-labeling training sets is slow and expensive, domain experts are turning to weaker, or noisier
forms of supervision sources like heuristic patterns [10], distant supervision [18]], and user-defined
programmatic functions [20]] to generate training labels. The goal of weak supervision frameworks is
to automatically generate training labels to supervise arbitrary machine learning models by estimating
unknown source accuracies [|8, 1322} 24}, 28, [29].

Using these frameworks, practitioners can leverage the power of complex, discriminative models
without hand-labeling large training sets by encoding domain knowledge in supervision sources.
This approach has achieved state-of-the-art performance in many applications [19}28] and has been
deployed by several large companies [2| 14, 5,11} |15} [16]]. However, current techniques do not account
for sources that assign labels at multiple resolutions (e.g. labeling individual elements and collections
of elements), which is common in sequential modalities like sensor data and video.

Consider training a deep learning model to detect interviews in TV news videos [7]. As shown in
Figure[T] supervision sources used to generate training labels can draw on indirect signals from closed
caption transcripts (per-scene), bounding box movement between frames (per-window), and pixels
in the background of each frame (per-frame). However, existing weak supervision frameworks cannot
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Figure 1: Multi-resolution weak supervision sources to label video analytics training data. S-X outputs
noisy label vectors \; and represents various supervision sources at different resolutions: Video (S-V),
Transcript (S-T), Window (S-W), and Frame (S-F) (brown, yellow, blue, orange). We show a graphical
model structure for modeling these sources at different resolutions (r =1,2,3): dotted nodes represent
latent true labels, solid nodes represent the noisy supervision sources, and edges represent sequential
relations.

model two key aspects of this style of sequential supervision. First, sources are multi-resolution and
can assign labels on a per-frame to per-window to per-scene basis, implicitly creating sequential
correlations among the noisy supervision sources that can lead to conflicts within and across
resolutions. Second, we have no principled way to incorporate distribution prior, like how frames
with interviews are distributed within a scene—and this is critical for temporal applications.

The core technical challenge in this setting is integrating diverse sources with unknown correlations and
accuracies at scale without observing any ground truth labels. Traditionally, such issues have been tack-
led via probabilistic graphical models, which are expressive enough to capture sequential correlations
in data. Unfortunately, learning such models via classical approaches such as variational inference
or Gibbs sampling [14]] presents both practical and theoretical challenges: these techniques often fail
to scale, in particular in the case of long sequences. Moreover, algorithms for latent-variable models
may not always converge to a unique solution, especially in cases with complex correlations.

We propose Dugong— the first weak supervision framework to integrate multi-resolution supervision
sources of varying quality and incorporate distribution prior to generate high-quality training labels.
Our model uses the agreements and disagreements among diverse supervision sources, instead of
traditional hand-labeled data, at different resolutions (e.g., frame, window, and scene-level) to output
probabilistic training labels at the required resolution for a downstream end model. We develop a
simple and scalable approach that estimates parameters associated with source accuracy and correlation
by solving a pair of linear systems.

We develop conditions under which the underlying statistical model is identifiable. With mild
conditions on the correlation structure of sources, we prove that the model parameters are recoverable
directly from the systems. We show that we can reduce the dependence of sample complexity on the
length of the sequence from exponential to linear to independent, using various degrees of parameter
sharing, which we analyze theoretically. Applying recent results in weak supervision literature, we
then show that the generalization error of the end model scales as O(1/+/n) in the number of unlabeled
data points—the same asymptotic rate as supervised approaches.

We experimentally validate our framework on five real-world sequential classification tasks over
modalities like medical video, gait sensor data, and industry-scale video data. For these tasks, we
collaborate with domain experts like cardiologists to create multi-resolution weak supervision sources.
Our approach outperforms traditional supervision by 16.0 F1 points and existing state-of-the-art weak
supervision approaches by 24.2 F1 points on average.

We also create an SGD variant of our method that enables implementation in modern frameworks like
PyTorch and achieves 90 x faster runtimes compared to prior Gibbs-sampling based approaches [1}20].
This scalability enables using clinician-generated supervision sources to automatically label
population-scale biomedical repositories such as the UK Biobank on the order of days, addressing
a key use case where machine learning has been severely limited by the lack of expert labeled data
and improving over state-of-the-art traditional supervision by 31.7 F1 points.
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Figure 2: A schematic of the Dugong pipeline. Users provide a set of unlabeled sequences where each
sequence X =[X1,...,Xr], a set of weak supervision sources S,...,5,, each of which assigns labels
at multiple resolutions (frame, window, scene), a sequential structure (i.e., Gsource and Giae), and a
distribution prior Py-. The label model estimates the unknown accuracies and correlation strengths of
the supervision sources and assigns probabilistic training labels to each element, which can be used to
train a downstream end model.

2 Training Machine Learning Models with Weak Supervision

Practitioners often weakly supervise machine learning models by programmatically generating
training labels through the process shown in Figure2] First, users provide multiple weak supervision
sources, which assign noisy labels to unlabeled data. These labels overlap and conflict, and a label
model is used to integrate them into probabilistic labels. These probabilistic labels are then used to
train a discriminative model, which we refer to as the end model.

While generating training labels across various sequential applications, we found that supervision
sources often assign labels at different resolutions: given a sequence with T elements, sources can
assign a single label per element, per collection of elements, or for the entire sequence. We describe
a set of such supervision sources as multi-resolution. For example in Figure[T] to train an end model
that detects interviews in TV shows, noisy labels can be assigned to each frame, each window, or each
scene. Sources S-F, S-W, and S-V each assign labels to a frame at resolution level » =1, a window at
r=2, and scene at r = 3, respectively. While each source operates at a specific resolution, the sources
together are multi-resolution. The main challenge is combining source labels into probabilistic training
labels by estimating source accuracies and correlations without ground-truth labels.

2.1 Problem Setup
We set up our classification problem as follows:

o Let X =[X;,X5,...,X7] € X be an unlabeled sequence with T elements (video frames in
Figure[T).
e For each sequence X, we assign labels to tasks at multiple resolutions (Y7, Y7 2, Y, etc.

in Figure[T). We formally refer to the tasks using indices 7={1,...,|T|} (|T|= 4+43+1=8
for the resolutions r =1,2,3 shown in Figure[T).

e These tasks are at multiple resolutions (3 resolutions in Figure[I)) with the set of tasks at
resolution r denoted R, C 7T .

e Y €Yisavector [y1,...,y7|] of unobserved true labels for each task, and (X,Y") are drawn
i.i.d. from some distribution D.

Users provide m multi-resolution sources Si,...,.S,,. Each source S; assign labels \; to a set of
tasks 7; C T, (henceforth coverage set), with size s; = |7'j |. Each source only assigns labels at a
specific resolution r, enforcing 7; C R, for fixed r. Users also provide a task dependency graph Gasx
specifying relations among tasks, a source dependency graph Gsouce specifying relations among
supervision sources that arise due to shared inputs (Figure|l), and a distribution prior P(Y") describing
likelihood of labels in a sequence (Figure |Z[) While Ggource 18 user-defined, it can also be learned
directly from the source outputs [[1,[26].



We want to apply weak supervision sources S to an unlabeled dataset X consisting of n sequences, com-
bine them into probabilistic labels, and use those to supervise an end model f,, : X — ) (Figure@). Since
the labels from the supervision sources overlap and conflict, we learn a label model P(Y'|\) that takes
as input the noisy labels and outputs probabilistic labels at the resolutions required by the end model.

2.2 Label Model

Given inputs X ,S,Gmsk,Gsource,p(Y), we estimate the sources’ unknown accuracies and correlation
strengths. Accuracy parameters y and correlation parameters ¢ define a label model P,, 4(Y | X), which
can generate probabilistic training labels. To recover parameters without ground-truth labels Y, we
observe the agreements and disagreements of these noisy sources across different resolutions.

To recover these parameters, we form a graph G describing all relations among sources and task
labels, combining Goyree With Gyask. The resulting graphical model encodes conditional independence
structures. Specifically, if (\;,Ax) is not an edge in G, then \; and ), are independent conditioned
on all of the other variables.

For ease of exposition, we assume the binary classification setting where y; € {—1,1}, \; e {—1,1}
for T' per-element tasks and 1 per-sequence task. The accuracy parameter for source j for some
ZWe{-1,1}%"Ttis

i (ZW)=P(N\j=Z| Yy, =W). (1)

Intuitively, this parameter captures the accuracy of each supervision source with respect to the
ground truth labels in coverage set 7;. Next, for each correlation pair of sources (\;,A) and for some

Zye{-1,1}% Zo € {—1,1}** W € {—1,1}|73"7]  we wish to learn
¢j7k(zle27W):P(/\j:Zl)\k:ZQ| Y. =W), (2)

where 7=7;UT},.

2.3 Parameter Reduction

Our assumption above of conditioning only on ground-truth labels for tasks in the source’s coverage set
instead of the full 7~ greatly reduces the number of parameters. While we have at least 27 parameters
without the assumption, we now only need to learn 22% parameters per source, where s; tends to be
much smaller than 7.

In addition, we can model each source accuracy conditioned on each task, rather than over its full
coverage set, reducing from 22%7 to 4s; parameters and going from exponential to linear dependence on
coverage set size, which is at most 7". Lastly, we can also use parameter sharing: we share across sources
that apply the same logic to label different, same-resolution tasks (1 = o = 13 = j14 in Figure[T).

3 Modeling Sequential Weak Supervision

The key challenge in sequential weak supervision settings is recovering the unknown accuracies and
correlation strengths in our graphical model of multi-resolution sources, given the noisy labels, the
dependency structures Gouree and Gk, coverage sets 7, and distribution prior Py-. We propose a
provable algorithm that recovers the unique parameters with convergence guarantees by reducing
parameter recovery into systems of linear equations. These systems recover probability terms that
involve the unobserved true label Y by exploiting the pattern of agreement and disagreement among
the noisy supervision sources at different levels of resolution (Section[3.T). We theoretically analyze
this algorithm, showing how the estimation error scales with the number of samples n, the number of
sources m, and the length of the sequence 7'. Our approach additionally leverages repeated structures
in sequential data by sharing appropriate parameters, significantly reducing sample complexity to no
more than linear in the sequence length (Section[3.2)). Finally, we consider the impact of our estimation
error on the end model trained with labels produced from our label model, showing that end model
generalization scales with unlabeled data points as O(1//n), the same asymptotic rate as if we had
access to labeled data (Section3.2)).



3.1 Source Accuracy Estimation Algorithm

Our approach is shown in Algorithm[T} it takes as input samples of sources A1,...,A,,, independencies
resulting from the graph G, and the prior Py and outputs the estimated accuracy and correlation

parameters, fi and d) (for simplicity, we only show the steps for  in Algorlthml)

While we have access to the noisy labels assigned by the supervision sources, we do not observe
the true labels Y and therefore cannot calculate y directly. However, given access to the user-defined
distribution prior and the joint probabilities, such as P(\;({1}),y2), we can apply Bayes’ law to
estimate p (Section 3.1.4). Since the joint probabilities also include the unobservable Y term, we
break it into the sum of product variables, such as P(\;({1})y2 =1) (Section 3.1.3). Note that we still
have a dependence on the true label Y': to address this issue, we take advantage of (1) the conditional
independence of some sources (Section 3.1.2), (2) the fact that we can observe the agreement and
disagreements among the sources (Section 3.1.1), and (3) in the binary setting, 3% = 1.

We describe the steps of our algorithm and explain the assumptions we require, which involve the
number of conditionally independent pairs of sources we have access to and how accurately they vote
on their tasks.

Algorithm 1: Accuracy Parameter Estimation

Input: Samples of sources A1 ,...,\,, Dependency structure G, Dist. prior P(Y")

1 for source j€{1,....m} do

N & wn

=]

10

for coverage subsets U,V C7; do
Using G, get source set S; where Vk,0 € S, U, U,
S.t. aj(U,V) Lak(Uk,V), CLj(U,V) Lag(Ug,V), ak(Uk,V) Laz(Ug,V). Set Uj =U
for k(e S;U{j} do
Calculate gen. agreement measure: ay (Uy,V)ar(Ue,V) =1y, 17, e (Ur)Ae(Ur)

Form g=IlogE [ak(Uk,V)ag(Ug,V)}2 over coverage subsets Uy, U,,V
Solve agreement-to-products system: find £y y s.t. My v =q

Form product probability vector (¢ 1)

Solve products-to-joints system: find e s.t. Bas,e=r
pj e/ P(Y)

Qutput :Parameter [

3.1.1 Generalized Agreement Measure

Given the noisy labels assigned by the supervision sources, A1,..., A, We want some measure of
agreement between these sources and the true label Y. For sources j and k, let U, U’V be subvectors
of the coverage sets 7;,74,7; UTy, respectively. We use the notation [ [ v A(X) to represent the product
of all components of A indexed by X. We then define a generalized agreement measure as a;(U,V) =
[TX;(U)ITY (V), which represents the agreement between the supervision source and the unknown
true label when U =V and |U| = 1. Note that this term is not directly observable as it is a function of Y .

Instead, we look at the product of two such terms:

a;(UV)ar(U"V)= TT X (U)X (UITY (V))* = T X (U)Ae(U")-
u,u’ \%4 u,u’

Since the (Y (V'))? components multiply to 1 in the binary setting, we are able to represent the product
of two generalized agreement measures in terms of the observable agreement and disagreement
between supervision sources. Therefore, we are able to calculate a;(U,V)ay(U’,V') across values
of U,V directly from the observed variables.

3.1.2 Agreements-to-Products System

Given the product of generalized agreement measures, we solve for terms that involve the true label
Y, such as a;(U,V). Since we cannot observe these terms directly, we instead solve a system of
equations that involve log E[a; (U,V)], the log of the expectation of these values when we have certain
assumptions about independence of different sources, conditioned on variables from Y. We give more



details in the Appendix. As an example, note that if \;(U) is independent of A, (U’) given [[Y (V)
for |V'| =1, which is information that can be read off of the graphical model G, then

Ela; (UV)]E[ax(U', V)] =Ea;(U,V)ax (U",V)] =E [U]_I[]I)\j(U))\k(U’)} . 3)

In other words, the conditional independencies of the sources translate to independencies of the
accuracy-like terms a.

Note that the middle term in (3)) can be calculated directly using observed A’s. Now we wish to form
a system of equations to solve for the terms on the left-most side. We can take the log of the left-most
term and the right-most term to form a system of linear equations, M ¢ =gq. M contains a row for each
pair of sources, ¢ is the vector we want to solve for and contains the terms with a;(U,V'), and ¢ is the
vector we observe and contains the terms with A; (U)\;(U’). We can solve this system up to sign
if M is full rank, which is true if M has at least three rows. This is true if we have a group of at least
three conditionally independent sources.

Assumptions We now have the notation to formally state our assumptions. We assume that each
a;(U,V) has at least two other independent accuracies (equivalently, sources independent conditioned
on Yy) and [E [a;(U,V)]| > 0, i.e., our accuracies are correlated with our labels, positively or
negatively), and that we have a list of such independencies (to see how to obtain such a list from the
user-provided graphs, more information is in the Appendix). We also assume that on average, a group
of connected sources have a better than random chance of agreeing with the labels, which enables
us to recover the signs of the accuracies. These are standard weak supervision assumptions [21]].

Once we solve for E [a;(U)V)], we can calculate the product variable probabilities
p;(U, V) = P(a;j(U,V) = 1) = 1/2(1 + E [a;(U,V)]). Note that product variable probabili-
ties p relies on the the true label Y, since a;(U,V') represents the generalized agreement between the
source label and true label. However, we have now solved for this term despite not observing Y directly.

3.1.3 Products-to-Joints System

Given the product variable probabilities, we now want to solve for the joint probabilities p , such
as P(\;,1,Y2). Fortunately, linear combinations of the appropriate p;(Z,W)=P(\; = Z,Y;, =W)
resultin p;(U,V) terms. Our goal is to solve for the unknown joint probabilities given the estimated
p; product variables, user-defined distribution prior Py, and observed labels from the sources \.

Say that \; has coverage 71 =[1], so that it only votes on the value of y;. Then, for U={1},V ={1},
we know p1 (U,V) = P(A1,151 = 1). But we have that P(\1 11 = 1) = p1(+1,+1) +p1(—1,-1),
which is the agreement probability. Using similar logic, we can set up a series of linear equations:

1 1 1 17 [pi(+1,41) 1

1 0 1 0||p(~1,41)| |P(\a=1)
1 1 0 0f|p(+1,=1)| — | P(vi=1) |
10 01 1(71771) pl(va)

Note that because of how we set up this system, the vector on the left-hand side contains the
probabilities we need to estimate the joint probabilities. The right hand side vector contains either
observable (P(Aq,1 =1)), estimated (p1 (U,V)), or user-defined (P(Y; =1), from Py') terms. In this
example, the matrix is full-rank and we can therefore solve for the p; terms.

To extend this system to the general case, we form a system of linear equations, Bas, e =7. Bas, is the
products-to-joints matrix (we discuss its form below), e is the vector we want to solve for and contains
the p; (Z,W) terms, and r is the vector we have access to and contains observable, user-defined, and
estimated p; (U,V) terms. Bo,, is 22%7 x 225 -dimensional 0/1 matrix. Let ® be the Kronecker product;
then, we can represent Ba,; as a Hadamard-like matrix (we show it is full rank in the Appendix):

AR DU O REOU B

Bas, = 3 {1 _1] ® +§11 .

We can now solve for terms required to calculate the joint probabilities and use them to obtain the i pa-
rameters by using Bayes’ law and the user-defined distribution prior 1 (2,w) =p; (Z,W)/P(Y., =W).
We can calculate the ¢ parameters in a similar fashion as u, except now we operate over pairs of
supervision sources, always working with products of correlated sources \; A; (details in Appendix).



3.1.4 SGD-Based Variant

Note that Algorithm(T]explicitly builds and solves the linear systems that are set up via the agreement
measure constraints. This involves a small amount of bookkeeping. However, there is a simple
variant that relies on SGD for optimization and simply uses the constraints between the accuracies
and correlations. That is, we use /5 losses on the constraints (and additional ones required to make
the probabilities consistent) and directly optimize over the accuracy and correlation variables i, ¢.
Under the assumptions we have set up in this section, these algorithms are effectively equivalent; in
the experiments, we use the SGD-based variant due to its ease of implementation in PyTorch.

3.2 Theoretical Analysis: Scaling with Sequential Supervision

Our ultimate goal is to train an end model using the labels aggregated from the supervision sources
using the estimated 1 and ¢ for the label model. We first analyze Algorithm[I]with parameter sharing
as described in Section[2.3|and discuss the general case in the Appendix. We bound our estimation
error and observe the scaling in terms of the number of unlabeled samples n, the number of sources
m, and the length of our sequence 7". We then connect the generalization error to the end model to the
estimation error of Algorithm showing that generalization error scales asymptotically in O(1/1/n),
the same rate as supervised methods but in terms of number of unlabeled sequences.

We have n samples of each of the m sources for sequences of length 7', and the graph structure
G =(V,E). We allow for coverage sets of size up to 7. We assume the previously-stated conditions
on the availability of conditionally independent sources are met, that V5, |E[a;(U,V)]| > b, > 0,
and that our estimates of [ [, 1, Ak (Uk)Ae(Up) are non-zero (this holds with high probability with a
simple concentration bound on the observed labeling functions). We also assume that sign recovery is

possible (for example, itis sufficient tohave Vj,U,V, 35, ¢ ¢ Elax(U,V)] >0 where Sj is defined as in
Algorithm[I). We also take puin to be the smallest of the entries in P(Y"). Let ||| be the spectral norm.

Theorem 1 Under the assumptions above, let [i and gZA) be estimates of the true p* and ¢* produced
with Algorithm[I\with parameter reduction. Then,

JO- 24 _ 18log(12) 2log(12
B[ ]<FmTW||BzT1||||M*||< 512 ()) @

minbmin n

The expectation K[||p— ¢* || satisfies the bound @), replacing /mT with mT and By with By,

Interpreting the Theorem The above formula scales with n as O(y/1/n), and critically, no
more than linear in T'. We prove a more general bound without parameter reduction, which scales
exponentially in 7" in the Appendix. A matching lower bound in 7" requires Q(2%T) samples. The
expression scales with m as O(y/m) and O(m) for estimating y and ¢, respectively. The standard
scaling factors for the random vectors produced by the sources are m and m?; however, we need only
two additional sources for each source, leading to the \/m and m rates. The linear systems enter the

expression only via || B||. These are fixed; in particular, || B | =1.366 and || B | =1.112.

End Model Generalization After obtaining the label model parameters, we use them to
generate probabilistic training labels for the resolution required by the end model. The pa-
rameter error bounds from Theorem [l| allow us to apply a result from [21], which states that
under the common weak supervision assumptions (e.g., the parameters of the distribution we
seek to learn are in the space of the true distribution), the generalization error for Y satisfies
E[l(w,X,Y)—l(w*, X,Y)] <~v+8(||s— p*||+ /¢ —¢*||). Here, [ is a bounded loss function and w
are the parameters of an end model f,, : X — ). We also have w as the parameters learned with the
estimated label model using x and ¢, and w* = argmin, /(w,X,Y’), the minimum in the supervised
case. This result states that the generalization error for our end models scales with the amount of
unlabeled data as O(1/+/n), the same asymptotic rate as if we had access to the true labels.

4 Experimental Results

We validate Dugong on real-world sequential classification problems, comparing end model
performance trained on labels from Dugong and other baselines. Dugong improves over traditional
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Figure 3: (Left) Dugong has fewer false positives than data programming on a cyclist detection task
since it uses sequential correlations and distributional knowledge to assign better training labels. (Right)
Increasing unlabeled data can help match a benchmark model trained with 686 x more ground truth
data, i.e., using traditional supervision (TS).

supervision and other state-of-the-art weak supervision methods by 16.0 and 24.2 F1 points on average
in terms of end model performance, respectively. We also conduct ablations to compare parameter
reduction techniques, the effect of modeling dependencies, and the advantage of using a user-defined
prior, with average improvements of 3.7, 10.4, and 13.7 F1 points, respectively. Finally, we show how
our model scales with the amount of unlabeled data, coming within 0.1 F1 points of a model trained
on 686 x more ground-truth labels.

4.1 Datasets

We consider two types of tasks, spanning various modalities: (a) tasks that are expensive and slow
to label due to the domain expertise required, and (b) previously studied, large-scale tasks with strong
baselines often based on hand-labeled data developed over months. All datasets include a small
hand-labeled development set (< 10% of the unlabeled data) used to tune supervision sources and
end model hyperparameters. Results are reported on test set as the mean + S.D. of F1 scores across
5 random weight initializations. See Appendix for additional task and dataset details, precision and
recall scores, and end model architectures.

Domain Expertise These tasks can require hours of expensive expert annotations to build large-scale
training sets. The Bicuspid Aortic Valve (BAV) [6] task is to classify a congenital heart defect over MRI
videos from a population-scale dataset [23]]. Labels generated from Dugong and sources based on char-
acteristics like heart area and perimeter are validated by cardiologists. Interview Detection (Interview)
identifies interviews of Bernie Sanders from TV news broadcasts; across a large corpus of TV news, in-
terviews with Sanders are rare, so it requires significant labeling effort to curate a training set. Freezing
Gait (Gait) is ankle sensor data from Parkinson’s patients and the task is to classify abnormal gait [12],
using supervision sources over characteristics like peak-to-peak distance. Finally, EHR consists of tag-
ging mentions of disorders in patient notes from electronic health records. We only report label model
results for EHR, but Dugong improves over a majority vote baseline by 3.7 F1 points (Appendix).

Large-Scale Movie Shot Detection (Movie) classifies frames that contain a change in scene using
sources that use information about pixel values, frame-level metadata, and sequence-level changes. This
task is well-studied in literature [Ol 23] but adapting the method to specialized videos requires manually
labeling thousands of minutes of video. Instead, we use 686 x fewer ground truth labels and various
supervision sources to match the performance of a model pre-trained on a benchmark dataset with
ground truth labels (Figure[3). Basketball operates over a subset of ActivityNet [3] and uses supervision
sources over frames and sequences. Finally, we use a representative dataset for cyclist detection from
a large automated driving company (Cars) and show that we outperform their best baseline by 9.9
F1 points. The Cars end model is proprietary, so we only report label model results in the Appendix.



End Model Performance Improvement

Task Prop T TS MV DP Dugong TS MV DP

BAV 0.07 5 221451 62+76 532+44 538+7.6 +31.7 +47.6 +0.6
Interview 003 5 800+34 580+£53 87£02 92.0+£22 +120 +340 +833
Gait 033 5 475+£149 61.6+£04 6294+0.7 68.0+0.7 +205 +64 +5.1
Shot 010 5 832+10 86.0+£09 862+1.1 87710 +45 +1.7 +1.5
Basketball 0.12 5 26.8+1.3 81+£54 77+£33 382+41 +114 +30.1 4305

Table 1: End model performance in terms of F1 score (mean = std.dev). Improvement in terms of mean
F1 score. Prop: proportion of positive examples in the dev set, 7": number of elements in a sequence.
We compare end model performance on labels from labeled dev set (TS), majority vote across sources
(MV), and data programming (DP) and outperform each across all tasks.

4.2 Baselines

For the tasks described above, we compare to the following baselines (Table[I)): Traditional Supervision
(TS) in which end models are trained using the hand-labeled development set; Non-sequential Majority
Vote (MV): in which we force all supervision sources assign labels per-element, and calculate training
labels by taking majority vote across sources; and Data Programming (DP) [22)]: a state-of-the-art
weak supervision technique that learns the accuracies of the sources but does not model sequential
correlations.

In tasks with domain expertise required, our approach improves over traditional supervision by up to
36.8 F1 points and continually improves precision as we add unlabeled data, as shown in Figure[3] Large-
scale datasets have manually curated baselines developed over months; Dugong is still able to improve
over baselines by up to 30.5 F1 points by capturing sequential relations properly — as shown in Figure[3]
only modeling source accuracies (DP) can fail to take into account the distribution prior and sequential
correlations among sources that can help filter false positives, which Dugong does successfully.

4.3 Ablations

We demonstrate how each component of our model is critical by comparing end model performance
trained on labels from Dugong without any sequential dependencies, Dugong without parameter
sharing for sources with shared logic (Section [2.3)), and Dugong with various distribution priors:
user-defined, development-set based, and uniform. We report these comparisons in the Appendix
and summarize results here.

Without sequential dependencies, end model performance worsens by 10.4 F1 points on average,
highlighting the importance of modeling correlations among sources. We see that sharing parameters
among sources that use the same logic to assign labels at the same resolution performs 3.7 F1 points
better on average. Using a user-defined distribution prior improves over using a uniform distribution
prior by 13.7 F1 points and a development-set based distribution prior by 1.7 F1 points on average,
highlighting how domain knowledge in forms other than supervision sources is key to generating high
quality training labels.

5 Conclusion

We propose Dugong, the first weak supervision framework that integrates multi-resolution weak super-
vision sources including complex dependency structures to assign probabilistic labels to training sets
without using any hand-labeled data. We prove that our approach can uniquely recover the parameters as-
sociated with supervision sources under mild conditions, and that the sample complexity of an end model
trained using noisy sources matches that of supervised approaches. Experimentally, we demonstrate
that Dugong improves over traditional supervision by 16.0 F1 points and existing weak supervision
approaches by 24.2 F1 points for real-world classification tasks training over large, population-scale
biomedical repositories like UKBiobank [23] and industry-scale video datasets for self-driving cars.
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