
ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

VLM Q-LEARNING: ALIGNING VISION-LANGUAGE
MODELS FOR INTERACTIVE DECISION-MAKING

Jake Grigsby1∗, Yuke Zhu1, Michael Ryoo2, Juan Carlos Niebles2
1The University of Texas at Austin 2Salesforce AI Research

ABSTRACT

Recent research looks to harness the general knowledge and reasoning of large
language models (LLMs) into agents that accomplish user-specified goals in in-
teractive environments. Vision-language models (VLMs) extend LLMs to multi-
modal data and provide agents with the visual reasoning necessary for new appli-
cations in areas such as computer automation. However, agent tasks emphasize
skills where accessible open-weight VLMs lag behind their LLM equivalents. For
example, VLMs are less capable of following an environment’s strict output syn-
tax requirements and are more focused on open-ended question answering. Over-
coming these limitations requires supervised fine-tuning (SFT) on task-specific
expert demonstrations. Our work approaches these challenges from an offline-
to-online reinforcement learning (RL) perspective. RL lets us fine-tune VLMs to
agent tasks while learning from the unsuccessful decisions of our own model or
more capable (larger) models. We explore an off-policy RL solution that retains
the stability and simplicity of the widely used SFT workflow while allowing our
agent to self-improve and learn from low-quality datasets. We demonstrate this
technique with two open-weight VLMs across three multi-modal agent domains.

1 INTRODUCTION

Diverse training datasets give large language models (LLMs) the ability to generate knowledgeable
text across a wide range of topics. LLM pre-training produces a model that outputs the most likely
continuation of its input text according to a distribution of training examples sourced from across the
web. However, there are many applications where we would like to direct our model to accomplish
a specific objective. In these tasks, our model acts as an agent in an interactive environment and
makes a sequence of decisions to maximize an evaluation metric. Because the model was not trained
to optimize this objective, the best decision-making strategy may be an unlikely output. Ongoing
research looks to fix this alignment problem and repurpose generative models for decision-making.

LLM-agent techniques are largely enabled by the post-training process, where the model is fine-
tuned on curated datasets of chat or assistant-like behavior. A natural first step is to continue training
with supervised fine-tuning (SFT) on task-specific datasets. However, SFT cannot outperform the
best decision-making strategy in its training data and relies on collecting successful demonstrations.
LLMs’ ability to adapt to new tasks based on examples in their input (Brown et al., 2020) allows
this realignment to be done without further training: agent behavior can be generated by prompting
an LLM with demonstrations. Additional prompting techniques improve long-term planning by
eliciting self-reflection and reasoning (Yao et al., 2022b; Wei et al., 2022b).

Vision-language models (VLMs) extend LLMs to multi-modal inputs. VLMs are trained by us-
ing smaller datasets of interleaved text and image data to mix visual features into an existing LLM
(Liu et al., 2024b;a). The high-level problem of realigning VLMs with decision-making objec-
tives is similar to that of LLM agents. However, VLM research is still in its early stages, and
current models lag behind their LLM equivalents in two critical areas: 1) agent action syntax and
2) long-context prompting. Agent tasks often do not involve freeform dialogue and instead require
outputs with a specific syntax that the environment can interpret. The ability to plan and act in
this more restricted output space is closely related to the tool-use (or function-calling) capabili-
ties of LLMs (Qu et al., 2024). Perhaps a more long-term issue is that environment interactions

∗Work done during an internship at Salesforce AI Research.

1

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

can stretch over many model outputs, making it impractical to include complete in-context ex-
amples and align the VLM via prompting. SFT can realign a base model with agent tasks, but
it is only effective when we can demonstrate a strategy that meets our performance expectations.

Figure 1: VLM-Environment Interaction. We format
text and image data from the environment into an input
prompt for the VLM. The models’s text reply is parsed
into a concrete action executed by the environment to
produce a reward and new inputs for the VLM.

Our work approaches the challenges of
fine-tuning VLMs for agent tasks from a
reinforcement learning (RL) perspective
(Figure 1). RL solves the agent align-
ment issue by explicitly training our model
to maximize success in its environment.
Decision-making is often formalized as
an RL problem, but RL methods have a
reputation for adding complexity; simpler
prompting and SFT techniques are effec-
tive for LLM-agent tasks and are more
widely used in recent work. However,
we note that a category of offline RL
techniques (Levine et al., 2020) that filter
demonstration datasets according to a learned value model (Wang et al., 2020) have important ad-
vantages in the emerging area of VLM agent training. Like most offline RL algorithms, these filtered
supervised fine-tuning (FSFT) methods let our agent outperform its demonstrations. Unlike other
offline techniques, FSFT is effectively identical to SFT when the dataset is of high quality and lets
us seamlessly collect new data when our agent needs further improvement. This lets FSFT serve as a
low-downside, high-upside replacement for SFT in VLM agent domains where SFT is widely used.
Our work explores the challenges of applying VLMs to agent tasks and demonstrates the strengths
of off-policy RL applied to two open-weight models across three domains.

2 BACKGROUND

Vision-Language Models. VLMs extend the capabilities of LLMs to visual data by taking text
and images as input and producing text outputs. They process multi-modal inputs by projecting the
features of a vision encoder into the embedding space of an LLM — allowing the LLM to attend
to the features of both modalities. While there have been many VLM models released in recent
months, our work will focus on publicly available (open-weight) models that are small enough to be
fine-tuned with accessible GPU resources. Table 1 introduces three models used in our experiments:
PaliGemma (Beyer et al., 2024), xGen-MM (Xue et al., 2024), and MoonDream2 (Korrapati, 2024).

MoonDream2 PaliGemma xGen-MM
Parameters 1.9B 2.9B 4.6B
Feature Dim. 2048 2048 3072
Vocabulary 51,200 257,216 32,015

Table 1: VLMs in Our Experiments.
.

Foundation Models as Agents. We focus on agent
applications where a model is evaluated based on its
ability to make decisions that achieve a specific out-
come. Examples include: controlling an operating
system with text commands (Wu et al., 2024), writ-
ing code to answer data analysis questions (Hu et al.,
2024), navigating graphical interfaces, (Gao et al., 2023; Tao et al., 2023; Xie et al., 2023), ordering
items from a web store (Yao et al., 2022a; Tao et al., 2023), carrying out administrative tasks in busi-
ness software (Drouin et al., 2024), making PowerPoint slides based on a specific topic (Guo et al.,
2023), and playing games (Chen et al., 2024a), among many others. These tasks are characterized
by multi-turn interactions, where the model iteratively reacts to changes in the environment until it is
successful. Success is measured by explicit task-specific objectives and not by the likelihood of the
model’s response or subjective human preferences. This creates a fundamental mismatch between
the objectives the model was trained to maximize and the objective we are evaluating.

We can realign foundation models with agent tasks by biasing their outputs with careful prompting.
Agent tasks require high-level planning over a sequence of outcomes. Prompting techniques for
agent applications combine in-context learning (Brown et al., 2020) with step-by-step reasoning
and self-reflection over previous outcomes (Wei et al., 2022b; Yao et al., 2022b; Yang et al., 2023;
Zheng et al., 2024). Prompting is particularly effective when working with large proprietary models
that support sequence lengths long enough to let these methods grow arbitrarily complicated by
making multiple API calls to correct mistakes, retrieve relevant information, and plan for the future
(Topsakal & Akinci, 2023; Xiao et al., 2023; Lutz et al., 2024; Sridhar et al., 2023).

2

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Tool Use and Function Calling. In order for an external environment like a browser or game to
carry out an agent’s request, it must be able to interpret the model’s intention from open-ended text.
Therefore, our model needs to generate text according to a task-specific syntax that is described
as part of its input prompt (Hsieh et al., 2023). Action syntax creates a barrier to entry where
models fail because they cannot produce valid outputs despite responses that suggest they have some
understanding of the task. This problem is closely related to the “tool-use” (or function-calling)
capabilities of LLMs (Ling et al., 2023; Xu et al., 2023). Tool-use refers to the ability of an LLM to
call external APIs and is an important feature of chat assistants that retrieve information on current
events, perform calculations, or prompt specialized image generation models. Tool-use accuracy
in accessible open-weight LLMs once lagged behind proprietary models but has been improved by
fine-tuning on specialized datasets with standardized syntax (Patil et al., 2023; Qin et al., 2023).

Fine-Tuning Agents. The syntax of agent environments is less standardized than tool-use, and
task inputs may be very different from those seen during training. When prompting alone is not
enough to create a successful agent, performance can be improved by fine-tuning on task-specific
demonstrations (Zeng et al., 2023; Hong et al., 2024; Feng et al., 2023; Song et al., 2024; Zhang
et al., 2024a; Yin et al., 2023). Continuing training can be expensive, but we can safely assume that
the resulting agent will match the performance of the demonstrator(s) when given sufficient training
data. However, we cannot expect our agent to learn a better strategy than appeared in the fine-tuning
demonstrations because it is trained to replicate the decisions in the dataset.

Off-Policy RL. RL formalizes the process of learning optimal decision-making strategies in inter-
active environments. The environment begins in a state s0 that is represented to the agent by an ob-
servation o0. The agent’s policy π takes this observation as input and samples an action a0 ∼ π(o0)
from the space of possible actions A, leading to a new state s1 and reward r1 determined by the
environment’s transition function (T (s0, a0) = s1) and reward function (R(s0, a0) = r1), respec-
tively. This process repeats after the agent receives its next observation o1. RL uses data to dis-
cover a policy that maximizes the agent’s return — or cumulative reward from the current state:
V π(st) = Eπ

[∑∞
i=t γ

i−tri
]
, where γ ∈ [0, 1) is a discount factor.

Off-policy RL methods can learn from any experience in the environment — regardless of whether
the actions of the current policy generated that experience. An example is Q-Learning (Watkins &
Dayan, 1992; Mnih et al., 2015), which learns a function Q to estimate the return that will follow
a particular action a: Qπ(st, at) = R(st, at) + V π(st+1). If we can learn an accurate estimate of
Q, we can improve the policy by selecting actions that maximize Q. Actor-critic methods train a
critic model to approximate Q and a second (often entirely separate) actor model to maximize the
critic’s predictions (Lillicrap, 2015). Offline RL agents learn a policy from a fixed dataset (Levine
et al., 2020). It is common to view offline RL as an extreme case of off-policy RL where we
assume that our dataset was generated by a mixture of unknown policies and that we cannot collect
additional data. However, vanilla Q-Learning methods struggle to handle the fully offline setting
because they repeatedly maximize their current Q-values but cannot collect new experiences that
would reveal their predictions are overestimated (Kumar et al., 2019). Successful modifications
avoid directly maximizingQ (Kostrikov et al., 2021) or regularize estimates to be more conservative
(Kumar et al., 2020; Agarwal et al., 2020). We derive our method from a family of filtered (or
weighted) behavior cloning algorithms where a value estimate is used to mask (or downweight) sub-
optimal demonstrations (Nair et al., 2020; Peng et al., 2019; Nair et al., 2018; Chen et al., 2020;
Wang et al., 2018); the variant used here will be most similar to CRR (Wang et al., 2020). These
methods are capable of outperforming the quality of their dataset by learning to prefer alternative
actions when they lead to higher Q-values (Kumar et al., 2022; Ghugare et al., 2024). Online RL
refers to the more standard setting where we are allowed to interact with the environment to collect
additional data. On-policy updates improve a policy based on its own recent experience (Williams,
1992; Schulman, 2015), and are generally less sample efficient.

3 VLM AGENTS AS RL POLICIES

We approach agent interactions from an RL perspective, where the VLM will become an RL policy
mapping text and image observations to text actions. Text is represented by tokens from the VLM’s
vocabulary, V . The external task the agent interacts with — such as the browser or game it is
playing — can be thought of as the environment. The environment interprets text actions to produce
the next observation and reward. Because VLMs are sequence-to-sequence models, there are two

3

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

ways to define the action space A (Zhou et al., 2024; Abdulhai et al., 2023). One option is to
view each individual output token as a separate action (A = V). This “token-based view” most
closely aligns with how sequence models are trained. During evaluation and data collection, it is
simpler to take a “turn-based view” where each timestep is a full turn of dialogue and actions are
complete replies with some maximum length r (A = Vr). On each turn t, the environment provides
an observation of text (otext) and image (oimg) data, and we query the VLM to generate a complete
response at. The open-ended text response is parsed by the environment to produce the true action
that it uses to update its state. Depending on the environment, the “true” action space A′ may be
text, code, or a set of discrete choices. We refer to this mapping from text actions to true actions
as parseenv : A → A′. We assume this behavior is outside the agent’s control and that it is the
agent’s responsibility to produce text actions that parseenv can interpret. Figure 1 summarizes the
turn-based interaction between a VLM agent and its environment. Our goal is to use RL to update
the VLM’s parameters to maximize rewards.

4 RELATED WORK

RL has many applications in foundation model fine-tuning and agent tasks. A summary of related
work in Reinforcement Learning from Human Feedback and applications of foundation models
without open-ended text-based actions is deferred to Appendix A.1.

Our VLM agent method shares technical motivations with work on fine-tuning LLMs for multi-turn
dialogue. WebRL (Qi et al., 2024) applies a constrained on-policy RL update to prevent the fine-
tuned policy from diverging from an initial task-specific SFT policy. When combined with a variety
of other curriculum and dataset filtering techniques, the WebRL update allows open-source models
to significantly outperform proprietary LLMs in WebArena (Zhou et al., 2023). ILQL (Snell et al.,
2022) adjusts the outputs of a base LLM during inference based on the predictions of a second critic
LLM trained by offline RL. ArCHer (Zhou et al., 2024) is an online RL update that highlights the
“turn-based” vs. “token-based” action discrepancy (Section 3) and creates a hierarchical approach
that splits learning across both timescales. In contrast, we will train RL solely from the token-based
format because it allows for a simple substitution of SFT. ILQL and ArCHer are actor-critic updates;
like most actor-critics, they create training signal for the main policy model we are fine-tuning by
training other models to learn value predictions (Qπ and V π) or a reference policy based on SFT.
The cost of training multiple models is rarely an issue at the scale of standard RL research domains
but is a significant concern in VLM applications where models contain billions of parameters. Our
method will only involve a single VLM.

Recent work has applied online RL to VLMs in multi-turn vision tasks (Fereidouni & Siddique,
2024). The most closely related work to our own is RL4VLM (Zhai et al., 2024). RL4VLM fine-
tunes the LLaVA VLM (Liu et al., 2024b) in a two-stage process. During the first stage, the base
model is aligned to the syntax of the environment by SFT on demonstrations generated by chain-
of-thought prompting (Wei et al., 2022b). The second stage improves the success rate of the SFT
model with on-policy RL via PPO (Schulman et al., 2017). Our method will replace this two-stage
pipeline with a single stage by using an RL update that makes the SFT stage redundant.

5 METHOD

Our method follows the popular framework of performing SFT on task-specific data that is gener-
ated by basic prompting. However, we allow the agent to improve over its dataset by filtering out
tokens that we estimate will degrade the agent’s performance. This filtering process is enabled by
converting VLM agent fine-tuning to an off-policy actor-critic RL problem.

5.1 TASK SETUP AND PROMPTING

The environment provides an observation of text (otext) and image (oimg) data. A prompt method
reformats information from the environment into a full input prompt, including a description of
the agent’s objective. We include documentation of the actions available to the agent alongside
an example of the syntax expected by parseenv (Section 3). We can generalize our method by
introducing a second parser: parseagent (Figure 1). parseagent enables arbitrary output formats
including chain-of-thought-style reasoning (Wei et al., 2022b; Yao et al., 2022b). We will allow

4

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

for reasoning (or “thought”) outputs by setting parseagent to return only the text after the string
“[action]”. This choice is arbitrary and could be replaced by a JSON output (as in RL4VLM),
for example. Our VLM agents’ first challenge will be to output text actions a that are valid inputs
to parseenv(parseagent(a)). When the agent fails to do so, it will be given an error message and
prompted to try again. VLMs that cannot break out of this loop create a sparse reward problem
by failing to reach useful reward signals for training. We minimize this problem by introducing
penalties for invalid syntax on top of the environment’s native reward function (Appendix A.3.1).
Appendix A.2.2 provides further discussion on action parsing and its connection to RL exploration.

5.2 RL FINE-TUNING

“Your goal is to... Select actions by...” “Your goal is to...”“[action] move up”

...
Image Features Prompt Features Action Features

VLM VLM

Observation Next ObservationAction Environment

Reward
0 1 2 3 4Token-Based

States

Turn-Based

Observations

XX X X X X X X X

Figure 2: Converting Turns → Tokens. We treat each token of the agent’s reply as a single action
by passing consecutive turns of dialogue through the VLM and finding output representations cor-
responding to tokens where an action decision is made. Outputs corresponding to the prompt tokens
are masked and ignored. The resulting sequence of RL input states is numbered (0, 1, 2, 3, 4).

Let VLMθ represent the VLM architecture with all its parameters θ excluding the token output
layer(s) at the end of the LLM. We will use Lϕ to refer to the feed-forward language head that
maps VLMθ’s outputs to a distribution over the tokens in our vocabulary V . Our dataset con-
tains turn-based transitions: ((otext

t , oimg
t), at, rt+1, dt+1, (o

text
t+1, o

img
t+1)), where at is a complete reply

and dt+1 is one if we’ve reached the final turn of the interaction and zero otherwise. While it is
simpler to view agent-environment interaction from a turn-based perspective, our training process
will convert data to a token-based action space. The end result will be a more standard RL prob-
lem where states are the output of the VLM, and our policy decides between |V| discrete actions.

LoRA Transformer

Image Encoder Text Encoder

“Your goal is to...” “[action] drag_and_drop(‘13’, ‘19’, ‘crtl+a’)”

. . .

.

. . .

Actor CriticHidden Rep.

Token Distribution Token Values

Learning from
Future Outcomes

Image
Token

Image
Token

Prompt
Token

Prompt
Token

Action
Token

Action
Token

Figure 3: VLM Actor-Critic. We visualize a standard
decoder-only VLM. Our method adds a second output
head (critic) to estimate the future return achieved by se-
lecting each token in the vocabulary. The critic filters the
dataset of the language modeling head (actor).

Converting from Turns to Tokens.
During inference, the VLM gener-
ated at by tokenizing (otext

t , oimg
t) into

a multi-modal sequence and auto-
regressively continuing that sequence
until a stop condition was met. Let ã be
the tokenized action string with length
l. The true input sequence to the VLM
is ã concatenated to the end of a tok-
enized (oimg, otext). VLMθ outputs a se-
quence of d-dimensional vector repre-
sentations where the last l + 1 indices
correspond to the action decisions we
want to optimize. We will summarize
the process of retrieving the represen-
tations used to generate action tokens
with the notation VLMθ(o

img, otext, a) = h ∈ R(l+1)×d. Querying the VLM without the action text
(VLMθ(o

img, otext)) returns the d-dimensional representation (of length one) that is used to begin
the action reply. We can think of VLMθ(o

imgt , otext
t , at) = ht as a sequence of RL states. The

policy begins with h0t , selects a token action ã0t , sees h1t , and receives no reward. At the end of
the turn, the policy selects a token that terminates generation and returns control to the environ-
ment. From the policy’s perspective the next observation is the first action query of the next turn, or
VLMθ(o

img
t+1, o

text
t+1), with a reward and termination signal from the environment rt+1 and dt+1. Fol-

5

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

lowing this logic, we can convert a turn-based transition ((otext
t , oimg

t), at, rt+1, dt+1, (o
text
t+1, o

img
t+1))

to token-based RL transitions by computing:

h = VLMθ(o
img
t , otext

t , at) (1) h′ =��∇VLMθ(o
img
t+1, o

text
t+1) (2)

Where��∇ is a stop-gradient that puts the VLM in inference mode. The expanded batch of RL transi-
tions is: (h0, ã0t , r

1 = 0, d1 = 0, h1), (h1, ã1t , r
2 = 0, d2 = 0, h2), . . . , (hl, ãlt, r

l+1 = rt+1, d
l+1 =

dt+1, h
l+1 = h′). This process is visualized in Figure 2. After the conversion, we can apply RL

exactly as we would in any other setting, and gradients will flow back to the base VLM.

Language Loss. SFT is the most popular approach to VLM agent fine-tuning. In multi-turn SFT,
we compute the next-token prediction error causally along the entire sequence and mask the loss so
that we are only maximizing the likelihood of the agent’s replies. In our notation, the SFT loss for
turn i would be written:

LSFT(i) = −1

l

l∑
j=0

logLϕ(ã
j
i | h

j
i) (3)

RL would call Equation 3 behavior cloning, and its limitation is that it imitates every decision in the
dataset and, therefore, cannot improve beyond its performance. We need to filter the dataset with
some function f(h, a) ∈ {0, 1} to avoid imitating sub-optimal decisions:

LFSFT(i) = −1

l

l∑
j=0

f(hji , ã
j
i) logLϕ(ã

j
i | h

j
i) (4)

The filter creates a second mask for action tokens that should not be imitated. While we could create
a heuristic filter by masking low-return trajectories, we can let RL outperform heuristics by learning
a filter from data. We create a second output head, Qψ , which takes the VLM representations
as input and produces |V| outputs — much like the language head Lϕ. Let Qψ(h)[k] be the output
corresponding to token k. AssumingQψ outputs correctQ-values (Section 2), the filter can become:

f(hji , ã
j
i) = Qψ(h

j
i)[ã

j
i] > Qψ(h

j
i)

⊺Lϕ(h
j
i) + β (5)

In RL terminology, the filter approves actions that have an advantage of at least β: f(s, a) =
Qπ(s, a) − V π(s) > β. We will refer to Equation 4 with the filter in Equation 5 as Advantage
Filtered SFT (AFSFT).

Value Loss. Our filter will only be useful if we can train Qψ to output accurate Q-values. We
train Qψ with a one-step temporal difference (TD) loss where we bootstrap an estimate of Q(s, a):
yi = ri+1+γ(1−di+1)��∇(Qψ(h

i+1)⊺Lϕ(h
i+1)). For stability, y uses a moving average of the critic

parameters ψ (Lillicrap, 2015). We update our current predictions based on the improved estimate:

LTD(i) =
1

l

l∑
j=0

(Qψ(h
j
i)[ã

j
i]− yji)

2 (6)

Training. We can now put these RL components together to update our VLM. Figure 3 provides a
high-level overview. Each training step samples a batch of turn-based transitions from our dataset
D. We convert VLM agent data to a sequential RL problem with one forward pass of the VLM on
turn i (Equation 1) and one inference-only pass on the following turn i + 1 (Equation 2). We then
compute the critic loss (Equation 6) and actor loss (Equations 4 and 5), and take a gradient step on
the joint loss:

LVLMQ = E
i∼D

[LFSFT(i) + λLTD(i)] (7)

Note that the use of stop-gradients in TD targets y and the filter f mean that the actor (language
head)Lϕ only optimizes LFSFT while the criticQψ only optimizes LTD. However, the VLM trains on
both objectives simultaneously and balances their values with a hyperparameter λ. We use standard
techniques to save GPU memory during optimization, including training in mixed precision with
an 8-bit optimizer (Dettmers et al., 2021). We also use LoRA to adapt the VLM’s behavior with
a small number of trainable parameters (Hu et al., 2022). However — unlike the other efficiency
techniques — LoRA plays an important conceptual role and would likely still be useful even if

6

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

hardware resources were not a concern. Optimizing the VLM on task-specific data with LVLMQ
will almost surely degrade its performance on other tasks. In theory, LFSFT lets us retain general
behavior by imitating reward-free SFT tokens from a standard instruction-tuning dataset alongside
RL training, but this would be expensive in practice. LoRA makes this unnecessary by letting us
discard the weight adapters and recover the base model at any time during deployment.

Extending SFT. Our base VLM optimizes a policy loss that is a safe improvement over SFT in
most cases and lets us recover SFT if necessary. When the learned filter f is noisy or near its
initialization, Eq. 4 effectively becomes SFT on random subsets of the dataset. When Q-value
estimation is successful, Eq. 4 creates a policy that outperforms its training data by declining to
imitate action token outputs thought to be sub-optimal. There are some concerns when training on
expert datasets where the dataset is of uniformly high quality, as the margin of advantages used to
compute Eq. 4 would be close to zero. If we know that our dataset contains optimal decisions,
we could manually recover standard SFT with β = −∞ and λ = 0. Like SFT, but unlike many
foundation model RL actor-critics, LVLMQ requires a single base VLM.

Offline-to-Online Fine-Tuning. In applications like robotics, offline pre-training is often motivated
by safety or cost reduction. Many VLM agent applications involve safe and inexpensive simulated
environments, but learning from existing datasets will be important for two different reasons. First, it
will help us overcome the challenge of outputting correct action syntax without a separate SFT stage.
We can use more capable models or other techniques to generate a diverse dataset of valid action
syntax but do not need to assume those actions are high-quality semantic decisions. The token-based
action format allows agents to copy syntax details from poor actions without imitating the entire
semantic decision. The second benefit addresses token vocabulary (|V|) action spaces that are orders
of magnitude larger than we would typically see in discrete actor-critics (Table 1). Many token
actions are not relevant to the task and will never be selected or appear in our dataset (Snell et al.,
2022). The outputs of Qψ for these tokens will never be optimized and should effectively be treated
as random numbers that do not represent meaningful value estimates. Many offline RL techniques
manage this miscalibration by constraining updates to actions that appear in their (small) static
dataset. Token action spaces are so large that they create a unique situation where this constraint is
necessary even when we do allow for online interaction.

6 EXPERIMENTS

Random
Valid Actions

MoonDream2
(Min. Format)

PaliGemma
(Min. Format)

xGen-MM
(No Format)

Gemma 2B (LLM)
(Min. Format)

xLAM (LLM)
(Min. Format)

0
25
50
75

100
58

0 0

53

0

100100

0 0

83

0

100
Gym Cards NumberLine

Task Success Rate (%)
Valid Action Accuracy (%)

Random
Valid Actions

MoonDream2
(Min. Format)

PaliGemma
(Min. Format)

xGen-MM
(Min. Format)

Gemma 2B (LLM)
(Min. Format)

xLAM (LLM)
(Min. Format)

0
25
50
75

100

28
0 0

32
0 13

100

0 0

55

0

100
Gym Cards Blackjack

Figure 4: Gym Cards Model Evaluations. We compare the task success and the rate of valid
model output syntax of base models in two Gym Cards environments. LLM prompts replace the
image with an equivalent text description.

We begin by highlighting the difficulty of prompting base VLMs to succeed in simple agent-like
tasks. Gym Cards (Zhai et al., 2024) converts toy RL decision-making tasks like the game of Black-
jack into testbeds for VLM-Agent research. The true action space A′ is a small set of discrete
choices, but following (Liu et al., 2024b), we make this domain more representative of the broader
problems involved in prompting the model to output specific syntax by setting parseenv to match
a text action with only light corrections. We choose the parseagent syntax of “[action]” be-
cause it is trivial to prompt the base model to pass this check by including the action string at the
beginning of the reply. Additional training and action parsing details are provided in Appendix A.2.
We follow a general prompting approach summarized in Section 5.1, where a text input includes
instructions about the objective of the task and the expected syntax of the models’ action replies
(with an example). Appendix A.4 contains example prompts for our experiments.

7

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Figure 5: Offline-to-Online Gym Cards. (Left, Center Right) Task success rate ([0, 1]) compared
against a reference score for a similar setup in Zhai et al. (2024). A gray background indicates
offline learning on a fixed dataset. A white background indicates that online environment interaction
is enabled. (Center Left, Right) Action syntax accuracy during evaluation.

Figure 4 compares the performance of the three base VLMs in Table 1 using only prompting and
without further fine-tuning. We see that it is surprisingly difficult to get these smaller open-weight
VLMs to cooperate with the expected action syntax. Action syntax is closely related to tool-use
(Section 2), where larger models tend to be more accurate, and this capability is more reliable in
larger LLMs. We can demonstrate this by using privileged environment data to add a text summary
of the image to the observation prompt. LLMs can then be used in a nearly equivalent setup by
simply ignoring the visual input. xLAM (Zhang et al., 2024b) — an LLM specifically targeted
at tool-use and function-calling applications — achieves high accuracy. Off-policy RL fine-tuning
will let us learn from the interactions of larger models (including LLMs with alternate text prompts).
However, even when models have reasonable syntax accuracy, they might only output certain subsets
of the action space or make incorrect semantic decisions that will not solve the task. Appendix
A.2 Figure 8 repeats this experiment in the BabyAI (Chevalier-Boisvert et al., 2019) domain and
explores the addition of “thought”-style prompting. We find all VLMs output inaccurate syntax, and
only xGen-MM has a non-zero success rate.

0k 100k 200k 300k 400k 500k
Timesteps Collected

20

40

60

80

100
Valid Collection Actions (%)

0k 100k 200k 300k 400k 500k
Timesteps Collected

0

20

40

60

80

100
Valid Eval Actions (%)

XGenMM+AFSFT
MoonDream2+AFSFT
XGenMM+DPG

0k 100k 200k 300k 400k 500k
Timesteps Collected

0.0

0.2

0.4

0.6

0.8

1.0
Eval Success Rate ([0, 1])

BabyAI GoToLocalS4 (Online)

Figure 6: Online RL in BabyAI. An ϵ-greedy exploration schedule
allows for online learning by introducing valid action syntax that
can be refined by the critic filter to produce a successful policy.

We can improve performance
by taking these same VLM-
agents and fine-tuning them
with LVLMQ (Eq. 7). Figure
5 demonstrates the technique
in two Gym Cards tasks. We
initialize a dataset D to the ac-
tions generated by a random
policy; this data makes sub-
optimal (random) decisions
that are properly formatted as
text. We also mix in data
collected by prompting base
VLMs — which are both in-
accurate and low-performance. More detail about the initial offline datasets used in our experiments
is provided in Appendix A.3.2. For demonstration purposes, the advantage threshold is initialized
to β = −∞ (Eq. 5) such that the language head (RL actor) is optimizing SFT on this sub-optimal
dataset while beginning to optimize the critic value regression loss (Eq. 6). This quickly brings both
xGenMM and MoonDream2 to a similar performance level. After a few hundred gradient steps,
we schedule the advantage threshold to reach β = 0; the critic is now filtering sub-optimal tokens
within each turn’s reply, and the agent’s performance improves to match or exceed the RL4VLM
(Zhai et al., 2024) reference score. Because LVLMQ is equally applicable online and offline, we are
free to use our current RL agent to collect additional data. In this case, the agents have already
converged to high performance but maintain this level as the buffer fills with fresh data. In RL, it is
not uncommon to see a dip in performance during the transition between offline and online learning
due to distribution shift and related optimization challenges (Zhang et al., 2024c), but Eq. 4 avoids
many of these obstacles, and we do not observe instability.

Figure 5 includes results from an alternative actor update that replaces Eq. 4 with a more stan-
dard online objective that directly maximizes Q-values according to the current critic: LDPG(i) =

− 1
l

∑l
j=0 Lϕ(h

j
i)

⊺
��∇Qψ(hji). While this objective is effective in discrete actor-critics in more typ-

8

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

PaliGemma xGenMM xLAM MD2
0

25
50
75

100
Success Rate (Extended Prompt)

PaliGemma xGenMM xLAM MD2 MD2+SFT MD2+AFSFT
0

25
50
75

100
Success Rate (Reduced Prompt)

PaliGemma xGenMM xLAM MD2
0

25
50
75

100
Valid Action Rate (Extended Prompt)

PaliGemma xGenMM xLAM MD2 MD2+SFT MD2+AFSFT
0

25
50
75

100
Valid Action Rate (Reduced Prompt)

27 MiniWoB Click Tasks

Figure 7: Offline RL in BrowserGym MiniWoB. Box plots indicate the median and interquartile
range across 27 “click” tasks. Models are evaluated with and without an “extended prompt” that
includes the webpage DOM and language descriptions of the code-like action space (Appendix
A.4). Individual task results are listed in Tables 5 and 6. “MD2” abbreviates MoonDream2.

ical RL settings, it is not effective here due to miscalibrated Q-values in the critic network’s output
space resulting from large token vocabularies.

Training an RL policy from a fully offline dataset more closely resembles the setup of SFT agent
fine-tuning, where the ability to collect online data to improve performance is a convenient feature.
However, we could also fine-tune the VLM entirely online using a buffer of its own experience.
Figure 6 demonstrates online learning in a BabyAI task. BabyAI is another domain where the true
action space is a small set of discrete choices, which allows for a simple exploration strategy where
we can replace the model’s response with a random (valid) decision with probability ϵ that decays
over time. Because the dataset then contains some valid actions that avoid the syntax reward penalty,
the AFSFT update learns to favor them over the model’s own (inaccurate) outputs, leading to a spike
in action accuracy. From there, the Q filter can prefer actions that lead to task success over other
valid but sub-optimal decisions, and the VLM’s success rate rises to nearly 100%.

In domains where the true action space is open-ended text or state-dependent code, it is more difficult
to generate valid exploration actions. We evaluate this with the BrowserGym (Drouin et al., 2024)
variant of the MiniWoB++ benchmark (Shi et al., 2017; Liu et al., 2018). MiniWoB is a suite of
locally hosted browser tasks for RL agents. BrowserGym creates a standardized interface for web
tasks with code-like action syntax (Figure 11). We use 3 VLMs and the xLAM LLM to collect
a dataset of 340k actions across 27 different “click” navigation tasks. Figure 7 summarizes these
models’ action accuracy and task success rate. We compare the performance of a more detailed
prompt that includes HTML text in addition to a browser screenshot against a simplified variant
that leads to more affordable input lengths. Our dataset is partially generated by filling the agent’s
action reply with the beginning of a randomly selected BrowserGym function call — adding many
inaccurate or irrelevant browser commands to the dataset and creating a challenging offline RL
problem. We then fine-tune the worst performing VLM (MoonDream2) using both SFT (Eq. 3) and
AFSFT (Eq. 7). Figure 7 highlights LVLMQ’s ability to sift through noisy datasets in order to recover
a MoonDream2 policy that more closely resembles the larger xLAM model.

7 CONCLUSION

The standard approach to training VLM agents typically involves using a larger, more capable model
to generate a dataset, which is then used to train a smaller model via supervised fine-tuning (SFT).
In this work, we show that advantage-filtered supervised fine-tuning (AFSFT) — an offline rein-
forcement learning technique that masks actions predicted to reduce downstream performance —
can effectively replace SFT in scenarios where datasets are suboptimal or action formats are unre-
liable. AFSFT enables a smooth transition between learning from static offline data and interacting
with the environment online, while requiring only a minimal architectural change: the addition of a
secondary token output head atop a fine-tunable base model.

9

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models. arXiv preprint arXiv:2311.18232, 2023.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International conference on machine learning, pp. 104–114. PMLR,
2020.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen.
Llmarena: Assessing capabilities of large language models in dynamic multi-agent environments.
arXiv preprint arXiv:2402.16499, 2024a.

William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-language models provide
promptable representations for reinforcement learning. arXiv preprint arXiv:2402.02651, 2024b.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. Llama rider: Spurring
large language models to explore the open world. arXiv preprint arXiv:2310.08922, 2023.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=rJeXCo0cYX

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Moghis Fereidouni and AB Siddique. Search beyond queries: Training smaller language models for
web interactions via reinforcement learning. arXiv preprint arXiv:2404.10887, 2024.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical user interface
automation. arXiv preprint arXiv:2312.13108, 2023.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap be-
tween td learning and supervised learning–a generalisation point of view. arXiv preprint
arXiv:2401.11237, 2024.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Duan Nan. Pptc benchmark: Evaluating
large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767, 2023.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. arXiv preprint arXiv:2308.00675, 2023.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu,
Ming Zhu, Yao Cheng, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv
preprint arXiv:2401.05507, 2024.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 2023.

Vikhyat Korrapati. Moondream2: A tiny vision language model. https://huggingface.co/
vikhyatk/moondream2, 2024. DOI: 10.57967/hf/3219.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline rein-
forcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Yuan Ling, Fanyou Wu, Shujing Dong, Yarong Feng, George Karypis, and Chandan K Reddy. In-
ternational workshop on multimodal learning-2023 theme: Multimodal learning with foundation
models. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 5868–5869, 2023.

11

https://huggingface.co/vikhyatk/moondream2
https://huggingface.co/vikhyatk/moondream2
10.57967/hf/3219

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, and Giovanni Campagna.
Wilbur: Adaptive in-context learning for robust and accurate web agents. arXiv preprint
arXiv:2404.05902, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Xinyue Yang, Jiadai Sun, Yu Yang,
Shuntian Yao, Tianjie Zhang, et al. Webrl: Training llm web agents via self-evolving online
curriculum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=N0I2RtD8je.

12

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://openreview.net/forum?id=N0I2RtD8je
https://openreview.net/forum?id=N0I2RtD8je

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 3135–3144. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/shi17a.html.

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. In The Eleventh International Conference
on Learning Representations, 2022.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024.

Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Na-
talie Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representa-
tions, 2023.

Heyi Tao, Sethuraman TV, Michal Shlapentokh-Rothman, Derek Hoiem, and Heng Ji. Webwise:
Web interface control and sequential exploration with large language models. arXiv preprint
arXiv:2310.16042, 2023.

Oguzhan Topsakal and Tahir Cetin Akinci. Creating large language model applications utilizing
langchain: A primer on developing llm apps fast. In International Conference on Applied Engi-
neering and Natural Sciences, volume 1, pp. 1050–1056, 2023.

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning values
across many orders of magnitude, 2016. URL https://arxiv.org/abs/1602.07714.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31,
2018.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv
preprint arXiv:2402.03681, 2024.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022a. URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

13

https://proceedings.mlr.press/v70/shi17a.html
https://arxiv.org/abs/1602.07714
https://arxiv.org/abs/2206.07682

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao,
Tao Yu, and Lingpeng Kong. OS-copilot: Towards generalist computer agents with self-
improvement. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. URL
https://openreview.net/forum?id=3WWFrg8UjJ.

Yuchen Xiao, Yanchao Sun, Mengda Xu, Udari Madhushani, Jared Vann, Deepeka Garg, and Sum-
itra Ganesh. O3d: Offline data-driven discovery and distillation for sequential decision-making
with large language models. In NeurIPS 2023 Foundation Models for Decision Making Workshop,
2023.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the
wild. arXiv preprint arXiv:2310.10634, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu. Language agents with reinforcement learning
for strategic play in the werewolf game. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=usUPvQH3XK.

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj
Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A family of open large multimodal
models. arXiv preprint arXiv:2408.08872, 2024.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Lumos: Learning agents with unified data, modular design, and open-source
llms. arXiv preprint arXiv:2311.05657, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making
agents via reinforcement learning. arXiv preprint arXiv:2405.10292, 2024.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024a.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024b.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of q-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 16908–16916, 2024c.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

14

https://openreview.net/forum?id=3WWFrg8UjJ
https://openreview.net/forum?id=usUPvQH3XK

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. In Forty-first International Conference on Machine
Learning, 2024.

Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I Jordan,
and Jiantao Jiao. Fine-tuning language models with advantage-induced policy alignment. arXiv
preprint arXiv:2306.02231, 2023.

A APPENDIX

A.1 ADDITIONAL RELATED WORK

RL is used in the post-training process to realign a base model with human feedback (RLHF) and
enforce safety measures (Ouyang et al., 2022; Kaufmann et al., 2023; Bai et al., 2022). RLHF
typically uses online (on-policy) updates based on constrained policy gradient techniques (Zhu et al.,
2023; Ahmadian et al., 2024) that prevent the fine-tuned policy from over-optimizing a learned
reward model of human preferences (Lambert et al., 2024). Unlike the more general “agent” setting,
RLHF interactions typically last for one turn — a simplification that allows for alternate updates
like DPO (Rafailov et al., 2023). VLMs can also be used to create reward functions for training
smaller RL policies from scratch (Rocamonde et al., 2024; Wang et al., 2024). Our work updates
the VLM to output decisions directly, which is useful for text-based actions because learning to
output language from a randomly initialized policy via RL is sample inefficient. Another category
of methods fine-tunes foundation models as policies while avoiding the action syntax challenge that
comes with text actions (Section 2). When the environment has a small discrete set of valid actions,
we can iterate over our options and compare their likelihood according to the LLM (Carta et al.,
2023). We could also discard text outputs and use the hidden state of the base model to train a new
action output layer from scratch (Chen et al., 2024b; Szot et al., 2023; Xu et al., 2024).

A.2 ADDITIONAL IMPLEMENTATION DETAILS

A.2.1 TRAINING

Table 2 lists key hyperparameters and version control details for fine-tuning the MoonDream2 and
xGen-MM models (with SFT or RL). Our LoRA (Hu et al., 2022) settings are based on recommen-
dations from SFT fine-tuning pipelines by the models’ authors.

MoonDream2 xGen-MM
Version Notes revision 2024-05-20 xgen-mm-phi-3-mini-instruct-r-v1
Precision bf16 bf16

LoRA

r 8 8
α 16 16
Dropout .05 .05
Param Groups “mixer.Wqkv” [“qkv proj”, “q proj”, “gate up proj”, “down proj”]
Tunable Params 1,572,864 12,582,912

Table 2: VLM Model Training Details.

Table 3 provides a full listing of the hyperparameters involved in collecting environment data and
optimizing the VLM on the actor-critic RL loss (Eq. 7).

A.2.2 ACTION PROMPTING AND PARSING

Action Parsing. The goal of our method is to be a flexible replacement for SFT updates in an agent
setting. Therefore, we need our RL update to be compatible with arbitrary prompting schemes,
especially chain-of-thought (Wei et al., 2022b) or ReACT-style (Yao et al., 2022b) reasoning. We

15

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Gym Cards BabyAI MiniWoB
Exploration / Language Sampling

Language Temperature During Exploration .4 .4 .5
Max Reply Tokens 24 24 32
Expl. ϵ Schedule (Start → Stop),
[Over Online Epochs] (.35 → .05), [50] (1.0 → .1), [300] N/A (Offline)

Explore Action Prompt random random N/A
Exploit / Eval Action Prompt agent agent agent

Optimization

Minibatch Size Per GPU (A100 40GB) 3 3 1
Parallel GPUs 2 2 1
Gradient Accumulation 4 4 8
Learning Rate (VLM) 1e-4 1e-4 1e-4
Learning Rate (Critic MLP) 6e-4 8e-4 7e-4
Grad Norm Clip 2 2 2
VLM Linear LR Warmup Steps 250 500 300
Critic Linear LR Warmup Steps 100 50 100

Learning Schedule

Buffer Min Size Before Training (Per GPU) N/A (Offline Demos) 5k N/A (Offline Demos)
Max Buffer Size (Per GPU) 50k 100k N/A (Offline)
Parallel Environments (Per GPU) 6 6 8
Start Collecting on Epoch 50 0 ∞
Timesteps Collected Per Env Per Epoch 96 150 0
Grad Updates Per Epoch 512 512 3072
Total Epochs 75 (NumberLine) 200 (Blackjack) 600 50

TD Learning

Target Critic τ .008 .008 .009
Critic Loss Weight λ 1.0 8.0 1
Critic MLP Hid. Dim. dmodel dmodel 400
γ .995 .995 .995
PopArt β 5e-4 5e-4 5e-4
PopArt Init ν 100 100 100

Table 3: Training Hyperparameters. PopArt (van Hasselt et al., 2016) is an RL implementation
detail that helps normalize Q-value predictions and reduces tuning of the critic loss weight (λ) and
learning rate.

can allow for this by assuming a method parseagent (Fig. 1) can modify the model’s text output
before it is passed to the environment. In this work, we take a simple approach and remove all text
up to and including the special tag “[action]”. This allows the model room to reason in open-
ended text before selecting its action. We use “[action]” instead of more common json agent
formats because we are evaluating small-scale models that struggle to output the requested syntax,
and we can easily prompt the agent with an “[action]” tag.

In order for the environment simulator to execute the agent’s actions, it needs to be able to
parse the intended action from open-ended language outputs (parseenv in Figure 1). In domains
like the BrowserGym version of MiniWoB (and many real-world applications of closed-source
LLM/VLMs), actions are interpreted as function calls with state-dependent arguments. Even though
the underlying decision-making problem of Gym Cards and BabyAI can be represented by discrete
actions, we follow the lead of Zhai et al. (2024) in simulating an action syntax barrier by requiring
the model to output a string from a set of discrete choices in the prompt (Figure 9). In Gym Cards,
we require an exact match after removing any whitespace and markdown tags. In BabyAI, we are
slightly more lenient and parse the first of any match in the output string.

When the model produces syntax outside of the expected format, it cannot advance the simulator
and collect useful experience, even if it subjectively demonstrates some understanding of the task.
This dilemma is common in LLM evaluations and can sometimes be the root cause of “emergent”
behavior (Wei et al., 2022a): models that are only a slight improvement in terms of training loss or
human preferences can offer a dramatic improvement in automated evaluations because they cross
the somewhat arbitrary threshold of being able to interpret the requested format. As discussed in
Section 2, this capability has been emphasized and improved by tool-use benchmarks. However,
it is an especially difficult problem in RL because invalid action syntax prevents us from reaching
environment rewards and creates a sparse-reward exploration problem. The space of possible text
actions is so large that default RL strategies, like randomly sampling tokens from the action space,
are unlikely to find valid behavior. At the same time, the base model may be biased towards cer-

16

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

tain inaccuracies, such that sampling with higher temperature is unlikely to discover the successful
examples necessary for RL to correct its mistakes.

Action Prompting. Action prompting refers to strategies that modify the prompt method (Figure
1) to induce more accurate action syntax or a larger variety of decisions (or both). In the main
text and appendix, “No Format” or “agent” formatting refers to the natural default of letting the
model respond to the observation solely by sampling from the outputs of its own language head
(policy). “Minimum Format” tries to overcome the most obvious bottleneck of not outputting the
“[action]” tag by beginning the agent’s reply with a tokenized version of that string. “Random
Valid Actions“ or “random prompting” selects random actions from the environment’s underlying
action space A′ (Section 3) and maps them to valid text. In BrowserGym, this strategy is not practical
because actions require knowledge of HTML element IDs and open-ended text. Instead, we use a
“partial” prompting strategy where we sample from prefixes of valid actions. More specifically, we
can sample method names from the browser interface and have the agent attempt to complete the
arguments for that call. These prompting strategies create a version of ϵ-greedy exploration in RL
that is used during online learning and dataset collection. With probability ϵ, we can sample actions
with an exploration strategy (e.g., a random valid action). Otherwise, we can use an exploitation
strategy (e.g., the agent’s greedy output).

Random
Valid Actions

MoonDream2
(Min. Format)

PaliGemma
(Min. Format)

xGen-MM
(Min. Format)

0

25

50

75

100

28

0 0

42

100

36

9

68

BabyAI GoToLocalS6N4
Task Success Rate (%)
Valid Action Accuracy (%)

None w/ Min.
Format

w/
Thoughts

None w/ Min.
Format

w/
Thoughts

None w/ Min.
Format

w/
Thoughts

0

25

50

75

100

53

0

36 33 32
20

0

42

22

82

0

27

50 55

24

0

68

44

NumberLine

Blackjack

GoToLocalS6N4
xGen-MM Prompting Schemes

Task Success Rate (%)
Valid Action Accuracy (%)

Figure 8: Base Model Evaluations and Prompting. (Left) We repeat the base model action syntax
and success rate evaluation in a BabyAI domain. (Right) Comparing basic prompt variants with
xGenM-MM. “w/ Min. Format” adds assistance with action parsing syntax. “w/ Thoughts” adds
ReACT-style Yao et al. (2022b) reasoning.

A.3 ENVIRONMENT DETAILS

A.3.1 REWARD FUNCTIONS

Our problem formulation assumes multi-turn interactions where rewards are given after every action
decision. We can take advantage of this by adding reward terms beyond the reward function of the
inner environment — which is often a binary indicator of success or failure at the end of the episode.
We add per-timestep penalties for outputting invalid action choices in order to encourage more useful
data collection (Appendix A.2.2). We also introduce time limits and penalties for running out of time
in the environment or getting stuck in a cycle of several invalid actions. Modifications to the standard
reward functions of each environment are detailed in Table 4.

Gym Cards BabyAI MiniWoB
Inner Env Reward Multiplier ×1 ×100 ×1
On Invalid Action -2 -1 -2
Timeout on Consecutive Invalid Actions 3 5 5
Timeout on Total Steps 10 64 25
On Timeout -10 -200 -10

Table 4: Reward Terms. Reward functions are combinations of their environment’s natural reward
signal (in this case: a success/failure indicator given at the end of an episode) and per-timestep
signals to encourage correct action formatting.

17

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

A.3.2 OFFLINE DATASETS

• Gym Cards. Each of the Blackjack and NumberLine initial (offline) datasets contains
28800 transitions. 24k transitions were generated by random valid actions while 1.6k were
the outputs of MoonDream2 without any action action formatting. Both domains collected
2.4k actions from xGen-MM. Blackjack assisted xGen-MM with minimum action format-
ting, while in NumberLine, we could reach higher performance without action formatting
(Figure 4) due to a tokenization quirk. VLM sampling used a temperature of 0.4.

• MiniWoB. The MiniWoB dataset contains 364320 transitions spread approximately evenly
across 27 tasks (Table 5). With probability ϵ = .5, a partial action was generated to encour-
age a diverse dataset (Appendix A.2.2). Otherwise, actions were sampled from the base
VLM/LLM with temperature 0.5 (without formatting assistance). PaliGemma, xGen-MM,
and MoonDream2 each created 20% of the dataset, while xLAM generated the remaining
40%. xLAM is the most accurate model in terms of valid syntax (Table 6).

A.3.3 ADDITIONAL MINIWOB RESULTS

The results of Figure 7 are listed according to the 27 individual browser tasks in Tables 5 and 6.

PaliGemma xGenMM xLAM MD2 MD2+SFT MD2+AFSFT

click-tab 0.0 3.1 94.8 0.0 16.7 66.5
click-tab-2-easy 0.0 1.0 1.0 0.0 0.0 0.0
click-dialog-2 0.0 16.9 84.3 0.0 21.7 66.8
click-shape 0.0 0.8 1.7 0.0 0.0 1.5
click-checkboxes-transfer 0.0 0.0 71.5 0.0 14.9 61.7
click-shades 0.0 0.0 0.0 0.0 0.0 0.0
click-checkboxes 0.0 1.1 52.2 0.0 5.6 33.8
click-checkboxes-large 0.0 0.0 5.2 0.0 0.0 0.0
click-tab-2-hard 0.0 0.0 0.0 0.0 0.0 0.5
click-test-transfer 0.0 42.2 90.4 0.0 54.9 91.3
click-collapsible-2 0.0 0.0 1.0 0.0 0.0 0.0
click-test 0.0 56.8 100.0 0.0 100.0 100.0
click-menu 0.0 6.2 31.0 0.0 3.0 23.3
click-collapsible 0.0 0.0 0.3 0.0 0.0 0.0
click-checkboxes-soft 0.0 0.0 33.0 0.0 3.9 29.8
click-button 0.0 10.6 95.6 0.0 22.8 91.7
click-tab-2-medium 0.0 1.0 19.7 0.0 9.2 0.0
click-tab-2 0.0 0.0 1.9 0.0 0.0 0.0
click-option 0.0 0.0 66.8 0.0 0.0 0.0
click-menu-2 0.0 0.0 8.9 0.0 0.0 0.0
click-color 0.0 0.0 0.0 0.0 0.0 0.0
click-widget 0.0 14.5 60.7 0.0 16.2 58.5
click-dialog 0.0 4.1 100.0 0.0 32.6 100.0
click-link 0.0 9.3 0.0 0.0 0.5 11.8
click-scroll-list 0.0 1.0 27.4 0.0 0.0 0.0
click-button-sequence 0.0 1.8 5.6 0.0 0.0 0.0
click-test-2 0.0 45.5 90.4 0.0 44.6 89.2

Table 5: BrowserGym MiniWoB Success Rates (%). Evaluated over a sample of 5, 000 timesteps
per task. Bold and underlined entries denote the best and second-best performance per task, respec-
tively.

18

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

PaliGemma xGenMM xLAM MD2 MD2+SFT MD2+AFSFT

click-tab 13.3 97.5 99.7 39.8 7.0 100.0
click-tab-2-easy 16.7 95.1 99.7 49.0 6.6 91.5
click-dialog-2 16.0 95.7 100.0 44.6 6.7 99.9
click-shape 26.6 96.1 99.3 46.0 9.6 77.1
click-checkboxes-transfer 10.4 93.4 100.0 44.4 9.6 94.0
click-shades 28.4 91.0 99.9 47.8 74.0 100.0
click-checkboxes 11.1 92.5 100.0 42.9 10.2 95.6
click-checkboxes-large 4.4 95.0 99.5 34.3 0.0 46.0
click-tab-2-hard 5.8 89.8 99.9 41.3 0.3 79.1
click-test-transfer 33.1 96.6 100.0 39.0 22.7 96.8
click-collapsible-2 21.5 97.6 99.6 45.3 12.7 98.2
click-test 27.3 99.5 100.0 37.2 100.0 100.0
click-menu 22.5 92.9 100.0 46.6 6.4 99.8
click-collapsible 18.2 97.5 99.9 46.7 98.9 100.0
click-checkboxes-soft 7.4 96.0 100.0 42.5 7.0 99.5
click-button 20.0 95.3 100.0 44.8 6.6 95.0
click-tab-2-medium 17.1 96.6 99.8 48.4 5.1 97.8
click-tab-2 7.8 96.4 99.8 45.2 4.0 95.5
click-option 11.2 95.7 100.0 44.8 9.0 96.2
click-menu-2 24.4 95.9 100.0 46.2 5.7 72.8
click-color 27.9 97.3 99.9 41.8 30.6 99.5
click-widget 17.4 97.0 100.0 47.8 5.6 100.0
click-dialog 20.6 95.5 100.0 43.1 7.4 100.0
click-link 22.4 97.3 99.9 46.2 10.7 66.9
click-scroll-list 8.8 97.3 99.9 41.6 5.9 97.8
click-button-sequence 31.8 93.5 99.9 40.2 24.8 80.6
click-test-2 29.7 97.1 100.0 38.1 18.7 97.3

Table 6: BrowserGym MiniWoB Valid Action Syntax Rates (%). Bold and underlined entries
denote the best and second-best performance per task, respectively.

A.4 EXAMPLE OBSERVATION PROMPTS

Actions Taken: 0. Max Actions Allowed: 10.
You are playing a game of Blackjack.
You have long-term memory. If you want to remember something, include

’[start remember] MESSAGE [stop remember]’ in your response.

You can select an action by writing ’[action] CHOICE’, where CHOICE
is one of the following choices: [stand , hit]. The action
should be the final part of your answer. For example, a valid
action would be ’[action] stand’.

<|Text-Specific Info Begins|> You observe: Dealer’s card: 9. Player’s
cards: 8, 8. <|Text-Specific Info Ends|>

Let’s think step-by-step. Analyze the current observation, remember
key details, and answer this question: Which action do you choose?

Figure 9: Example Prompt from the Gym Cards Blackjack Domain. <|Text-Specific
Info|> markers denote text that is included only for LLM evaluations where the model cannot
observe the corresponding image.

19

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Actions Taken: 0. Max Actions Allowed: 64.
You are playing as the red triangle in a gridworld game. The triangle

points in the direction you are facing.
You have long-term memory. If you want to remember something, include

’[start remember] MESSAGE [stop remember]’ in your response.

You select an action with’[action] CHOICE’, where CHOICE is one of: [
turn left , turn right , move forward , pick up , drop , toggle ,
done]. The action should be the final part of your answer. For

example, a valid action would be ’[action] turn right’.
Your goal is: go to the yellow box
Look at the image observation. Which action do you choose?

Figure 10: Example prompt from the BabyAI domain.

20

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

Actions Taken: 0. Max Actions Allowed: 25.
You are a browser agent. Your goal is: Switch between the tabs to find

and click on the link "neque".
You have long-term memory. If you want to remember something, include ’[

start remember] MESSAGE [stop remember]’ in your response.

Select an Action by writing ’[action] ‘ACTION‘’ as the final part of your
answer. Your ‘ACTION‘ should be a short piece of python code in the

following format:
12 different types of actions are available.

noop(wait_ms: float = 1000)
Examples:

noop()

noop(500)

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)

scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill(’237’, ’example value’)

fill(’45’, ’multi-line\nexample’)

fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Examples:

select_option(’a48’, ’blue’)

select_option(’c48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’ControlOrMeta’, ’
Meta’, ’Shift’]] = [])
Examples:

click(’a51’)

click(’b22’, button=’right’)

click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’,
modifiers: list[typing.Literal[’Alt’, ’Control’, ’ControlOrMeta’, ’
Meta’, ’Shift’]] = [])
Examples:

dblclick(’12’)

dblclick(’ca42’, button=’right’)

dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Examples:

hover(’b8’)

press(bid: str, key_comb: str)
Examples:

press(’88’, ’Backspace’)

press(’a26’, ’ControlOrMeta+a’)

Figure 11: Example prompt from the MiniWoB domain. The goal description varies by task.
(Part 1/2).

21

ICLR 2025 Workshop on Self-Improving Foundation Models without Human Supervision

focus(bid: str)
Examples:

focus(’b455’)

clear(bid: str)
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Examples:

upload_file(’572’, ’my_receipt.pdf’)

upload_file(’63’, [’/home/bob/Documents/image.jpg’, ’/home/bob/
Documents/file.zip’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)
An example of a complete correct output is ’[action] click(’48’, button

=’middle’, modifiers=[’Shift’])’.

Accessibility Tree ([bid] info, center=(x coord, y coord)):
RootWebArea ’Click Tab Task’, focused, url=’file:///export/home/miniwob-

plusplus/miniwob/html/miniwob/click-tab-2.html’
[17] tablist ’’, center="(80,68)", multiselectable=False,

orientation=’horizontal’
[18] tab ’Tab #1’, center="(27,70)", expanded=True, selected=

True, controls=’tabs-1’
[19] link ’Tab #1’, center="(27,70)", url=’file:///

export/home/miniwob-plusplus/miniwob/html/miniwob/
click-tab-2.html#tabs-1’

[20] tab ’Tab #2’, center="(71,69)", expanded=False, selected
=False

[21] link ’Tab #2’, center="(71,70)", url=’file:///
export/home/miniwob-plusplus/miniwob/html/miniwob/
click-tab-2.html#tabs-2’

[22] tab ’Tab #3’, center="(115,69)", expanded=False,
selected=False

[23] link ’Tab #3’, center="(115,70)", url=’file:///
export/home/miniwob-plusplus/miniwob/html/miniwob/
click-tab-2.html#tabs-3’

[24] tabpanel ’Tab #1’, center="(80,137)"
[25] paragraph ’’, center="(80,137)"

StaticText ’Enim, aliquet risus pellentesque commodo’
StaticText ’in’
StaticText ’nibh. Venenatis’
StaticText ’id.’
StaticText ’Adipiscing. Feugiat justo tellus. Tortor

cum’
StaticText ’convallis’
StaticText ’dolor quisque id egestas.’

<|Image-Specific Info Begins|>
Web elements in the image have been labeled with their ‘bid‘ values.
<|Image-Specific Info Ends|>
You previously output: ’’ with error message: None

Determine the next action to accomplish your goal. Make sure to follow
the formatting instructions. Which action should you take?

Figure 12: Example prompt from the MiniWoB domain. The goal description varies by task.
<|Image-Specific Info|> markers denote text that is included only for VLM evaluations
where the agent can observe the corresponding browser screenshot. (Part 2/2).

22

	Introduction
	Background
	VLM Agents as RL Policies
	Related Work
	Method
	Task Setup and Prompting
	RL Fine-Tuning

	Experiments
	Conclusion
	Appendix
	Additional Related Work
	Additional Implementation Details
	Training
	Action Prompting and Parsing

	Environment Details
	Reward Functions
	Offline Datasets
	Additional MiniWoB Results

	Example Observation Prompts

