
Under review as a conference paper at ICLR 2018

JOINTLY LEARNING SENTENCE EMBEDDINGS AND
SYNTAX WITH UNSUPERVISED TREE-LSTMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a neural network that represents sentences by composing their words
according to induced binary parse trees. We use Tree-LSTM as our composition
function, applied along a tree structure found by a fully differentiable natural
language chart parser. Our model simultaneously optimises both the composition
function and the parser, thus eliminating the need for externally-provided parse
trees which are normally required for Tree-LSTM. It can therefore be seen as a
tree-based RNN that is unsupervised with respect to the parse trees. As it is fully
differentiable, our model is easily trained with an off-the-shelf gradient descent
method and backpropagation. We demonstrate that it achieves better performance
compared to various supervised Tree-LSTM architectures on a textual entailment
task and a reverse dictionary task. Finally, we show how performance can be
improved with an attention mechanism which fully exploits the parse chart, by
attending over all possible subspans of the sentence.

1 INTRODUCTION

Recurrent neural networks, in particular the Long Short-Term Memory (LSTM) architecture (Hochre-
iter & Schmidhuber, 1997) and some of its variants (Graves & Schmidhuber, 2005; Bahdanau et al.,
2014), have been widely applied to problems in natural language processing. Examples include
language modelling (Sundermeyer et al., 2012; Józefowicz et al., 2016), textual entailment (Bowman
et al., 2015; Sha et al., 2016), and machine translation (Bahdanau et al., 2014; Sutskever et al., 2014)
amongst others.

The topology of an LSTM network is linear: words are read sequentially, normally in left-to-right
order. However, language is known to have an underlying hierarchical, tree-like structure (Chomsky,
1957). How to capture this structure in a neural network, and whether doing so leads to improved
performance on common linguistic tasks, is an open question. The Tree-LSTM network (Tai et al.,
2015; Zhu et al., 2015) provides a possible answer, by generalising the LSTM to tree-structured
topologies. It was shown to be more effective than a standard LSTM in semantic relatedness and
sentiment analysis tasks.

Despite their superior performance on these tasks, Tree-LSTM networks have the drawback of
requiring an extra labelling of the input sentences in the form of parse trees. These can be either
provided by an automatic parser (Tai et al., 2015), or taken from a gold-standard resource such as
the Penn Treebank (Kiperwasser & Goldberg, 2016). Yogatama et al. (2016) proposed to remove
this requirement by including a shift-reduce parser in the model, to be optimised alongside the
composition function based on a downstream task. This makes the full model non-differentiable so it
needs to be trained with reinforcement learning, which can be slow due to high variance.

Our proposed approach is to include a fully differentiable chart parser in the model, inspired by the
CYK constituency parser (Cocke, 1969; Younger, 1967; Kasami, 1965). Due to the parser being
differentiable, the entire model can be trained end-to-end for a downstream task by using stochastic
gradient descent. Our model is also unsupervised with respect to the parse trees, similar to Yogatama
et al. (2016). We show that the proposed method outperforms baseline Tree-LSTM architectures
based on fully left-branching, right-branching, and supervised parse trees on a textual entailment task
and a reverse dictionary task. We also introduce an attention mechanism in the spirit of Bahdanau
et al. (2014) for our model, which attends over all possible subspans of the source sentence via the
parse chart.

1



Under review as a conference paper at ICLR 2018

2 RELATED WORK

Our work can be seen as part of a wider class of sentence embedding models that let their composition
order be guided by a tree structure. These can be further split into two groups: (1) models that rely on
traditional syntactic parse trees, usually provided as input, and (2) models that induce a tree structure
based on some downstream task.

In the first group, Paperno et al. (2014) take inspiration from the standard Montagovian semantic
treatment of composition. They model nouns as vectors, and relational words that take arguments
(such as adjectives, that combine with nouns) as tensors, with tensor contraction representing applica-
tion (Coecke et al., 2011). These tensors are trained via linear regression based on a downstream task,
but the tree that determines their order of application is expected to be provided as input. Socher et al.
(2012) and Socher et al. (2013) also rely on external trees, but use recursive neural networks as the
composition function.

Instead of using a single parse tree, Le & Zuidema (2015) propose a model that takes as input a parse
forest from an external parser, in order to deal with uncertainty. The authors use a convolutional
neural network composition function and, like our model, rely on a mechanism similar to the one
employed by the CYK parser to process the trees. Ma et al. (2015) propose a related model, also
making use of syntactic information and convolutional networks to obtain a representation in a
bottom-up manner. Convolutional neural networks can also be used to produce embeddings without
the use of tree structures, such as in Kalchbrenner et al. (2014).

Bowman et al. (2016) propose an RNN that produces sentence embeddings optimised for a down-
stream task, with a composition function that works similarly to a shift-reduce parser. The model
is able to operate on unparsed data by using an integrated parser. However, it is trained to mimic
the decisions that would be taken by an external parser, and is therefore not free to explore using
different tree structures. Dyer et al. (2016) introduce a probabilistic model of sentences that explicitly
models nested, hierarchical relationships among words and phrases. They too rely on a shift-reduce
parsing mechanism to obtain trees, trained on a corpus of gold-standard trees.

In the second group, Yogatama et al. (2016) shows the most similarities to our proposed model. The
authors use reinforcement learning to learn tree structures for a neural network model similar to
Bowman et al. (2016), taking performance on a downstream task that uses the computed sentence
representations as the reward signal. Kim et al. (2017) take a slightly different approach: they
formalise a dependency parser as a graphical model, viewed as an extension to attention mechanisms,
and hand-optimise the backpropagation step through the inference algorithm.

3 MODELS

All the models take a sentence as input, represented as an ordered sequence of words. Each word
wi ∈ V in the vocabulary is encoded as a (learned) word embedding wi ∈ Rd. The models then
output a sentence representation h ∈ RD, where the output space RD does not necessarily coincide
with the input space Rd.

3.1 BAG OF WORDS

Our simplest baseline is a bag-of-words (BoW) model. Due to its reliance on addition, which is
commutative, any information on the original order of words is lost. Given a sentence encoded by
embeddings w1, . . . ,wn it computes

h =

n∑
i=1

tanh (Wwi + b) ,

where W is a learned input projection matrix.

2



Under review as a conference paper at ICLR 2018

3.2 LSTM

An obvious choice for a baseline is the popular Long Short-Term Memory (LSTM) architecture of
Hochreiter & Schmidhuber (1997). It is a recurrent neural network that, given a sentence encoded by
embeddings w1, . . . ,wT , runs for T time steps t = 1 . . . T and computes

 it
f t
ut

ot

 = Wwt +Uht−1 + b,

ct = ct−1 � σ(f t) + tanh(ut)� σ(it),
ht = σ(ot)� tanh(ct),

where σ(x) = 1
1+e−x is the standard logistic function. The LSTM is parametrised by the matrices

W ∈ R4D×d, U ∈ R4D×D, and the bias vector b ∈ R4D. The vectors σ(it), σ(f t), σ(ot) ∈ RD are
known as input, forget, and output gates respectively, while we call the vector tanh(ut) the candidate
update. We take hT , the h-state of the last time step, as the final representation of the sentence.

Following the recommendation of Jozefowicz et al. (2015), we deviate slightly from the vanilla
LSTM architecture described above by also adding a bias of 1 to the forget gate, which was found to
improve performance.

3.3 TREE-LSTM

Tree-LSTMs are a family of extensions of the LSTM architecture to tree structures (Tai et al., 2015;
Zhu et al., 2015). We implement the version designed for binary constituency trees. Given a node
with children labelled L and R, its representation is computed as


i
fL
fR
u
o

 = Ww +UhL +VhR + b, (1)

c = cL � σ(fL) + cR � σ(fR) + tanh(u)� σ(i), (2)
h = σ(o)� tanh(c), (3)

where w in (1) is a word embedding, only nonzero at the leaves of the parse tree; and hL,hR and
cL, cR are the node children’s h- and c-states, only nonzero at the branches. These computations
are repeated recursively following the tree structure, and the representation of the whole sentence is
given by the h-state of the root node. Analogously to our LSTM implementation, here we also add a
bias of 1 to the forget gates.

3.4 UNSUPERVISED TREE-LSTM

While the Tree-LSTM is very powerful, it requires as input not only the sentence, but also a parse
tree structure defined over it. Our proposed extension optimises this step away, by including a basic
CYK-style (Cocke, 1969; Younger, 1967; Kasami, 1965) chart parser in the model. The parser has
the property of being fully differentiable, and can therefore be trained jointly with the Tree-LSTM
composition function for some downstream task.

Table 1: Chart for the sentence “neuro linguistic programming rocks”.

neuro linguistic programming rocks
neuro linguistic programming linguistic programming rocks

neuro linguistic linguistic programming programming rocks
neuro linguistic programming rocks

3



Under review as a conference paper at ICLR 2018

The CYK parser relies on a chart data structure, which provides a convenient way of representing the
possible binary parse trees of a sentence, according to some grammar. Here we use the chart as an
efficient means to store all possible binary-branching trees, effectively using a grammar with only a
single non-terminal. This is sketched in simplified form in Table 1 for an example input. The chart is
drawn as a diagonal matrix, where the bottom row contains the individual words of the input sentence.
The nth row contains all cells with branch nodes spanning n words (here each cell is represented
simply by the span – see Figure 1 below for a forest representation of the nodes in all possible trees).
By combining nodes in this chart in various ways it is possible to efficiently represent every binary
parse tree of the input sentence.

The unsupervised Tree-LSTM uses an analogous chart to guide the order of composition. Instead of
storing sets of non-terminals, however, as in a standard chart parser, here each cell is made up of a
pair of vectors (h, c) representing the state of the Tree-LSTM RNN at that particular node in the tree.
The process starts at the bottom row, where each cell is filled in by calculating the Tree-LSTM output
(1)-(3) with w set to the embedding of the corresponding word. These are the leaves of the parse
tree. Then, the second row is computed by repeatedly calling the Tree-LSTM with the appropriate
children. This row contains the nodes that are directly combining two leaves. They might not all be
needed for the final parse tree: some leaves might connect directly to higher-level nodes, which have
not yet been considered. However, they are all computed, as we cannot yet know whether there are
better ways of connecting them to the tree. This decision is made at a later stage.

‘neuro’
h c

‘linguistic’
h c

‘programming’
h c

‘rocks’
h c

‘linguistic
programming rocks’

h ch c
‘neuro linguistic
programming’

‘neuro
linguistic’

h c
‘linguistic

programming’

h c h c
‘programming

rocks’

‘neuro linguistic programming rocks’
h c

Figure 1: Unsupervised Tree-LSTM network structure for the sentence “neuro linguistic programming
rocks”.

Starting from the third row, ambiguity arises since constituents can be built up in more than one way:
for example, the constituent “neuro linguistic programming” in Table 1 can be made up either by
combining the leaf “neuro” and the second-row node “linguistic programming”, or by combining
the second-row node “neuro linguistic” and the leaf “programming”. In these cases, all possible
compositions are performed, leading to a set of candidate constituents (c1,h2), . . . , (cn,hn). Each
is assigned an energy, given by

ei = cos(u,hi), (4)

where cos(·, ·) indicates the cosine similarity function and u is a (trained) vector of weights. All
energies are then passed through a softmax function to normalise them, and the cell representation is

4



Under review as a conference paper at ICLR 2018

finally calculated as a weighted sum of all candidates using the softmax output:

si = softmax(ei/t), (5)

c =

n∑
i=1

sici, h =

n∑
i=1

sihi.

The softmax uses a temperature hyperparameter t which, for small values, has the effect of making
the distribution sparse by making the highest score tend to 1. In all our experiments the temperature
is initialised as t = 1, and is smoothly decreasing as t = 1/2e, where e ∈ Q is the fraction of training
epochs that have been completed. In the limit as t→ 0+, this mechanism will only select the highest
scoring option, and is equivalent to the argmax operation. The same procedure is repeated for all
higher rows, and the final output is given by the h-state of the top cell of the chart.

The whole process is sketched in Figure 1 for an example sentence. Note how, for instance, the final
sentence representation can be obtained in three different ways, each represented by a coloured circle.
All are computed, and the final representation is a weighted sum of the three, represented by the
dotted lines. When the temperature t in (5) reaches very low values, this effectively reduces to the
single “best” tree, as selected by gradient descent.

4 EXPERIMENTS

All models are implemented in Python 3.5.2 with the DyNet neural network library (Neubig et al.,
2017) at commit 25be489. The code for all following experiments will be made available on the first
author’s website1 shortly after the publication date of this article. Performance on the development
data is used to determine when to stop training. Each model is trained three times, and the test set
performance is reported for the model performing best on the development set.

The textual entailment model was trained on a 2.2GHz Intel Xeon E5-2660 CPU, and took three
days to converge. The reverse dictionary model was trained on a NVIDIA GeForce GTX TITAN
Black GPU, and took five days to converge.

In addition to the baselines already described in §3, for the following experiments we also train two
additional Tree-LSTM models that use a fixed composition order: one that uses a fully left-branching
tree, and one that uses a fully right-branching tree.

4.1 TEXTUAL ENTAILMENT

We test our model and baselines on the Stanford Natural Language Inference task (Bowman et al.,
2015), consisting of 570 k manually annotated pairs of sentences. Given two sentences, the aim is to
predict whether the first entails, contradicts, or is neutral with respect to the second. For example,
given “children smiling and waving at camera” and “there are children present”, the model would be
expected to predict entailment.

For this experiment, we choose 100D input embeddings, initialised with 100D GloVe vectors
(Pennington et al., 2014) and with out-of-vocabulary words set to the average of all other vectors.
This results in a 100× 37 369 word embedding matrix, fine-tuned during training. For the supervised
Tree-LSTM model, we used the parse trees included in the dataset. For training we used the Adam
optimisation algorithm (Kingma & Ba, 2014), with a batch size of 16.

Given a pair of sentences, one of the models is used to produce the embeddings s1, s2 ∈ R100.
Following Yogatama et al. (2016) and Bowman et al. (2016), we then compute

u = (s1 − s2)
2,

v = s1 � s2, (6)

q = ReLU

A

u
v
s1
s2

+ a

 ,

1https://www.whitehouse.gov/

5

https://www.whitehouse.gov/


Under review as a conference paper at ICLR 2018

Table 2: Test set accuracy (higher is better) on the SNLI dataset, and number of parameters. We report
separately the number of intrinsic model parameters and the number of word embedding parameters.
Other encoding-based models are also reported.

Model Test Accuracy # Parameters

100D Bag-of-words 77.6 % 91 k + 3.7 M
100D LSTM 82.2 % 161 k + 3.7 M
100D Left-branching Tree-LSTM 82.1 % 231 k + 3.7 M
100D Right-branching Tree-LSTM 82.5 % 231 k + 3.7 M
100D Supervised Tree-LSTM 82.5 % 231 k + 3.7 M
100D Unupervised Tree-LSTM 82.8 % 231 k + 3.7 M

Bowman et al. (2015), 100D LSTM 77.6 % 220 k + ?
Bowman et al. (2016), 300D SPINN 83.2 % 3.7 M + ?
Yogatama et al. (2016), 100D latent 80.5 % 500 k + 1.8 M
Shen et al. (2017), 300D DiSAN 85.6 % 2.35 M + ?

Table 3: Test set accuracy (higher is better) on the SNLI dataset for the two attention models.

Model Test Accuracy

100D LSTM + attention 82.7 %
100D Unupervised Tree-LSTM + attention 83.2 %

where A ∈ R200×400 and a ∈ R200 are trained parameters. Finally, the correct label is predicted by
p(ŷ = c | q;B, b) ∝ exp(Bcq + bc), where B ∈ R3×200 and b ∈ R3 are trained parameters.

Table 2 lists the accuracy and number of parameters for our model, baselines, as well as other sentence
embedding models in the literature. When the information is available, we report both the number of
intrinsic model parameters as well as the number of word embedding parameters. For other models
these figures are based on the data from the SNLI website2 and the original papers.3

4.1.1 ATTENTION

Attention is a mechanism which allows a model to soft-search for relevant parts of a sentence. It has
been shown to be effective in a variety of linguistic tasks, such as machine translation (Bahdanau
et al., 2014; Vaswani et al., 2017), summarisation (Rush et al., 2015), and textual entailment (Shen
et al., 2017).

In the spirit of Bahdanau et al. (2014), we modify our LSTM model such that it returns not just the
output of the last time step, but rather the outputs for all steps. Thus, we no longer have a single pair
of vectors s1, s2 as in (6), but rather two lists of vectors s1,1, . . . , s1,n1 and s2,1, . . . , s2,n2 . Then,
we replace s1 in (6) with

s′1 =

∑n1

i=1 exp (f(s1,i, s2,n2)) s1,i∑n1

j=1 exp (f(s1,j , s2,n2))
, with f(x,y) ≡ a · tanh (Aix+Asy) ,

where f is the attention mechanism, with vector parameter a and matrix parameters Ai,As. This
can be interpreted as attending over sentence 1, informed by the context of sentence 2 via the vector
s2,n2 . Similarly, s2 is replaced by an analogously defined s′2, with separate attention parameters.

We also extend the mechanism of Bahdanau et al. (2014) to the Unsupervised Tree-LSTM. In this
case, instead of attending over the list of outputs of an LSTM at different time steps, attention is
over the whole chart structure described in §3.4. Thus, the model is no longer attending over all
words in the source sentences, but rather over all their possible subspans. The results for both
attention-augmented models are reported in Table 3.

2https://nlp.stanford.edu/projects/snli/
3The number of word embedding parameters in the model of Yogatama et al. (2016) is lower than ours.

This is due to Yogatama et al. (2016) filtering out infrequent words. One of the authors reported (personal
communication) that using the full vocabulary did not change their result significantly.

6

https://nlp.stanford.edu/projects/snli/


Under review as a conference paper at ICLR 2018

Table 4: Median rank (lower is better) and accuracies (higher is better) at 10 and 100 on the three test
sets for the reverse dictionary task: seen words (S), unseen words (U), and concept descriptions (C).

Model Median rank Top 10 accuracy Top 100 accuracy
S U C S U C S U C

Bag-of-words 75.0 66.0 70.5 30.3% 29.9% 25.8% 53.7% 55.2% 56.6%
LSTM 57.5 59.0 48.5 28.9% 29.7% 29.3% 55.3% 56.8% 57.1%
Left-branching Tree-LSTM 78.0 64.0 48.0 28.9% 28.3% 28.8% 52.7% 54.8% 61.1%
Right-branching Tree-LSTM 70.5 51.0 42.5 30.1% 30.9% 29.8% 54.5% 58.0% 62.1%
Supervised Tree-LSTM 108.5 79.0 160.5 23.1% 26.9% 20.2% 49.0% 52.9% 42.4%
Unsupervised Tree-LSTM 58.5 40.0 40.0 30.9% 33.4% 30.3% 56.1% 57.1% 62.6%

Hill et al. (2016) 512D LSTM 19 19 26 44% 44% 38% 70% 69% 66%
Hill et al. (2016) 500D BoW 15 14 28 46% 46% 36% 71% 71% 66%

4.2 REVERSE DICTIONARY

We also test our model and baselines on the reverse dictionary task of Hill et al. (2016), which
consists of 852 k word-definition pairs. The aim is to retrieve the name of a concept from a list of
words, given its definition. For example, when provided with the sentence “control consisting of a
mechanical device for controlling fluid flow”, a model would be expected to rank the word “valve”
above other confounders in a list. We use three test sets provided by the authors: two sets involving
word definitions, either seen during training or held out; and one set involving concept descriptions
instead of formal definitions. Performance is measured via three statistics: the median rank of the
correct answer over a list of over 66 k words; and the proportion of cases in which the correct answer
appears in the top 10 and 100 ranked words (top 10 accuracy and top 100 accuracy).

As output embeddings, we use the 500D CBOW vectors (Mikolov et al., 2013) provided by the
authors. As input embeddings we use the same vectors, reduced to 256 dimensions with PCA. Given
a training definition as a sequence of (input) embeddings w1, . . . ,wn ∈ R256, the model produces
an embedding s ∈ R256 which is then mapped to the output space via a trained projection matrix
W ∈ R500×256. The training objective to be maximised is then the cosine similarity cos(Ws,d)
between the definition embedding and the (output) embedding d of the word being defined. For
the supervised Tree-LSTM model, we additionally parsed the definitions with Stanford CoreNLP
(Manning et al., 2014) to obtain parse trees.

We use simple stochastic gradient descent for training. The first 128 batches are held out from the
training set to be used as development data. The softmax temperature in (5) is allowed to decrease as
described in §3.4 until it reaches a value of 0.005, and then kept constant. This was found to have the
best performance on the development set.

Table 4 shows the results for our model and baselines, as well as the numbers for the cosine-based
“w2v” models of Hill et al. (2016), taken directly from their paper.4 Our bag-of-words model
consists of 193.8 k parameters; our LSTM uses 653 k parameters; the fixed-branching, supervised,
and unsupervised Tree-LSTM models all use 1.1 M parameters. On top of these, the input word
embeddings consist of 113 123× 256 parameters. Output embeddings are not counted as they are
not updated during training.

5 DISCUSSION

The results in Tables 2-4 show a strong performance of the Unsupervised Tree-LSTM against our
tested baselines, as well as other similar methods in the literature with a comparable number of
parameters.

4We note that our initial reimplementation of the “w2v cosine” models of Hill et al. (2016), using vectors
supplied by the authors, achieved a slightly different set of results than theirs. We include their numbers for
completeness. Our own baselines are architecturally different from those of Hill et al. (2016), but we found our
variants to perform better on development data.

7



Under review as a conference paper at ICLR 2018

For the textual entailment task, our model outperforms all baselines including the supervised Tree-
LSTM, as well as some of the other sentence embedding models in the literature with a higher number
of parameters. The use of attention, extended for the Unsupervised Tree-LSTM to be over all possible
subspans, further improves performance.

0 200 k 400 k 600 k 800 k 1 M 1.2 M 1.4 M
Batches seen

103

104

De
ve

lo
pm

en
t m

ed
ia

n 
ra

nk
LSTM
Right-branching Tree-LSTM
Unsupervised Tree-LSTM

Figure 2: Median rank (lower is better) on the development set for the reverse dictionary task.

In the reverse dictionary task, the poor performance of the supervised Tree-LSTM can be explained
by the unusual tokenisation used in the dataset of Hill et al. (2016): punctuation is simply stripped,
turning e.g. “(archaic) a section of a poem” into “archaic a section of a poem”, or stripping away the
semicolons in long lists of synonyms. On the one hand, this might seem unfair on the supervised Tree-
LSTM, which received suboptimal trees as input. On the other hand, it demonstrates the robustness
of our method to noisy data. Our model also performed well in comparison to the LSTM and the
other Tree-LSTM baselines. Despite the slower training time due to the additional complexity, Figure
2 shows how our model needed fewer training examples to reach convergence in this task.

Following Yogatama et al. (2016), we also manually inspect the learned trees to see how closely they
match conventional syntax trees, as would typically be assigned by trained linguists. We analyse
the same four sentences they chose. The trees produced by our model are shown in Figure 3. One
notable feature is the fact that verbs are joined with their subject noun phrases first, which differs from
the standard verb phrase structure. However, formalisms such as combinatory categorial grammar
(Steedman, 2000), through type-raising and composition operators, do allow such constituents. The
spans of prepositional phrases in (b), (c) and (d) are correctly identified at the highest level; but only
in (d) does the structure of the subtree match convention. As could be expected, other features such
as the attachment of the full stops or of some determiners do not appear to match human intuition.

6 CONCLUSIONS

We presented a fully differentiable model to jointly learn sentence embeddings and syntax, based on
the Tree-LSTM composition function. We demonstrated its benefits over standard Tree-LSTM on a
textual entailment task and a reverse dictionary task. Introducing an attention mechanism over the
parse chart was shown to further improve performance for the textual entailment task. The model
is conceptually simple, and easy to train via backpropagation and stochastic gradient descent with
popular deep learning toolkits based on dynamic computation graphs such as DyNet (Neubig et al.,
2017) and PyTorch.5

5https://github.com/pytorch/pytorch

8

https://github.com/pytorch/pytorch


Under review as a conference paper at ICLR 2018

a woman

wearing sunglasses
is

frowning

.

(a)

a boy drags his sleds
through the

snow
.

(b)

family members
standing

outside a
home

.

(c)

two men
are playing frisbee

in
the park

.

(d)

Figure 3: Binary parse trees of sentences from the SNLI dataset induced by the Unsupervised
Tree-LSTM model.

The unsupervised Tree-LSTM we presented is relatively simple, but could be plausibly improved
by combining it with aspects of other models. It should be noted in particular that (4), the function
assigning an energy to alternative ways of forming constituents, is extremely basic and does not rely
on any global information on the sentence. Using a more complex function, perhaps relying on a
mechanism such as the tracking LSTM in Bowman et al. (2016), might lead to improvements in
performance. Techniques such as batch normalization (Ioffe & Szegedy, 2015) or layer normalization
(Ba et al., 2016) might also lead to further improvements.

In future work, it may be possible to obtain trees closer to human intuition by training models to
perform well on multiple tasks instead of a single one, an important feature for intelligent agents to
demonstrate (Legg & Hutter, 2007). Elastic weight consolidation (Kirkpatrick et al., 2017) has been
shown to help with multitask learning, and could be readily applied to our model.

REFERENCES

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/
1409.0473.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. CoRR, abs/1508.05326, 2015. URL http:
//dblp.uni-trier.de/db/journals/corr/corr1508.html#BowmanAPM15.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. A fast unified model for parsing and sentence understanding. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1466–1477, Berlin, Germany, aug 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1139. URL http://www.aclweb.org/anthology/P16-1139.

Noam Chomsky. Syntactic Structures. Mouton and Co., The Hague, 1957.

John Cocke. Programming Languages and Their Compilers: Preliminary Notes. Courant Institute of
Mathematical Sciences, New York University, 1969. ISBN B0007F4UOA.

B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical foundations for a compositional distributed
model of meaning. Linguistic Analysis, 36(1–4), 2011.

9

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#BowmanAPM15
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#BowmanAPM15
http://www.aclweb.org/anthology/P16-1139


Under review as a conference paper at ICLR 2018

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural net-
work grammars. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 199–
209, San Diego, California, June 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N16-1024.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional lstm and
other neural network architectures. Neural Networks, pp. 5–6, 2005.

Felix Hill, KyungHyun Cho, Anna Korhonen, and Yoshua Bengio. Learning to understand phrases by
embedding the dictionary. Transactions of the Association for Computational Linguistics, 4:17–30,
2016. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.
php/tacl/article/view/711.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), ICML, volume 37
of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL http:
//dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. Journal of Machine Learning Research, 2015.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. CoRR, abs/1602.02410, 2016. URL http://arxiv.org/abs/
1602.02410.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, June 2014. URL http://goo.gl/EsQCuC.

T. Kasami. An efficient recognition and syntax analysis algorithm for context-free languages.
Technical Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA†,
1965.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured Attention Networks. In
ICLR 2017, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. Easy-first dependency parsing with hierarchical tree
lstms. TACL, 4:445–461, 2016. URL https://transacl.org/ojs/index.php/tacl/
article/view/798.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.
doi: 10.1073/pnas.1611835114. URL http://www.pnas.org/content/114/13/3521.
abstract.

Phong Le and Willem Zuidema. The forest convolutional network: Compositional distributional
semantics with a neural chart and without binarization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1155–1164, Lisbon, Portugal, September
2015. Association for Computational Linguistics. URL http://aclweb.org/anthology/
D15-1137.

Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelligence. Minds
and Machines, 17(4):391–444, 2007. ISSN 1572-8641. doi: 10.1007/s11023-007-9079-x. URL
http://dx.doi.org/10.1007/s11023-007-9079-x.

10

http://www.aclweb.org/anthology/N16-1024
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/711
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/711
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410
http://goo.gl/EsQCuC
http://arxiv.org/abs/1412.6980
https://transacl.org/ojs/index.php/tacl/article/view/798
https://transacl.org/ojs/index.php/tacl/article/view/798
http://www.pnas.org/content/114/13/3521.abstract
http://www.pnas.org/content/114/13/3521.abstract
http://aclweb.org/anthology/D15-1137
http://aclweb.org/anthology/D15-1137
http://dx.doi.org/10.1007/s11023-007-9079-x


Under review as a conference paper at ICLR 2018

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen Zhou. Dependency-based convolutional neural
networks for sentence embedding. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Beijing, China, July 2015. Association for Computational
Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Association for
Computational Linguistics (ACL) System Demonstrations, pp. 55–60, 2014. URL http://www.
aclweb.org/anthology/P/P14/P14-5010.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 746–
751, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N13-1090.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anasta-
sopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav
Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

Denis Paperno, Nghia The Pham, and Marco Baroni. A practical and linguistically-motivated
approach to compositional distributional semantics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 90–99, Baltimore,
Maryland, jun 2014. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P14-1009.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 379–389, Lisbon, Portugal, September 2015. Association for
Computational Linguistics. URL http://aclweb.org/anthology/D15-1044.

Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li. Reading and thinking: Re-read LSTM unit
for textual entailment recognition. In COLING 2016, 26th International Conference on Compu-
tational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016,
Osaka, Japan, pp. 2870–2879, 2016. URL http://aclweb.org/anthology/C/C16/
C16-1270.pdf.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. Disan: Direc-
tional self-attention network for rnn/cnn-free language understanding. CoRR, abs/1709.04696,
2017. URL http://arxiv.org/abs/1709.04696.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic compositional-
ity through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language Learning,
EMNLP-CoNLL ’12, pp. 1201–1211, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics. URL http://dl.acm.org/citation.cfm?id=2390948.2391084.

Richard Socher, John Bauer, Christopher D. Manning, and Ng Andrew Y. Parsing with compositional
vector grammars. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 455–465, Sofia, Bulgaria, August 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P13-1045.

Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000. ISBN 0-262-
19420-1.

11

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/N13-1090
http://www.aclweb.org/anthology/N13-1090
http://www.aclweb.org/anthology/P14-1009
http://www.aclweb.org/anthology/P14-1009
http://www.aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/C/C16/C16-1270.pdf
http://aclweb.org/anthology/C/C16/C16-1270.pdf
http://arxiv.org/abs/1709.04696
http://dl.acm.org/citation.cfm?id=2390948.2391084
http://www.aclweb.org/anthology/P13-1045


Under review as a conference paper at ICLR 2018

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling.
In INTERSPEECH 2012, 13th Annual Conference of the International Speech Communication
Association, Portland, Oregon, USA, September 9-13, 2012, pp. 194–197, 2012. URL http:
//www.isca-speech.org/archive/interspeech_2012/i12_0194.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference on Neural Information Processing Systems,
NIPS’14, pp. 3104–3112, Cambridge, MA, USA, 2014. MIT Press. URL http://dl.acm.
org/citation.cfm?id=2969033.2969173.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566, Beijing, China, July 2015.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P15-1150.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling. Learning to
compose words into sentences with reinforcement learning. 2016. URL http://arxiv.org/
abs/1611.09100.

Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Information and
Control, 10:189–208, 1967.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. Long short-term memory over recursive structures.
In Proceedings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1604–1612. JMLR.org, 2015. URL http://dl.acm.
org/citation.cfm?id=3045118.3045289.

12

http://www.isca-speech.org/archive/interspeech_2012/i12_0194.html
http://www.isca-speech.org/archive/interspeech_2012/i12_0194.html
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://www.aclweb.org/anthology/P15-1150
http://www.aclweb.org/anthology/P15-1150
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1611.09100
http://arxiv.org/abs/1611.09100
http://dl.acm.org/citation.cfm?id=3045118.3045289
http://dl.acm.org/citation.cfm?id=3045118.3045289

	Introduction
	Related work
	Models
	Bag of Words
	LSTM
	Tree-LSTM
	Unsupervised Tree-LSTM

	Experiments
	Textual Entailment
	Attention

	Reverse Dictionary

	Discussion
	Conclusions

