CUTTING DOWN TRAINING MEMORY
BY RE-FORWARDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neutral Networks (DNNs) require huge GPU memory when training on modern image/video databases. Unfortunately, the GPU memory as a hardware resource is always finite, which limits the image resolution, batch size, and learning rate that could be used for better DNN performance. In this paper, we propose a novel training approach, called Re-forwarding, that substantially reduces memory usage in training. Our approach automatically finds a subset of layers in DNNs, and stores tensors only at these layers during the first forward. During backward, extra local forwards (called the Re-forwarding process) are conducted to compute the missing tensors between the subset of layers. The total memory cost becomes the sum of (1) the memory cost at the subset of layers and (2) the maximum memory cost among local re-forwards. Re-forwarding trades training time for memory and does not compromise any performance in testing. We propose theories and algorithms that achieve the optimal memory solutions for DNNs with either linear or arbitrary computation graphs. Experiments show that Re-forwarding cuts down up to 80% of training memory on popular DNNs such as Alexnet, VGG, ResNet, DenseNet and Inception net.

1 INTRODUCTION

The standard DNN training process consists of two alternated stages: forward and backward. Fig. 1(a) illustrates an example of feed-forward neural networks. In the forward stage, the network takes an input tensor, $[\text{BatchSize} \times \text{Channel} \times \text{Width} \times \text{Height}]$, and computes the tensors at each layer until producing the output. In the backward stage, difference between the output and ground truth is passed back along the network to compute the gradients at each layer. The regular training approach saves tensors at all layers during forward, because they are all needed to compute gradients during backward. The total memory cost is the sum of cost over all layers.

In popular backbone DNNs for feature extraction of images, such as AlexNet (Krizhevsky et al. (2012)), VGG (Simonyan & Zisserman (2014)) and ResNet (He et al. (2016)), the memory cost increases quadratically with the input image resolution and network depth. For example, given an median size input tensor of $(32, 3, 224, 224)$, ResNet101 requires around 5000 MB. In more challenging tasks, DNNs that detect small objects and large number of object categories require input image resolution of more than 600×600 (Ken et al. (2015); Singh et al. (2017); Redmon & Farhadi (2018)). The memory issue is worse for video-based DNNs, such as CDC (Shou et al. (2017)), C3D (Ji et al. (2013)) and 3D-ResNet (Hara et al. (2017)). To model complex activities in video, the input tensor may contain 64 frames. Moreover, DNN training takes much more memory than testing. In order to train DNNs with large databases and big learning rate, the batch size can be up to 64. In training DNN compositions, such as Generative adversarial networks (GANs), multiple generator and discriminator networks are simultaneously stored in GPU memory.

Existing efforts to address memory issues presented three main approaches: (1) Better single GPUs. Recent GPUs provide larger memory at the expense of exponentially growing price and power consumption. For instance, from TitanXp, Quadro P6000 to Tesla V100, for 1.2-2.7 times increase in memory, the prices increase 2.8-8.5 times. (2) Parallelization among multiple GPUs (Dean et al. (2012); Shi et al. (2009); Langford et al. (2009); Mcdonald et al. (2009); McDonald et al. (2010); Zinkevich et al. (2010); Agarwal et al. (2014); Agarwal & Duchi (2011)), which requires expensive clusters, introduces substantial I/O cost, and does not reduce the total memory cost. (3) Low-level
heuristic techniques. Optimization of computation graphs (Aho et al. (1986)), which merges inplace operations into non-inplace operations to cut down memory. Liveness analysis (Aho et al. (1986)), which dynamically recycles garbage tensors in training epochs. These approaches are specific to certain DNN structures, data and tasks.

To address above issues, we propose a fundamental approach that explores trade-off between memory and computation power of GPUs. Note that recent affordable GPUs, although limited in memory (12GB), provide exceptional improvement in GPU cores and FLOPS. Trading computational time for memory is a very attractive solution that make it possible to train very heavy DNNs with finite GPU memory. Our approach only saves tensors at a subset of layers during the first forward, and conduct only extra local forwards to compute the missing tensors needed during backward. We call the extra forward process as Re-forwarding. The total memory cost is the sum of (1) the cost at the subset of layers and (2) the maximum memory cost among local re-forwards. Training with Re-forwarding, see Fig. 1(b), leads to substantial memory reduction. We propose sophisticate theories and efficient algorithms that achieve the optimal memory solution of arbitrary computation graphs.

2 Related Work

To alleviate the memory pressure from a single GPU processor, many researchers utilized the well-established techniques for distributed computation (Dean et al. (2012); Shi et al. (2009); Langford et al. (2009); Mcdonald et al. (2009); McDonald et al. (2010); Zinkevich et al. (2010); Agarwal et al. (2014); Agarwal & Duchi (2011)). These techniques distribute memory pressure to possibly infinite GPUs or server clusters, but do not reduce the total memory cost of DNNs.

Other researchers reduced the memory on finite hardware by optimizing computation graph of DNN and performing liveness analysis. The computation graph of DNNs describes the dependencies of tensors among layers. Liveness analysis recycles garbage to manage memory. These ideas were originated from compiler optimization (Aho et al. (1986)) and has been widely adopted by deep learning frameworks: Theano (Bastien et al. (2012); Bergstra et al. (2010)), MXNet (Chen et al. (2015)), Tensorflow (Abadi et al. (2016)) and CNTK (Yu et al. (2014)). Some other techniques efficiently swap data between CPU and GPU (Wang et al. (2018); Rhu et al. (2016)). These techniques usually cost extra I/O time and still do not actually reduce the total memory cost.

The closest work to our approach, Chen et al. (Chen et al. (2016)), uses the gradient checkpoints (similar to the subset of layers in Re-forwarding). However, (Chen et al. (2016)) only worked on linear computation graph via a heuristic algorithm. Our approach generates optimal solutions for both linear and arbitrary computation graphs. Our algorithm reduces training memory by manipulating high-level tensors, therefore is generalizable to any DNNs and their compositions. All previous techniques are compatible to our approach and can further improve the memory efficiency of DNN training.
3 LINEAR COMPUTATION GRAPH (LCG)

Denote a computation graph as $G = (E, V)$. $E = \{e_i\}$ and $V = \{v_i\}$ are the edges and vertexes in the computation graph, respectively. In deep neural networks, the vertexes represent the tensors and the edges represent operations. Denote function $l(\cdot)$ as a measure of memory cost. V_R is the subset of vertexes saved during the first forward. $l(v_i)$ is defined as the memory cost of storing vertex v_i. For two adjacent vertexes v_i and v_j in set V_R, the memory cost during re-forwarding from v_i to v_j is defined as $l(v_i, v_j) = \sum_{k=i+1}^{j-1}l(v_k)$, which is the sum of cost over all the vertexes between v_i and v_j. Using these notations, the memory cost of training with re-forwarding is formulated as

$$ \min_{V_R} \sum_i l(v_i) + \max_j l(v_j, v_{j+1}), $$

where the first term is the sum of the memory cost of all the stored tensors, and the second term is the maximal cost among the re-forwards.

For easy illustration, we start by formulating Re-forwarding on Linear Computation Graphs (LCG) (Fig. 2(a)). For LCGs, Eqn. 1 can be solved in two cases.

Case 1 LCG with Identical Vertex Cost: Suppose a LCG has n vertexes, each of which has the same cost $l(v_i) = \frac{1}{n}$ and the total cost is 1. Obviously, the optimal solution is reached when vertexes in V_R are distributed evenly in the LCG. Suppose the number of vertexes in V_R is k. The total cost is then $\frac{k}{n} + \frac{1}{k}$. The optimal solution of Eqn. 1 is $k = \sqrt{n}$, and the optimal total cost is $\frac{2}{\sqrt{n}}$.

Case 2 LCG with Non-identical Vertex Cost: When the assumption of identical cost does not hold, the solution to Eqn. 1 does not have an analytic form. Denote the maximal Re-forward cost $\max_j l(v_j, v_{j+1})$ as a constant C, and the solution to Eqn. 1 is reduced to solving for $\min_{V_R} \sum_i l(v_i)$.

Algorithm 1 Linear Computation Graph (LCG) Solver

1: for each vertex pair (v_i, v_j) in G do
2: Set the maximal term as $l(v_i, v_j)$
3: Construct Accessibility Graph
4: Find the shortest path in the Accessibility Graph as the solution
5: Compute the actual total cost of the solution
6: Save the solution if it’s better.
7: Suppose the actual max term of this solution is B, and $l(v_i, v_j) = C$, skip the loops where $B \leq l(v_i, v_j) < C$

All the Re-forward costs in an optimal solution satisfy the constraint $l(v_j, v_{j+1}) \leq C$. We solve Eqn. 1 by constructing a new graph, called Accessibility Graph $G^A = (E^A, V)$. The edges of G^A, called Accessibility Edge $e^A_{v_i, v_j}$, exists between vertex v_i and v_j if and only if $l(v_i, v_j) \leq C$. Now the problem of solving $\min_{V_R} \sum_i l(v_i)$ is equivalent to finding the shortest path from the source vertex and the target vertex in the Accessibility Graph. Notice that in the optimal solution, the max term equal the one maximal term among all $l(v_i, v_{i+1})$ terms. To traverse all possible max terms, we can simply compute the loss of every vertex pair and use it as a possible max term. Given a max term C, suppose the actual max term of the solution under C is B and $B < C$. It’s obvious that for all
the max terms $B \leq \max < C$, the solution would be the same solution. Therefore, these max terms can be skipped. Algorithm 1 summarizes the process for searching an optimal solution for LCG.

4 ARBITRARY COMPUTATION GRAPH (ACG)

As generalization of DNNs with LCG, we present theory and algorithms for DNNs with Arbitrary Computation Graphs (ACG), in particular the acyclic directed graphs (Fig. 2(b)).

4.1 ASSUMPTION

The optimal solution of Re-forwarding corresponds to an optimal division of ACG, such that memory cost (Eqn. 1) is minimum. We denote that an ACG is divided into end-to-end segments by a set of vertexes. These end-to-end segments can have multiple endpoint vertexes, for example, multiple source vertexes and multiple target vertexes. In this paper, as an assumption and also for simplification, these end-to-end segments are narrowed down to those with only one source vertex and one target vertex.

Another assumption in the case of ACG is imposed on the operation that has multiple inputs: one can compute the gradients of output with respect to the gradients of inputs without using the current value of inputs. Examples of operations that meet this assumption are: concatenation (the gradient of output is also the concatenation of the gradient of input), add (the gradient of output equals the gradient of input), etc. An example that breaks this assumption is multiplication (the gradient of input depends on the input). Fortunately, most of the popular networks meet this assumption. A simple way to remove this assumption is to store all the input tensors of this multi-input operation. However, this is not modeled by our loss function and may lead to sub-optimal solution.

In summary, there are only two assumptions in our approach: (1) the segment in a solution only has two endpoints (source and target). (2) the multi-input operation can compute the gradients of output without using the current value of input. Under these two assumptions, our approach is optimal for ACGs.

4.2 DEFINITION AND THEOREM

![Close Set Examples](image)

(a) Close set in a graph. v_2 and v_4 cannot form a close set because v_3 depends on v_1. v_3 and v_5 can form a close set because v_2 doesn’t depend on any other vertex. (b) Splittable Close Set (Type 1). v_2 is the splitting vertex of s_{13}. (c) Branched Close Set (Type 2). (d) Non-branched Close Set (Type 3).

Definition 1. Close Set: A set of vertexes and edges that start from v_i and end at v_j but doesn’t include v_i, v_j. $s_{ij} = \{v, e\}$ is called a close set such that $\forall v_i \in s_{ij}$, v_1 has no edge to any $v_2 \notin s_{ij} \cup \{v_i, v_j\}$. v_i is the ancestor of $\forall v \in s_{ij}$. v_j is the descendant of $\forall v \in s_{ij}$. The edges of s_{ij} are all the edges between $v_i, v_j \in s_{ij}$, all the edges between v_i and $v \in s_{ij}$, all the edges between v_j and $v \in s_{ij}$. The edges of s_{ij} can include or not include the edge between v_i and v_j. The two situations define valid but different close sets.

Definition 2. $[s_{ij}] = s_{ij} \cup \{v_i, v_j\}$, $[s_{ij}] = s_{ij} \cup \{v_i\}$, $(s_{ij}) = s_{ij} \cup \{v_j\}$

We define Close Set for independent end-to-end segment in the computation graph. Independence means that the vertexes inside this segment have no connections with other vertexes outside this segment. A close set s_{ij} is a set of edges and vertexes, starting from vertex v_i and ending at vertex

1 All proofs are in the appendix due to space limitation.
∀. Maximal Split: to describe the split such that each member of the split is as large as possible. An want trivial division, for example, division that is formed by every edge in the close set, we define be divided into branches. So here we investigate the division of close set type 3. As we don't

For close set type 1, it can be divided into linearly arranged segments. For close set type 2, it can

be divided into branches. For type 3, its division is its maximal split.

Definition of Close Set: Division of Close Set:

Definition 8. Division Tree: Division tree is a representation of a computation graph, where the root node is the whole computation graph, the leaf nodes are all the single tensors in the computation graph, and for a non-leaf node, its children is the members of its division.

With the division of 3 types of close sets, the computation graph can be reorganized into a division tree (Figure 5) where a non-leaf node would be a close set and its children would be its corresponding division. The root node is the whole computation graph, the largest close set, and the leaf nodes would be single tensors in the computation graph. With division tree, we can apply divide-and-conquer to search for optimal solution.
Theorem 1. The division tree of a computation graph is unique and complete.

The uniqueness of the division tree indicates that the optimal solution of the division tree would also be the optimal solution of the whole computation graph. The completeness indicates that the division tree has included all the possible members of solution and represents the whole search space for the optimal solution. Theorem 1 is proved in the appendix.

4.3 Algorithm

We search optimal solutions for ACGs by solving several sub-problems using Algorithm 2-4 respectively. Based on these components, we present our final solver as Algorithm 5.

Algorithm 2 judges whether a vertex is a splitting vertex of a close set. This algorithm mainly follows the Definition 3 and uses vertex set to check the property of a splitting vertex. With this algorithm, we can judge whether a close set is type 1 and get its division if it is.

Algorithm 3 examines whether a close set is branched. It uses a growing algorithm to check whether an independent subpart of this close set can form a close set. If a non-trivial close set s_{ij} has an edge from v_i to v_j, then it’s branched because this edge itself can be treated as a close set. Combined with Algorithm 2, we can know the type of a close set and get its division if it’s type 2.

Algorithm 4 addresses the problem of finding the maximal split, the division of a close set type 3 s_{ij}. First get all the possible close sets within s_{ij} and use a property of maximal split to judge whether this close set is a member of the maximal split. The property is: there cannot exist another close set $s_{ab} \subseteq s_{ij}$ but contains any member of this maximal split. This property is proved in Lemma 6 of the appendix.

Algorithm 5 is the solver for ACGs. First, the division tree of the computation graph is built. Similar to the linear solver, a max term list is formed by the cost of all the possible close sets for traverse. Given a max term, we propose a greedy idea: for a close set, never expand it unless the its cost exceed the max term. In other word, if the max term doesn’t allow a leap over this close set, we expand it, otherwise, do not expand it. Because once expanded, some cost of other vertexes inside this close set might be introduced, and the cost will never be smaller than unexpanded. If some children of the close set type 1 are expanded, the rest reforms a few linear segments and still can
Algorithm 3 Judge whether s_{ij} is branched
1: if s_{ij} has at least 1 vertex then
2: if s_{ij} includes an edge from v_i to v_j then
3: Return true
4: else
5: Initialize a vertex set $s = \{v_k\}$, $v_k \in s_{ij}$ is a randomly chosen vertex.
6: while True do
7: For any $v_t \in s_{ij}$, $v_t \notin s$ that has connection to any $v_k \in s$, add v_t to s.
8: if No more vertex can be added to s then
9: Break
10: if $s = \{v \in s_{ij}\}$ then
11: Return false
12: else
13: Return true
14: else
15: Return false

Algorithm 4 Find the maximal split of a non-branched s_{ij} with 0 splitting vertex
1: for each vertex pair (v_k, v_t) except (v_i, v_j) in s_{ij} do
2: For all the vertexes $\{v\}$ that have paths from v_k and have paths to v_t.
3: if $\exists v_2 \notin \{v\}$ and $v_2 \neq v_k, v_t, v_1 \in \{v\}$ has connection to a $v_1 \in \{v\}$ then
4: Form a close set s_{kt} with all these vertexes.
5: for each formed close set s_{kt} do
6: If there doesn’t exist a s_{ab} such that $s_{kt} \subsetneq s_{ab} \subsetneq s_{ij}$, put s_{kt} into the maximal split.

be solved by the linear solver. If some children of the close set type 2 or 3 are expanded, the other members remain unexpanded and need no changes.

Algorithm 5 Arbitrary Computation Graph (ACG) Solver
1: Get all possible close set and their costs. Use their costs to form the max term list.
2: Reorganize the computation graph into a division tree: from the root node (the computation graph), build its children from its division, until all the leaf nodes are single tensors.
3: for each possible max term m in max term list $\{m\}$ do
4: if current close set is type 1 then
5: For all the children that have cost larger than current max term. Expand them and solve the next level.
6: All the expanded children have separated the current close set to linear segments. Solve all the linear segments with current max term.
7: else
8: For all the children that have cost larger than current max term. Expand them and solve the next level.
9: All the other members remain unexpanded.
10: Summarize the total loss, save the current solution if it’s better.

5 EXPERIMENT

We evaluated Re-forwarding on two main groups of neural networks (1) networks with linear structures, such as Alexnet (Krizhevsky et al. (2012)) and vgg series (Simonyan & Zisserman (2014)). (2) networks with non-linear structures, such as Resnet series (He et al. (2016)), Densenet series (Huang et al. (2017)) and Inception net (Szegedy et al. (2016)). For each network in Table 5, an computation graph is built such that every vertex is a Float32 tensor, every edge is an operation, and the memory cost of a vertex is its tensor size measured in MB. We compared Re-forwarding with Chen (Chen et al. (2016)) and the regular training approach. Note that (Chen et al. (2016)) only worked on linear computation graphs. To compare with (Chen et al. (2016)) on non-linear networks, we manually re-organized all the non-linear computation graphs into linear computation graphs with
Table 1: Training memory usage of the regular, Chen et al. (2016), Chen et al. (2016) manual and Re-forwarding (ours) approach on linear and non-linear computation graph. “Memory Usage Ratios” are used to measure the training memory used by Re-forwarding (ours) against the regular training approach. All ratios are the lower the better.

<table>
<thead>
<tr>
<th>Linear network</th>
<th>Regular (MB)</th>
<th>Chen et al. (2016) (MB)</th>
<th>Re-forwarding (ours) (MB)</th>
<th>Memory Usage Ratios (ours)/(Measured)</th>
<th>Memory Usage Ratios (ours)/(Theoretical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexnet batch size 1024</td>
<td>3580</td>
<td>3108</td>
<td>2630</td>
<td>0.74</td>
<td>0.58</td>
</tr>
<tr>
<td>Vgg11 batch size 64</td>
<td>2976</td>
<td>2292</td>
<td>1802</td>
<td>0.61</td>
<td>0.50</td>
</tr>
<tr>
<td>Vgg13 batch size 64</td>
<td>4152</td>
<td>2586</td>
<td>2586</td>
<td>0.62</td>
<td>0.53</td>
</tr>
<tr>
<td>Vgg16 batch size 64</td>
<td>4470</td>
<td>2894</td>
<td>2586</td>
<td>0.58</td>
<td>0.49</td>
</tr>
<tr>
<td>Vgg19 batch size 64</td>
<td>4788</td>
<td>2894</td>
<td>2502</td>
<td>0.52</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-linear network</th>
<th>Regular (MB)</th>
<th>Chen et al. (2016) manual (MB)</th>
<th>Re-forwarding (ours) (MB)</th>
<th>Memory Usage Ratios (ours)/(Measured)</th>
<th>Memory Usage Ratios (ours)/(Theoretical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet18 batch size 256</td>
<td>5402</td>
<td>2898</td>
<td>2898</td>
<td>0.54</td>
<td>0.37</td>
</tr>
<tr>
<td>Resnet34 batch size 128</td>
<td>3900</td>
<td>1936</td>
<td>1544</td>
<td>0.40</td>
<td>0.27</td>
</tr>
<tr>
<td>Resnet50 batch size 64</td>
<td>5206</td>
<td>2332</td>
<td>1798</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>Resnet101 batch size 32</td>
<td>3812</td>
<td>1216</td>
<td>970</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>Resnet152 batch size 16</td>
<td>2810</td>
<td>636</td>
<td>564</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Densenet121 batch size 32</td>
<td>3984</td>
<td>1012</td>
<td>776</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Densenet161 batch size 16</td>
<td>3658</td>
<td>744</td>
<td>616</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Densenet169 batch size 32</td>
<td>4826</td>
<td>998</td>
<td>584</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>Densenet201 batch size 16</td>
<td>3164</td>
<td>600</td>
<td>582</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Inceptionv3 batch size 32</td>
<td>2976</td>
<td>1026</td>
<td>910</td>
<td>0.51</td>
<td>0.24</td>
</tr>
</tbody>
</table>

their splitting vertexes, and fed them to Chen et al. (2016) (see Table 5: Chen et al. (2016) manual (MB)). Our Re-forwarding approach directly works on arbitrary computation graphs.

All experiments were conducted in Pytorch. To remove irrelevant GPU memory cost, such as model and Pytorch CUDA interface cost, all training memory costs were measured with two different input sizes and compute the difference between two measurements. For example, to measure the memory cost of Alexnet with input size = [BatchSize, Channel, Width, Height] = [16, 3, 224, 224], we first record the training memory of input [16, 3, 224, 224] as \(r_1 \), and input [32, 3, 224, 224] as \(r_2 \). The actual memory cost given [16, 3, 224, 224] input is measured as \(r_2 - r_1 \). To see how well the reality matches with the theory, We also compared the “Measured” and ”Theoretical” (given by Algorithm 5) memory usage ratio of Re-forwarding divided by the regular approach. To use existing DNN implementations, the input of Inception net is [Batchsize, 3, 300, 300], and the input of all other networks is [Batchsize, 3, 224, 224].

Table 5 shows that Re-forwarding cuts down huge amount of memory from the regular approach: nearly 30% off for Alexnet, 50% off for Vgg series. For Resnet series, the deeper network, the more memory was cut down. On the deepest Resnet152, 80% off was achieved. For Densenet series, more than 80% off was achieved. Observe that, “Measured” ratios are slightly higher than the “Theoretical” ratios, meaning less memory was cut down. This is because, in implementation, we assume that the whole input tensors of each operation are always stored. In reality, some operations only need to store small tensors for backward. For example, batch-normalization only needs a few statistics for backward and doesn’t need the whole input tensor. Moreover, notice that, Chen et al. (2016) only works on linear networks. Its results on non-linear networks were manually synthesized. Re-forwarding directly works on non-linear networks and constantly outperformed Chen et al. (2016) and its “manual” version. This supports our claim that Re-forwarding is optimal.

6 Conclusion

Re-forwarding is a fundamental approach that explores trade-off between memory and computation power of GPUs. By saving tensors at a subset of layers during forward, and conducting extra local forwards for backward, Re-forwarding makes it possible to train very heavy DNNs with finite GPU memory. To our knowledge, our theoretical and algorithmic results are the first top-down work that achieve an optimal memory solution for arbitrary computation graphs in DNNs. Re-forwarding can be further embedded and optimized with any low-level techniques such as distributed computing, GPU/CPU swapping, computation graph optimization and liveness analysis.
REFERENCES

A Proof

A.1 Lemmas

Lemma 1. If $s_{i1} \cap s_{kt} \neq \emptyset$ and $s_{i2} \notin s_{kt} \text{ and } s_{kt} \notin s_{i2}$, then $s_{i1} \cap s_{kt} = s_{kj}$ or $s_{i2} \cap s_{kt} = s_{it}$

Proof. Let $[s_{i1}] \cap [s_{kt}] = s = \{v, e\}$. Let v_p be the source vertex of s, v_q be the target vertex of s. If $v_p \neq v_i$ and $v_p \neq v_k$ and $v_q \neq v_j$ and $v_q \neq v_i$, then v_i, v_k has path to v_p and v_j, v_t has path from v_q. Therefore, v_p has at least 2 intermediate parents v_q, v_t with $v_i \in [s_{i1})$, $v_q \notin [s_{kt}]$, $v_t \in [s_{kt}]$, $v_t \notin [s_{i1}]$. If so, the independence of s_{i1} and s_{kt} is violated. Therefore, v_p must be v_i or v_k.

Same on v_q, v_t must be v_j or v_i.

If $v_p = v_i$, $v_q = v_j$, then $s_{i1} \subset s_{kt}$.

If $v_p = v_k$, $v_q = v_i$, then $s_{kt} \subset s_{i1}$.

Suppose $v_p = v_k$, $v_q = v_j$, let’s prove s is a close set.

With $s \subset s_{kt}$, $\forall v_1 \in s$, v_1 has no edge with $v_2 \notin [s_{i1}]$. With $s \subset s_{i1}$, $\forall v_1 \in s$, v_1 has no edge with $v_2 \notin [s_{i1}]$. Therefore, $\forall v_1 \in s$, v_1 has no edge with $v_2 \notin [s]$. The independence of s is guaranteed.

In the discussion before, we can see the source vertex v_p of s must be either v_i or v_k. If v_i and v_k are both the source vertexes of s, then $v_i \in [s_{kt}]$ and $v_k \in [s_{i1}]$, v_i has path to v_k and v_k has path to v_i, which will force $v_i = v_k$ because the s_{i1}, s_{kt} is acyclic. Same on v_q, s can only have 1 source vertex and 1 target vertex. Therefore, s is close set.

Therefore, $s_{i1} \cap s_{kt} = s_{kj}$ or $s_{i2} \cap s_{kt} = s_{it}$.

Lemma 2. The intersection of two closets $s = s_i \cap s_j \neq \emptyset$ is also a closet.

Proof. Given the independence of s_i and s_j, the independence of s is obvious. The remaining thing is whether s only has 1 source vertex and 1 target vertex. In the proof of Lemma 1, we can see any source or target vertex of s will eventually become source or target vertex of s_i and s_j. With simple discussion, we can have this lemma.

Lemma 3. If $s_{i1} \cap s_{kt} = s_{kj} \neq \emptyset$, then v_k is the splitting vertex of s_{i1} and v_j is the splitting vertex of s_{kt}.

Proof. Let’s first prove that v_k is the splitting vertex of s_{i1}.

Let $s = s_{i1} - [s_{kj}]$. Obviously, $s_{i1} = s \cup s_{kj} \cup \{v_k\}$ and $s \cap s_{kj} = \emptyset$. We only need to prove that s is close set. For convenience, let’s denote $[s] = s \cup \{v_i, v_k\}$.

v_i is obviously the only source vertex of $[s]$ because v_i is source vertex of $[s_{i1}]$. We discuss the target vertex here. If v_k is not the target vertex of $[s]$, as $v_k \in [s]$, v_k must have path to the target vertex v of $[s]$ and v also has path to v_j as $v \in s_{i1}$. Because $v \notin [s_{kj}]$, in the path from v to v_j, there exists an edge that connects a vertex $v_1 \in s$ with a vertex $v_2 \in s_{kt}$ which violates the independence of s_{kt}. Therefore, the target vertex of $[s]$ can only be v_k.

As $s \subset [s_{i1}]$, $\forall v_1 \in s$, v_1 has no edge with $v_2 \notin [s_{kj}]$. As s_{kj} is close, $\forall v_1 \in s$, v_1 has no edge with $v_2 \in s_{kj}$. $\forall v_1 \in s$, v_1 can only have edge with $v_2 \in [s]$. Thus the independence of s is guaranteed. Therefore, s is close set, v_k is the splitting vertex of s_{i1}.

Same on v_j, v_j is the splitting vertex of s_{kt}.

Lemma 4. If s_{i1} has n splitting vertexes $\{v_1, v_2, ..., v_n\}$, then $s_{i1} = s_{i1} \cup s_{i2} \cup ... \cup s_{i_n} \cup \{v_1, v_2, ..., v_n\}$.

Proof. If $n = 2$, the splitting vertexes are v_1, v_2, $s_{i1} = s_{i1} \cup s_{i2} \cup \{v_1\} = s_{i2} \cup s_{i2} \cup \{v_2\}$. Let $v_1 \in s_{i2}$, $v_1 \neq v_2$, then $s_{i1} \cap s_{i2} = s_{i2} \neq \emptyset$. According to Lemma 3, v_1 is splitting vertex of s_{i2} and v_2 is splitting vertex of s_{i1}. Therefore, $s_{i1} = s_{i1} \cup s_{i2} \cup s_{i2} \cup \{v_1, v_2\}$.

For $n > 2$, the lemma can be proved by repetitively using the conclusion in $n = 2$. \square
Lemma 5. If the non-branched \(s_{ij} \) has a maximal split \(\{s_{pq}\} \), and \(|\{s_{pq}\}| > 2 \), denote \(\{v\} \) as all the endpoint vertexes of \([s] \in \{s_{pq}\} \). Then \(\forall v \in \{v\}, v \neq v_i, v_j, v \) is the endpoint vertex of at least 3 members of the maximal split.

Proof. If \(v_b \) is the endpoint vertex of only 2 members of the maximal split, suppose the 2 members are \(s_{ab} \) and \(s_{bc} \). If \(s_{ab} \) and \(s_{bc} \) can be merged into \(s_{ac} \). If \(s_{ac} \neq s_{ij} \), this violates the definition of maximal split. Otherwise, it violates the condition that \(s_{ij} \) is non-branched and \(|\{s_{pq}\}| > 2 \). It is impossible that the 2 members are \(s_{ab} \) and \(s_{cb} \) because in this way \(v_b \) has no path to \(v_j \) and violates the definition of close set. If \(v_b \) is the endpoint vertex of only 1 member of the maximal split, then \(v_b \) must be either \(v_i \) or \(v_j \). Therefore, this lemma is proved.

Lemma 6. Any member of a maximal split can not be the subset of another close set \(s \subsetneq s_{ij} \).

Proof. Suppose the source vertex of \(s \) is \(v_1 \) and target vertex is \(v_2 \), a member \(s_{xy} \) of the maximal split is inside \(s \).

Suppose a member \(s_{ab} \) of the maximal split has its source vertex \(v_a \) inside \(s \) and target vertex \(v_b \) outside \(s \). Then the boundary vertex \(v_2 \) of the maximal split has has path to \(v_2 \), otherwise the independence of \(s \) will be violated. Notice that \(v_2 \) is inside \(s_{ab} \) and the independence of \(s_{ab} \) needs to be guaranteed, for \(\forall v_p \in s, v_p \notin s \cap s_{ab}, v_q \in s \cap s_{ab}, v_p \) has no edge with \(v_q \). Therefore, \(v_a \) is a splitting vertex of \(s \).

Similarly, if \(s_{pa} \) has its target vertex \(v_a \) inside \(s \) and source vertex \(v_b \) outside \(s \), the boundary vertex must be \(v_1 \) and \(v_a \) is a splitting vertex of \(s \).

For the close set \(s \), from the discussion above, we know that there are at most 2 members of the maximal split that can overlap with \(s \). Other members must be either completely inside \(s \) or completely outside \(s \). Let’s discuss the number of members that overlaps with \(s \).

If there are 0 member that overlaps with \(s \), \(s \) is the union of a subset of members of the maximal split, which violates the definition of maximal split.

If there is 1 member that overlaps with \(s \), suppose the corresponding splitting vertex is \(v_a \), and the boundary vertex is actually \(v_2 \). Then \(s_{1b} \) is a close set containing \(s_{xy} \) and corresponds to the situation of 0 member overlapping. \(s_{1b} \) is the union of a subset of members of the maximal split, and violates the definition of maximal split.

If there are 2 members that overlaps with \(s \), suppose they generate two different splitting vertex \(v_a \) and \(v_b \). Then \(s_{ab} \) is a close set containing \(s_{xy} \) and corresponds to the situation of 0 member overlapping. \(s_{ab} \) is the union of a subset of members of the maximal split, and violates the definition of maximal split.

If they generate the same splitting vertex \(v_b \), from lemma 5, \(v_b \) is the endpoint vertex of at least 1 other member \(s_{ab} \) which has to be inside \(s \). Suppose the two overlapping members are \(s_{ij} \) that contains \(v_1 \) and \(s_{ab} \) that contains \(v_2 \). As the source vertex of \(s \), \(v_1 \) has path to \(v_b \) and \(v_1 \) has path to \(v_a \), which implies \(v_1 \) has path to \(v_a \). As target vertex of \(s \), \(v_2 \) has path from \(v_b \) and \(v_2 \) has path from \(v_a \), which implies \(v_2 \) has path from \(v_a \). This conflicts with the fact that \(s \) is acyclic. Therefore, this case is not possible.

Therefore, this lemma is proved.

Lemma 7. If non-branched \(s_{ij} \) has at least 1 vertex but has 0 splitting vertex, then its maximal split has length \(> 2 \).

Proof. As \(s_{ij} \) is not branched, the members of its maximal split cannot have the starting vertex as \(v_1 \) and the ending vertex as \(v_2 \) at the same time. If \(s_{ij} \) has at least 1 vertex, and its maximal split has length 2, then its maximal split must be \(\{s_{ik}, s_{kj}\} \), and \(v_k \) will be the splitting vertex of \(s_{ij} \), which violates that \(s_{ij} \) has no splitting vertex.

12
If \(s_{ij} \) has at least 1 vertex without splitting vertex, it has at least 2 edges and cannot have a trivial length 1 maximal split. Therefore, its maximal split has length \(> 2 \). \(\square \)

A.2 Uniqueness of Division Tree

To prove this uniqueness, we simply discuss the division uniqueness of close set type 1, 2 and 3.

A.2.1 Uniqueness of Division of Close Set Type 1

Proof. By the definition of this division and Lemma 4, the uniqueness of the division is equivalent to the uniqueness of the splitting vertex set of a close set type 1. The splitting vertex set is obviously unique. \(\square \)

A.2.2 Uniqueness of Division of Close Set Type 2

Proof. If there exists another division, there must be a branch member \(s_{ij}^1 \) in division 1 and a branch member \(s_{ij}^2 \) in division 2, where \(s_{ij}^1 \cap s_{ij}^2 \neq \emptyset \) and \(s_{ij}^1 \neq s_{ij}^2 \).

Denote \(s = s_{ij}^1 \cap s_{ij}^2 \). By Lemma 1 and 2, \(s = s_{ij}^1 \) is also a close set. As \(s_{ij}^1 \) and \(s_{ij}^2 \) cannot be divided into more branches, \(s = s_{ij}^1 = s_{ij}^2 \). Therefore, the division of close set type 2 is unique. \(\square \)

A.2.3 Uniqueness of Division of Close Set Type 3

Proof. As the close set in the division tree has at least 1 vertex, with Lemma 7, we know that the division, i.e. maximal split of a close set type 3 \(s_{ij} \) within the division tree will have length \(> 2 \). Denote this maximal split as \(\{ [s_{pq}] \} \), we only need to prove this maximal split is unique.

Suppose there is a different maximal split \(\{ [s'_{pq}] \} \), let us only check the difference between \(\{ [s_{pq}] \} \) and \(\{ [s'_{pq}] \} \). Denote \(\{ [s_{kt}] \} \) and \(\{ [s'_{kt}] \} \) with \(\{ [s_{pq}] \} - \{ [s_{kt}] \} = \{ [s'_{pq}] \} - \{ [s'_{kt}] \} \) and \(\exists s \in \{ [s_{kt}] \}, s' \in \{ [s'_{kt}] \}, s = s' \). As \(\{ [s_{pq}] \} - \{ [s_{kt}] \} = \{ [s'_{pq}] \} - \{ [s'_{kt}] \} \), we have \(\cup \{ [s_{kt}] \} = \cup \{ [s'_{kt}] \} \).

Obviously, \(|\{ [s_{kt}] \}| \geq 2 \) and \(|\{ [s'_{kt}] \}| \geq 2 \). Denote \(\{ v \} \) as all the endpoint vertexes of \([s] \in \{ [s_{kt}] \} \), and \(\{ v' \} \) for \(\{ s'_{kt} \} \). Obviously \(\{ v \} \neq \emptyset \) and \(\{ v' \} \neq \emptyset \). As \(s_{ij} \) is non-branched, \(\{ v \} \cup \{ v_i, v_j \} - \{ v_i, v_j \} = \emptyset \).

Suppose \(s_{ab}, s_{bc} \in \{ [s_{kt}] \} \), according to Lemma 5, there’s at least 1 other member that has \(v_b \) as endpoint vertex. Suppose the other endpoint of this member is \(v_d \). Let’s discuss whether \(v_b \in \{ v' \} \) and whether \(v_d \in \cup \{ [s_{kt}] \} \).

If \(v_d \notin \cup \{ [s_{kt}] \} \), then \(v_b \) must occur in \(\{ v' \} \). Otherwise, \(v_b \) would be inside a close set which would be violated by \(v_d \). Given \(v_b \in \{ v' \} \), as \(s_{ab} \notin \{ s'_{kt} \} \), suppose \(s_{ab} \in \{ [s'_{kt}] \} \) and \(s_{ab} \cap s_{bc} \neq \emptyset \). If \(v_a \in s_{ab} \), from Lemma 1, \(s_{bc} \) cannot be close. If \(v_c \in s_{ab} \), from Lemma 5, \(s_{ab} \) cannot be close. In this case, there cannot exist another different maximal split.

If \(v_d \in \cup \{ [s_{kt}] \} \), then \(s_{bd} \in \{ [s_{kt}] \} \). If \(v_b \in \{ v' \} \), we can use the same logic above to show this is impossible. Therefore, \(v_b \notin \{ v' \} \) and \(s_{bd} \) is included by a close set \(s \). From Lemma 6, this is impossible. In this case, there cannot exist another different maximal split.

In all the cases, there cannot exist another different maximal split. Therefore, the maximal split is unique. \(\square \)

A.3 Completeness of Division Tree

Similar with the uniqueness, the completeness of division tree is equivalent to the completeness of the division of a close set. To prove this completeness, we simply discuss the division completeness of close set type 1, 2 and 3.

An equivalent statement of the division completeness is: there doesn’t exist a close set whose head is in one member of the division and whose tail is in another member of the division.
A.3.1 Completeness of Division of Close Set Type 1

Proof. Suppose there exists a close set s whose head v_p is in one member s_1 and whose tail v_q is in another member s_2.

If v_p is not an endpoint of s_1, then according to Lemma 3, v_p is also a splitting vertex in s_1 and can break s_1 into smaller segments, which makes v_p also the splitting vertex of the whole close set. However, v_p is not the splitting vertex of the whole close set s_{ij}. This also applies to v_q. Therefore, the division of close set type 1 is complete. □

A.3.2 Completeness of Division of Close Set Type 2

Proof. Suppose there exists a close set s whose head v_p is in one branch s_{ij}^1 and whose tail v_q is in another branch s_{ij}^2. As s crosses s_{ij}^1 and s_{ij}^2, there exists a boundary vertex v in s, which belongs to $[s_{ij}^1]$ and has direct connection with a vertex outside $[s_{ij}^1]$. If v is not v_i or v_j, it will violate the independence of s_{ij}. If $v = v_i$, as v_i is the head of both s_{ij}^1 and s_{ij}^2, it cannot be the boundary vertex, same when $v = v_j$. Therefore, there cannot exist such a close set s. The division of close set type 2 is complete. □

A.3.3 Completeness of Division of Close Set Type 3

Proof. Suppose there exists a close set s whose head v_p is in one member s_1 and whose tail v_q is in another member s_2. Same with close set type 2, the boundary vertex v has to be the endpoint vertex of s_1 or the independence of s_1 will be violated. According to Lemma 5, v is the endpoint vertex of at least 3 members, meaning that v will at least have 1 connection with another close set s_3. To maintain the independence of s, s has to include s_3 as well. However, s_3 also has its endpoints. This will propagate until s becomes the whole close set. Therefore, there cannot exist such a close set s. The division of close set type 3 is complete. □