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ABSTRACT

The rise of internet has resulted in an explosion of data consisting of millions of
articles, images, songs, and videos. Most of this data is high dimensional and
sparse, where the standard compression schemes, such as LSH (2; 4), become in-
efficient due to at least one of the following reasons: 1. Compression length is
nearly linear in the dimension and grows inversely with the sparsity 2. Random-
ness used grows linearly with the product of dimension and compression length.
We propose an efficient compression scheme mapping binary vectors into binary
vectors and simultaneously preserving Hamming distance and Inner Product. Our
schemes avoid all the above mentioned drawbacks for high dimensional sparse
data. The length of our compression depends only on the sparsity and is indepen-
dent of the dimension of the data, and our schemes work in the streaming setting
as well. We generalize our scheme for real-valued data and obtain compressions
for Euclidean distance, Inner Product, and k-way Inner Product.

1 INTRODUCTION

The technological advancements have led to the generation of huge amount of data over the web such
as texts, images, audios, and videos. Needless to say that most of these datasets are high dimensional
and sparse. Searching for similar data-objects in such massive and high dimensional datasets is be-
coming a fundamental subroutine in many scenarios like clustering, classification, nearest neighbors,
ranking etc. However, due to the “curse of dimensionality” a brute-force way to compute the simi-
larity scores on such data sets is very expensive and at times infeasible. Therefore it is quite natural
to investigate the techniques that compress the dimension of dataset while preserving the similarity
between data objects. There are various compressing schemes that have been already studied for
different similarity measures. Below we discuss a few such notable schemes and their shortcoming
in case of high dimensional sparse data. In this work we consider binary and real-valued datasets.
For binary data we focus on Hamming distance and Inner product, while for real-valued data we
focus on Euclidean distance and Inner product.

1.1 EXAMPLES OF SIMILARITY PRESERVING COMPRESSIONS AND THEIR SHORTCOMINGS

The quality of any compression scheme can be evaluated based on the following two parameters
- 1) the compression-length, and 2) the amount of randomness required for the compression. The
compression-length is defined as the dimension of the data after compression. Ideally, it is desirable
to have both of these to be small while preserving a desired accuracy in the compression. Below we
will notice that most of the above mentioned compression schemes become in-feasible in the case
of high dimensional sparse datasets as 1) their compression-length is very high, and 2) the amount
of randomness required for the compression is quite huge.

Gionis, Indyk, Motwani (2) proposed a data structure to solve approximate nearest neighbor (c-
NN) problem in binary data for Hamming distance. Their scheme popularly known as Locality
Sensitive Hashing (LSH). Intuitively, their data structure can be viewed as a compression of a binary
vector, which is obtained by projecting it on a randomly chosen bit positions. A major disadvantage
of their scheme is that their compression length (size of hash table) can be linear in the dimension.

0A reference of the complete version of the paper is (7).
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Ata Kabán (6) suggested a compression schemes for real data which preserves inner product via
random projection. If the input data is binary, and it is desirable to get the compression only in
binary, then to the best of our knowledge no such compression scheme is available. However, with
some sparsity assumption, there are schemes (see (9)) available which via asymmetric padding re-
duce the inner product similarity to Jaccard similarity. Then minhash permutations – a compression
scheme for Jaccard similarity, can be applied on the padded version of the data. A major disad-
vantage here is that for high dimensional data computing permutations are very expensive as the
randomness required in this compression scheme is polynomial in the dimension.

JL transform (5) suggests a compressing scheme for real-valued data. For any ε > 0, it compresses
the dimension of the points from d toO

(
1
ε2 log n

)
while preserving the Euclidean distance between

any pair of points within factor of (1 ± ε). The compression-length in this scheme is O
(

1
ε2 log n

)
,

and it requires O
(

1
ε2 d log n

)
randomness.

2 OUR CONTRIBUTION

In this work we present a compressing scheme for high dimensional sparse data. In contrast with
the “local projection” strategies used by most of the previous schemes such as LSH (4; 2), JL trans-
form (5), and (6) our scheme combines (using sparsity) the following two step approach 1. Parti-
tioning the dimensions into several buckets, 2. Then obtaining “global linear summaries” of each of
these buckets. Below, we pictorially describe an instance of our compression scheme – the left fig-
ure describe binary data compression scheme while the right figure is real-valued data compression
scheme.

2.1 FOR BINARY DATA

For binary data, our compression scheme provides one-shot solution for both Hamming and Inner
product – compressed data preserves both Hamming distance and Inner product. Moreover, the
compression-length depends only on the sparsity of data and is independent of the dimension of
data. We first define our compression scheme for binary data. In the results below, ψ denote the
maximum number of 1 in any vector; N denote the compression length; dH(, ) and IP(, ) denote
Hamming distance and inner product of two binary vectors, respectively.

Definition 1 (Binary Compression Scheme) Let N be the number of buckets, for i = 1 to d, we
randomly assign the i-th position to a bucket number b(i) ∈ {1, . . .N}. Then a vector u ∈ {0, 1}d,
compressed into a vector u′ ∈ {0, 1}N as follows: u′[j] =

∑
i:b(i)=j u[i] (mod 2).

Theorem 1 Consider a set U of binary vectors {ui}ni=1 ⊆ {0, 1}d, a positive integer r, and ε > 0.
If εr > 3 log n, we set N = O(ψ2); if εr < 3 log n, we set N = O(ψ2 log2 n), and compress them
into a set U′ of binary vectors {u′

i}ni=1 ⊆ {0, 1}N using our Binary Compression Scheme. Then for
all ui,uj ∈ U,

• if dH(ui,uj) < r, then Pr[dH(ui
′,uj

′) < r] = 1,

• if dH(ui,uj) ≥ (1 + ε)r, then Pr[dH(ui
′,uj

′) < r] < 1
n .

Theorem 2 Consider a set U of binary vectors {ui}ni=1 ⊆ {0, 1}d, a positive integer r, and ε > 0.
If εr > 3 log n, we set N = O(ψ2); if εr < 3 log n, we set N = O(ψ2 log2 n), and compress them
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into a set U′ of binary vectors {u′
i}ni=1 ⊆ {0, 1}N using our Binary Compression Scheme. Then for

all ui,uj ∈ U the following is true with probability at least 1− 1
n ,

(1− ε)IP(ui,uj) ≤ IP(ui
′,uj

′) ≤ (1 + ε)IP(ui,uj).

In the following, we strengthen our result of Theorem 1, and shows a compression bound which is
independent of the dimension and the sparsity, but depends only on the Hamming distance between
the vectors. However, we could show our result in the expectation, and only for a pair of vectors.

Theorem 3 Consider two binary vectors u,v ∈ {0, 1}d, which get compressed into vectors u′,v′ ∈
{0, 1}N using our Binary Compression Scheme. If we set N = O(r2), then

• if dH(u,v) < r, then Pr[dH(u′,v′) < r] = 1, and

• if dH(u,v) ≥ 4r, then E[dH(u′,v′)] > 2r.

Remark 1 For Hamming distance our scheme obtains the “no-false-negative” guarantee analo-
gous to the one obtained in a recent paper by Pagh (8). When r is constant, LSH (2) requires
compression length linear in the dimension, however, due to Theorem 3, our compression length
is only constant. Our compression length is O(ψ log2 n), which is independent of the dimension
d; whereas other schemes such as LSH may require the compression length growing linearly in d.
Moreover, for all-pair compression for n data points we use O(d(logψ + log log n)) randomness,
which grows logarithmically in the sparsity and sub-logarithmically in terms of number of data
points.

2.2 FOR REAL-VALUED DATA

We generalize our scheme for real-valued data also and obtain compressions for Euclidean distance,
Inner product, and k-way Inner product. In the below we state our result for euclidean distance, a
similar result can also be obtained for inner product and k-way inner product.

Definition 2 (Real-valued Compression Scheme) Let N be the number of buckets, for i = 1 to d,
we randomly assign the i-th position to the bucket number b(i) ∈ {1, . . .N}. Then, for j = 1 to N,
the j-th coordinate of the compressed vector α is computed as follows: α[j] =

∑
i:b(i)=j a[i]xi,

where each xi is a random variable that takes a value between {−1,+1} with probability 1/2.

Theorem 4 Consider two vectors a,b ∈ Rd, which get compressed into vectors α,β ∈ RN using
the compression scheme above. If we set N = 10Ψ2

ε2 , where Ψ = max{||a||2, ||b||2} and ε > 0, then
Pr [|〈α,β〉 − 〈a,b〉| > ε] < 1/10.

Remark 2 In order to compress a pair of data points our scheme requires O(d log N) randomness,
which grows logarithmically in the compression length, whereas the other schemes require random-
ness which grows linearly in the compression length. Thus, when the number of points are small
(constant), then for preserving a pairwise Inner product or Euclidean distance, we have a clear
advantage on the amount of randomness required for the compression.

3 POTENTIAL APPLICATIONS AND OPEN QUESTIONS

A potential use of our result is to improve approximate nearest neighbor search via composing with
LSH. One can first compress the input such that it preserve the desired similarity measure, and
then can apply a collision based hashing algorithm such as LSH (2; 4) for efficient approximate
nearest neighbor (c-NN) on the compressed data. There are many similarity based algorithmic
methods used in large scale learning and information retrieval, e.g., Frequent itemset mining (1),
ROCK clustering (3). One could potentially obtain algorithmic speed up in these methods via our
compression schemes. Recently compression based on LSH for inner-product is used to speed up
the forward and back-propagation in neural networks (10). One could potentially use our scheme to
take advantage of sparsity and obtain further speed up.

Our work leaves the possibility of several open questions – improving the bounds of our compression
scheme, and extending it to other similarity measures such as Cosine and Jaccard similarity are major
open questions of our work.
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