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Abstract

In this paper, we propose a predictive regression model for longitudinal images with
missing data based on large deformation diffeomorphic metric mapping (LDDMM)
and deep neural networks. Instead of directly predicting image scans, our model
predicts a vector momentum sequence associated with a baseline image. This
momentum sequence parameterizes the original image sequence in the LDDMM
framework and lies in the tangent space of the baseline image, which is Euclidean.
A recurrent network with long term-short memory (LSTM) units encodes the time-
varying changes in the vector-momentum sequence, and a convolutional neural
network (CNN) encodes the baseline image of the vector momenta. Features
extracted by the LSTM and CNN are fed into a decoder network to reconstruct
the vector momentum sequence, which is used for the image sequence prediction
by deforming the baseline image with LDDMM shooting. To handle the missing
images at some time points, we adopt a binary mask to ignore their reconstructions
in the loss calculation. We evaluate our model on synthetically generated images
and the brain MRIs from the OASIS dataset. Experimental results demonstrate the
promising predictions of the spatiotemporal changes in both datasets, irrespective
of large or subtle changes in longitudinal image sequences.

1 Introduction

Since the last decade, longitudinal images are increasingly available for studying brain development
and degeneration, disease progression, and aging problems. For instance, to understand the evolution
of longitudinal data like brain scans over time, image regression [1] is a commonly-used technique to
capture underlying spatialtemporal changes. This regression model estimates images as a function of
associated variables like age under the framework of Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) [2]. The following-up works aim at capturing non-linear changes with polynomial
or spline regression [3, 4], modeling hierarchical changes at subject- and group-levels separately [5],
or improving computational efficiency by introducing model approximations [6, 7]. These methods
summarize the time-varying changes of a population, which is parameterized by the initial conditions
of the captured smooth trajectory, e.g., the initial image and its associated initial momentum or
velocity. To leverage this summarized trajectory and predict follow-up image scans for a specific
subject, we need parallel transport techniques [8] to transport the estimated initial momentum or
velocity from its corresponding initial image to the image scan of the target subject. However, parallel
transport in image space is non-trivial, which is still under development. Another choice is image
regression based on kernel methods [9, 10]. Typically, these approaches do not provide an explicit
model that extracts parameters for further statistical analysis. Also, their prediction procedure highly
depends on the training data, which is not efficient for a large dataset.

Recent advances and success in deep neural networks (DNN) [11] provide an alternative strategy to
study longitudinal image populations. Several convolutional neural networks (CNN) and recurrent
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Figure 1: Architecture of our predictive image regression network. The baseline image Ii,0 of a
subject i passes through a CNN image encoder to extract its features, which are concatenated with
features of a vector momentum sequence {mi,j , ti,j} extracted by an LSTM encoder. The binary
mask is used to ignore missing data at some time points. The concatenated feature maps are the input
of a CNN decoder to reconstruct the vector momentum sequence {m̂i,j}, which is used to deform
the image {Ii,0} and predict the image sequence {Îi,j} in the LDDMM framework.

neural networks (RNN) [12, 13] have been proposed to predict the next frame of a video, without
requiring the computation of complex regression models. However, because they treat images as a
collection of pixel intensities without understanding their underlying geometrical structures, these
data-driven methods based on DNNs often suffer a problem of blurry image predictions. Furthermore,
different from video frame prediction, our task of predicting medical image scans aims to deal with
longitudinal data collected at different time points with varying time intervals. In practice, subjects
have image scans at different ages, and each subject may not scan regularly. As a result, we have the
missing data issue at some time points, which does not often exist in video prediction.

In this paper, we address the problem of predicting follow-up image scans of a specific subject with
a baseline scan as input, using a deep neural network learned from longitudinal data with missing
scans. To learn a growth trend for a specific subject from a population and to overcome DNNs’ blurry
prediction issue for the follow-up scans, we integrate image registration techniques used in image
regression models with a mixed CNN and RNN architecture, as shown in Fig. 1. Instead of directly
working on input images to predict image sequence of a subject, our model predicts a sequence
of vector momenta [14] for a baseline image input. These vector momenta are associated with
their baseline image and parameterize deformation mappings between images under the LDDMM
framework. We use the predicted vector momenta to deform the baseline image to different time
points and generate the corresponding image sequence. We train our predictive image regression
network by using the first image of a subject and its associated vector momentum sequence for each
image scan, which is generated using LDDMM image registration. To handle the missing data, we
introduce a binary mask into the training procedure, which ignores the loss calculation for predictions
at missing time points. During the prediction procedure, given an individual with one image scan,
our model can predict how it changes over time according to the learned population trend.

The most related work to ours is the fast image regression in [15], which uses pairwise fast image
registrations [16] in a simplified image regression model [6] to summarize regression trajectories.
The model proposed in [6] uses a distance approximation for measuring image differences, which
assumes only small deformations existing among images. To relax this assumption, our model fully
leverages longitudinal data and learns the deformations from time series data. We adopt an RNN
composed of Long Short-Term Memory (LSTM) units, which is well suited for time-series prediction
problems. We evaluate our model on both synthetic and real datasets. The experimental results
demonstrate the effectiveness of our proposed model by capturing designed changes in the synthetic
data and enlarging brain ventricles in the longitudinal OASIS dataset [17].

2 Predictive Network for Image Regression

In this section, we present the architecture of our predictive image regression network (Fig. 1) in detail.
Assume we have a population of images collected from N subjects and each subject i has a varying
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number (Pi) of images ({Ii,j}Pi−1
j=0 ) scanned at different time points ({ti,j}Pi−1

j=0 ). The objective of
image regression is to uncover the relationship between images {Ii,j} and their associated variable
{ti,j}. Instead of directly performing regression on images, we leverage LDDMM and geodesic
shooting with vector momentum [14, 18] to convert the longitudinal images of a subject into an
initial image Ii,0 and a sequence of associated momenta {mi,j}Pi−1

j=0 (Section 2.1). The relation of
the initial image and its momentum sequence to their associated variables, like age, will be learned
through training a deep neural network (Section 2.2). The predicted momentum sequence for an input
image can shoot it forward to generate the corresponding image sequence (Section 2.3).

2.1 LDDMM and Momentum Generation

LDDMM
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Figure 2: Generation of a vector momentum
sequence using LDDMM. The baseline image
(I0) is paired with every other image in the
sequence (I1, I2, ..., IP−1). The registration of
the baseline image to itself is not shown here.

Before studying image time series, we first need to
establish image mappings, i.e., the correspondences
between images. The LDDMM framework [2] pro-
vides a solution that estimates maps of diffeomor-
phisms (smooth mapping and smooth inverse map-
ping) to deform one image to another. Specifically,
given a source image I0 and a target image I1,
the LDDMM estimates a diffeomorphic mapping
between them by minimizing the following energy:

E(v) =

∫ 1

0

‖v‖2Ldt +
1

σ2
‖I0 ◦ Φ−1(1)− I1‖22,

s.t.
dΦ

dt
= v ◦ Φ, Φ−1(0) = Id.

Here, v is a spatiotemporal velocity field, L is a dif-
ferential operator on the velocity field to enforce its
smoothness, e.g., L = −α∇2−β∇(∇·)+γ, σ > 0
is a constant to balance the first regularization term
and the second image matching term in the above
equation, Φ is the diffeomorphic mapping, and Id
is the identity map. This formulation can be solved
using the shooting strategy [18] and the image reg-
istration from I0 to I1 can be parametrized by a
initial vector momentum m0. Here, the m0 is the
dual of the velocity field [14], that is, m = Lv,
which is associated with its initial image I0.

Given a sequence of longitudinal images from a subject i, we select the first scan Ii,0 as the baseline
image and compute the initial vector mi,j for each scan Ii,j , (j = 0, · · · , Pi − 1), by registering Ii,0
to Ii,j using LDDMM, as shown in Fig.2. Note that the registration of the baseline image to itself is
not shown in Fig. 2, since the resulting vector momentum is zero; but this zero momentum serves as
a starting point for the recurrent network training and prediction in Section 2.2. Specifically, each
vector momentum has x, y, and z components and the z dimension has zero momentum for a 2D
image. As a result, we represent the image sequence of a subject as one image and its associate vector
momentum sequence. Each vector momentum inherits the associated variable of its corresponding
image. That is, we have a population of data represented as {Ii,0, {mi,j , ti,j}Pi−1

j=0 }
N−1
i=0 by using

LDDMM and geodesic shooting.

2.2 Predictive Regression Network

The new data representation obtained in Section 2.1 brings the study of longitudinal images from the
manifold of diffeomorphisms to the tangent space of the first scan, which has a Euclidean structure.
Since the vector momenta are in a Euclidean space, their relationships to the associated variable,
i.e., the age, can be learned using an RNN, which is designed to handle Euclidean time series data.
Meanwhile, because the vector momenta are associated with their first image scan, we also include
this baseline image in our network when learning features from momentum sequences. To predict a
momentum sequence for image generation, we design an encoder-and-decoder network as shown in
Fig. 1. This network has three components, i.e., a CNN image encoder to extract features from the
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baseline image, an LSTM vector momentum encoder to handle the vector momentum sequences, and
a CNN vector momentum decoder to reconstructs the vector momenta, which will be used to shoot
the baseline image forward and generate follow-up image scans.

CNN Image Encoder. This pathway in the network accepts the baseline image of a subject and
extracts its image features that will be used for predicting the corresponding vector momenta. In
particular, this feature extractor is a series of convolutional and pooling layers to learn hierarchical
features from the first image scan Ii,0 of a subject i. The initial pair of convolutional layers have 32
filters and the filter number in the second pair increases to 64. A max pooling layer and a dropout [19]
follow after every pair of convolutional units. The last convolutional layer in this CNN branch has 128
convolutional filters. Throughout the network, we use PReLU activation function [20], convolutional
units with a 3 × 3 kernel size, and a max pooling size of 2 × 2. We choose the PReLU activation
function because of negative values in the vector momenta and keep it consistent here. The extracted
features by this branch are concatenated with those extracted from the LSTM vector momentum
encoder and fed to the CNN vector momentum decoder for generating a momentum sequence.

LSTM Vector Momentum Encoder. The second pathway in the network aims to learn time-
varying changes from the vector momentum sequences {mi,j , ti,j} generated by LDDMM and
geodesic shooting. Here, a recurrent network with LSTM units learns the relationship between the
vector momentum and its associated variable, the age. Since the changes start from the baseline
image at ti,0, we consider the relative age of images and adjust the independent variable as the age
difference in years to the baseline image, that is, ∆ti,j = ti,j − ti,0. As a result, this branch learns
the vector momentum as a function of the relative age, instead of the absolute age. Since we have a
limited number of LSTM units, the maximum age difference accepted by this LSTM encoder is four
years in our experiments. That is, we consider longitudinal images collected within five years, and
the age difference between adjacent LSTM units is one year. We choose the number of LSTM units
according to the OASIS dataset (Section 3), and it may be different for another longitudinal dataset.

In practice, it is very likely that a subject misses image scans in one or more follow-up years, which
happens in the OASIS dataset. To deal with the missing data, we add a masking layer after the input
layer to mask the missing inputs in the sequence. In particular, the mask layer has a time-distributed
structure, which is an array of zeros for a missing time point while an array of all ones, otherwise. As
a result, the predicted momenta for those missing time points will not be considered in the objective
function calculation. This simple strategy allows us to handle a sequence prediction with one or
multiple missing time points.

It is worth to mention that we use the convolutional LSTM [21] in our network. It has an LSTM
architecture combined with CNN, which is specifically designed for sequence prediction problems
with spatial inputs like images or videos. In particular, the convolutional LSTM includes convolutional
layers to extract features from the input data and the LSTM units to support the sequence prediction.
In this LSTM encoder, a total of four convolutional LSTM layers follow the masking layer. Among
the four convolutional LSTM units, the first two units have 32 filters, which is then doubled to 64 in
the next pair. A batch normalization layer is added after every convolutional LSTM layer. The output
feature maps of the LSTM units have the same spatial size as the input momenta. To reduce the size
of features maps and keep consistent with the CNN image encoder, after the LSTM units we use a
max pooling layer, a convolutional layer with 128 filters, and another max pooling layer. The two
pooling layers result in feature maps with the same size of the CNN image encoder for concatenation.
The features learned from this network are then forwarded to the decoder network.

CNN Vector Momentum Decoder. The decoder network aims to reconstruct a vector momentum
sequence as the prediction {m̂i,j} using the features learned from the baseline image and its associated
momentum. To achieve this, we use an inverted version of the CNN image encoder architecture for
the decoder. In particular, this network consists of an up-sampling layer (up-sampled by 2) and a
pair of convolutional layers with 64 filters. These layers are followed by another up-sampling layer
and another pair of convolutional layers with 32 filters. In this way, the network can reconstruct
the momenta to the original input size. This decoder takes the features maps learned from the
encoder network as input and predicts the next vector momentum in the sequence. We append this
newly-predicted momentum to the previously-predicted sequence, which is fed to the LSTM units
again to predict momentum at a further time step. This recursive call continues until we complete the
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Algorithm 1 Workflow of Our Predictive Network for Image Regression
1: procedure PREPROCESSING
2: Compute the vector momentum sequence {mi,0,mi,1, ...,mi,Pi−1} of each subject i using

LDDMM and geodesic shooting for image pairs Ii,0 → Ii,0, Ii,0 → Ii,1, Ii,0 → Ii,2, ...,
Ii,0 → Ii,Pi−1, as shown in Fig. 2.

3: Construct vector momentum sub-sequences, for instance, mi,0 has a target mi,1, mi,0 and
mi,1 together have a target mi,2, and so on.

4: Save the initial images {Ii,0} with their associated vector momentum sequences {mi,j , ti,j}.

5: procedure TRAINING
6: Pre-train the CNN vector momentum decoder using computed vector momenta from step 2.

This is achieved by training an autoencoder to reconstruct the vector momenta.
7: Train the CNN image encoder on initial images of all subjects {Ii,0} through training an

autoencoder to reconstruct the images.
8: Train the LSTM encoder on vector momentum sequences constructed from step 3 and use

binary masks to handle missing time points.
9: Merge the features extracted from steps 7 and 8 and feed them to the decoder.

10: Fine-tune the weights of the decoder by training it over the merged features from the two
encoder branches.

11: procedure PREDICTION
12: Extract features from an input image I0 using the CNN image encoder.
13: Set m0 to be zero.
14: Feed m0 to the LSTM vector momentum encoder.
15: Feed extracted features from the input image and initial momentum m0 to the decoder.
16: The decoder predicts the next vector momentum m̂1.
17: Append m̂1 and form a momentum sequence with m0.
18: Extract features from this newly-formed sequence by passing it as input to the LSTM network

to predict m̂2.
19: Repeat steps 17 and 18 to predict m̂3, m̂4, ..., until m̂s−1 is predicted. Here, s is the maximum

sequence length that the LSTM network can handle.
20: Apply the predicted vector momentum sequence to I0 with LDDMM shooting to generate

the sequence of the follow-up images Î1, Î2, ..., Îs−1.
21: If needed, treat Îs−1 as I0 and m̂s−1 as m0 to continue the prediction, repeating steps 14-20.

prediction of the last momentum in the sequence. The vector momentum output has x, y, and z three
components, which is generated by a convolutional layer with three filters.

2.3 Network Training and Prediction

In our regression model, we use the mean squared error (MSE) as the loss function for either pre-
trained or trained networks. Algorithm 1 depicts the workflow of our predictive network for image
regression. It includes the preprocessing procedure discussed in Section 2.1, the training procedure
for the network components discussed in Section 2.2, and the prediction procedure for generating the
image sequence. Although the LSTM sub-network accepts a fixed number of vector momenta in the
sequence, we can predict more momenta and generate more images by taking the last prediction of
the vector momentum and its corresponding image as the initial momentum and the initial image to
continue the prediction procedure.

3 Experiments

Datasets. We evaluate the prediction performance of our predictive network on both synthetic and
real datasets. The synthetic data is a set of binary images of concentric circular rings like the bull
eyes shown in Fig. 3. The radii of the concentric rings change with a constant rate but having a
small Gaussian noise. It has 52 2D image sequences with image size of 64× 64, and each sequence
has five time points. In this synthetic dataset, 40 momentum sequences are randomly selected for
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Figure 3: Prediction results for one sample image from the synthetic test set. The first row shows
the original image sequence, followed by our predicted sequence with deformation maps (the blue
grids). The third row shows the image difference between the first image I0 and its follow-up images.
The last row demonstrates the image difference between our prediction results and the corresponding
ground-truth images. Best viewed in color.

Synthetic data (1e-4) Non-demented Group (1e-4) Demented Group (1e-4)
8.1184 ± 5.3171 5.8616 ± 1.0703 6.1105 ± 1.9793

Table 1: The mean and standard deviation of mean squared errors over all images in each test group.

training, reserving eight sequences for validation and four sequences for testing (total 16 images
for prediction). The estimated vector momenta using LDDMM is of the form 64× 64× 3, and the
third channel, i.e., the z component, is zero. We normalize the image intensity within 0 and 1 for all
images. In this dataset, we do not consider the missing data problem.

The real dataset includes 2D image slices of brain MRIs from the OASIS database. We have
136 subjects aged from 60 to 98, and each individual was scanned at 2-5 time points with the same
resampled resolution 128×128 and the voxel size of 1.25×1.25 mm3. All images were preprocessed
by down-sampling, skull-stripping, intensity normalization to the range [0,1], and co-registration with
affine transformations. The vector momenta generated between pairs of these images are 128x128x3.
We evaluate our model on the non-demented and demented groups separately. In particular, the
non-demented group has 72 image sequences, 58 used for training, 7 for validation, and 7 for testing
(total 12 images for prediction); and the demented group has 64 image sequences, 52 of them are
used for training, 6 for validation, and 6 for testing (total 9 images for prediction).

Experimental Settings. In LDDMM, we set the parameters for the L operator to [α, β, γ] = [0.01,
0.01, 0.001] and σ to 0.2. In the network, we use Adam optimizer [22] and a dropout rate of 0.5. In
the training procedure, we train the CNN image encoder for 250 epochs, pre-train the CNN vector
momentum decoder for 1500 epochs, and train the LSTM vector momentum encoder and fine-tune
the CNN vector momentum decoder for 500 epochs.

Experimental Results. Figure 3 demonstrates the prediction results of one test sample in the
synthetic dataset. The first two rows show the original image sequence and our predicted one, and the
last two rows show the image difference. In particular, we compute the image difference between
each predicted image and its corresponding image in the sequence, as shown in the last row of Fig. 3,
and compare it with the image changes relative to the first image in the sequence, as shown in the third
row of Fig. 3. The dramatically reduced image difference indicates our prediction is promising. In the
second row of Fig. 3, the deformation maps overlapped on each image also validate that our predictive

6



80 81 82 83 84 85 86 87 88

Figure 4: Prediction results of one sample subject from the non-demented test group of the OASIS
dataset. The first row shows image scans of the subject at 80, 81, 85, and 86 years, and images at the
other time points are missing. The second row shows our predicted image scans for this subject with
the first scan at 80 years as the baseline image. The last row shows the corresponding deformation
map for each predicted image. Best viewed in color and zoom in.

model correctly captures the expanding changes designed in the synthetic data. We compute the MSE
between an image and its prediction and estimate the mean and standard deviation for all predicted
images in the test set of the synthetic data. As reported in Table 1, the mean image difference is
8.1184e-4±5.3171e-4. Note that, since the image intensity is within [0, 1], the maximum possible
value for the mean image difference is 1.
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Figure 5: Difference plots for image scans
and their predictions in Fig. 4. The first row
shows the image difference of image scans at
81, 85, and 86 years compared to the first scan
of the subject at 80 years. The second row
shows the difference between our predictions
and image scans collected at the same years.
Best viewed in color.

Figure 4 shows the prediction results of our model for
one subject sample from the non-demented test group
in the OASIS dataset. This subject has MRI scans at
80, 81, 85, and 86 years old, and there are missing
images at multiple time points. We predict one image
scan per year from 80 years to 88 years, including
those missing ones, as shown in the second row of
Fig. 4. Since the brain changes are quite subtle (see
the first row of Fig. 5), we also plot the deformation
map Φ at each time point, as shown in the last row of
Fig. 4. These deformation maps show the estimated
changes in the brain MRIs. As we can see, the grids
are expanding, especially around the brain ventricle
region. This expanding ventricle indicates our model
captures the degeneration process of the ventricle in
the brain, i.e., an enlarging ventricle. Figure 5 shows
the image difference between predicted images and
their corresponding image scans in the second row.
Compared to the first row that shows image difference
of follow-up scans with respect to the first one, the
prediction difference is relatively smaller, especially
around the ventricle region. Table 1 reports the means
and standard deviations of the prediction difference
for all images in the non-demented and demented
groups, which are 5.8616e-4±1.0703e-4 and 6.1105e-
4±1.9793e-4, respectively.

Apart from the subject-specific image prediction, our model can also estimate a group trajectory by
predicting forward and backward image sequences for the atlas (the mean image) built for that group.
Figure 6 demonstrates the mean trajectory estimated for the demented group. We first estimate the
mean image using the unbiased atlas building algorithm [23]. This atlas is our baseline input, and
we predict vector momenta forward to generate future image scans. By using the negative vector
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Figure 6: Forward and backward predictions of the image sequences (top row) for the atlas (at time t)
of the demented group in the OASIS dataset. The second row shows their corresponding deformation
maps. Best viewed in color and zoom in.

momenta, we shoot the atlas backward and generate previous image scans. From the predicted
images within 25 years (every three years shown in Fig. 6), we can recognize the brain changes, in
particular, the enlarging ventricle over the years. The deformation maps shown in the second row
are generated starting from the atlas in the middle. Therefore, they show the expanding grids in the
forward sub-sequence and the compressed grids in the backward sub-sequence.

4 Discussion and Conclusions

In this paper, we proposed a novel approach to predict time-varying medical image scans by integrating
topologically-preserving image registration model (LDDMM) with deep neural networks. This model
not only inherits the good properties from LDDMM that guarantee a sharp image prediction but also
leverages the deep learning merits of learning from data, without the need of parallel transport for
specializing the prediction for a specific subject. We implemented our predictive model to support
the 2D image prediction; however, it can be straightforwardly extended for predicting 3D images.
One possible challenge in 3D implementation is a shortage of GPU memory, which could be solved
by using 3D image patches instead of the whole 3D volume.

One limitation of our method lies in the LSTM network, which mainly focuses on capturing linear
changes in the image sequence, due to its shared weights among units of a layer at all time points. In
the future work, we will consider of another type of recurrent neural networks or improve the current
LSTM architecture to capture non-linear changes. In addition, the network cannot deal with missing
correspondences among images, such as a tumor appearing or disappearing in brain images. This
limitation is caused by the LDDMM used in this paper, which cannot handle image registrations with
missing correspondences. To address this issue, we could replace the pairwise image registrations
with image metamorphosis [24], which was developed under the LDDMM framework.
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